Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Revolutionizing Nitrofurantoin Delivery: Unraveling Challenges and Pioneering Solutions for Enhanced Efficacy in UTI Treatment

Author(s): Gouri P. Nanda*, Mrunali Patel and Rashmin B. Patel

Volume 14, Issue 2, 2024

Published on: 08 January, 2024

Page: [135 - 150] Pages: 16

DOI: 10.2174/0122103031269368231222095135

Price: $65

Abstract

Nitrofurantoin is an antimicrobial drug, highly effective in the treatment of critical or chronic bacterial infections of the urinary tract, and hence, it is the first line choice of drug for the treatment of urinary tract infections (UTI). Although the molecule is legacy in nature, there are many challenges in terms of drug product formulation and efficacy thereof. The authors are mainly focused in this literature review on, but not limited to, understanding the molecule in terms of physico-chemical properties of the drug, pharmacokinetics and pharmacodynamics, approved and withdrawn formulations, challenges concerning drug formulation, the cause of drug shortage in the market, improvement areas in terms of formulation and its therapeutic effectiveness. The authors found during their widespread review that the major challenge in the existing conventional drug delivery system of nitrofurantoin is the fluctuation of plasma concentration owing to its variability in drug absorption. Further, they understood that the variability in absorption is due to inherent variability in particle size distribution. Based on the findings, authors also explored the possibilities to deliver the drug in novel drug delivery systems such as nano self-emulsifying emulsions, nanoemulsions and multiple emulsions where the drug can be presented in soluble form and hence the variability in absorption and fluctuation in plasma concentration of drug can be avoided and described briefly the salient features of each drug delivery in this review.

Graphical Abstract

[1]
Murray, B.O.; Flores, C.; Williams, C.; Flusberg, D.A.; Marr, E.E.; Kwiatkowska, K.M.; Charest, J.L.; Isenberg, B.C.; Rohn, J.L. Recurrent urinary tract infection: A mystery in search of better model systems. Front. Cell. Infect. Microbiol., 2021, 11, 691210.
[http://dx.doi.org/10.3389/fcimb.2021.691210] [PMID: 34123879]
[2]
Stamm, W.E.; Norrby, S.R. Urinary tract infections: Disease panorama and challenges. J. Infect. Dis., 2001, 183(S1), S1-S4.
[http://dx.doi.org/10.1086/318850] [PMID: 11171002]
[3]
Losada, L.; Amundsen, C.L.; Ashton-Miller, J.; Chai, T.; Close, C.; Damaser, M.; DiSanto, M.; Dmochowski, R.; Fraser, M.O.; Kielb, S.J.; Kuchel, G.; Mueller, E.R.; Parker-Autry, C.; Wolfe, A.J.; Mallampalli, M.P. Expert panel recommendations on lower urinary tract health of women across their life Span. J. Womens Health, 2016, 25(11), 1086-1096.
[http://dx.doi.org/10.1089/jwh.2016.5895] [PMID: 27285829]
[4]
Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Am. J. Med., 2002, 113(1), 5-13.
[http://dx.doi.org/10.1016/S0002-9343(02)01054-9] [PMID: 12113866]
[5]
Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Dis. Mon., 2003, 49(2), 53-70.
[http://dx.doi.org/10.1067/mda.2003.7] [PMID: 12601337]
[6]
Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol., 2010, 7(12), 653-660.
[http://dx.doi.org/10.1038/nrurol.2010.190] [PMID: 21139641]
[7]
Al-Badr, A.; Al-Shaikh, G. Recurrent urinary tract infections management in women: A review. Sultan Qaboos Univ. Med. J., 2013, 13(3), 359-367.
[http://dx.doi.org/10.12816/0003256] [PMID: 23984019]
[8]
Basak, T.K.; Ramanujam, T.; Cyrilraj, V.; Gunshekharan, G. pH homeostasis of a biosensor in renal function regulation linked with UTI. Sens Transducers., 2009, 105(6), 127-134.
[9]
Rowe, T.A.; Juthani-Mehta, M. Urinary tract infection in older adults. J. Aging Health, 2013, 9(5)
[http://dx.doi.org/10.2217/ahe.13.38] [http://dx.doi.org/10.2217/ahe.13.38]
[10]
Alam, M.S.; Rana, K.; Bhardwaj, S.; Kaliaperumal, J. Hussain, MdS; Mittal, A. Role of nitrofurantoin in the management of urinary tract infection - a systematic review. J Evol Med Dent., 2019, 8(50), 3805-3812.
[11]
Lane, D.R.; Takhar, S.S. Diagnosis and management of urinary tract infection and pyelonephritis. Emerg. Med. Clin. North Am., 2011, 29(3), 539-552.
[http://dx.doi.org/10.1016/j.emc.2011.04.001] [PMID: 21782073]
[12]
Hooton, T.M.; Scholes, D.; Gupta, K.; Stapleton, A.E.; Roberts, P.L.; Stamm, W.E. Amoxicillin-clavulanate vs ciprofloxacin for the treatment of uncomplicated cystitis in women: A randomized trial. JAMA, 2005, 293(8), 949-955.
[http://dx.doi.org/10.1001/jama.293.8.949] [PMID: 15728165]
[13]
Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev., 2013, 26(4), 822-880.
[http://dx.doi.org/10.1128/CMR.00022-13] [PMID: 24092857]
[14]
Medina, M.; Castillo-Pino, E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol., 2019, 11.
[http://dx.doi.org/10.1177/1756287219832172] [PMID: 31105774]
[15]
Munoz-Davila, M. Role of old antibiotics in the era of antibiotic resistance. Highlighted nitrofurantoin for the treatment of lower urinary tract infections. Antibiotics, 2014, 3(1), 39-48.
[http://dx.doi.org/10.3390/antibiotics3010039] [PMID: 27025732]
[16]
Tandogdu, Z.; Wagenlehner, F.M.E. Global epidemiology of urinary tract infections. Curr. Opin. Infect. Dis., 2016, 29(1), 73-79.
[http://dx.doi.org/10.1097/QCO.0000000000000228] [PMID: 26694621]
[17]
Szentmáry, N.; Daas, L.; Shi, L.; Laurik, K.L.; Lepper, S.; Milioti, G.; Seitz, B. Acanthamoeba keratitis – Clinical signs, differential diagnosis and treatment. J. Curr. Ophthalmol., 2019, 31(1), 16-23.
[http://dx.doi.org/10.1016/j.joco.2018.09.008] [PMID: 30899841]
[18]
Böttiger, L.E.; Westerholm, B. Adverse drug reactions during treatment of urinary tract infections. Eur. J. Clin. Pharmacol., 1977, 11(6), 439-442.
[http://dx.doi.org/10.1007/BF00562935] [PMID: 891588]
[19]
Colgan, R.; Williams, M. Diagnosis and treatment of acute uncomplicated cystitis. Am. Fam. Physician, 2011, 84(7), 771-776.
[PMID: 22010614]
[20]
Gupta, K.; Hooton, T.M.; Roberts, P.L.; Stamm, W.E. Short-course nitrofurantoin for the treatment of acute uncomplicated cystitis in women. Arch. Intern. Med., 2007, 167(20), 2207-2212.
[http://dx.doi.org/10.1001/archinte.167.20.2207] [PMID: 17998493]
[21]
Jancel, T.; Dudas, V. Management of uncomplicated urinary tract infections. West. J. Med., 2002, 176(1), 51-55.
[http://dx.doi.org/10.1136/ewjm.176.1.51] [PMID: 11788540]
[22]
Lee, D.S.; Lee, S.J.; Choe, H.S. Community-acquired urinary tract infection by Escherichia coli in the era of antibiotic resistance. BioMed Res. Int., 2018, 2018, 1-14.
[http://dx.doi.org/10.1155/2018/7656752] [PMID: 30356438]
[23]
Geneidi, A.S.; Ali, A.A.; Salama, R.B. Solid dispersions of nitrofurantoin, ethotoin, and coumarin with polyethylene glycol 6000 and their coprecipitates with providone 25,000. J. Pharm. Sci., 1978, 67(1), 114-116.
[http://dx.doi.org/10.1002/jps.2600670130] [PMID: 22737]
[24]
Bates, T.R.; Rosenberg, H.A.; Tembo, A.V. Inconsistencies in rationale underlying official USP dissolution rate specifications for nitrofurantoin. J. Pharm. Sci., 1973, 62(12), 2057-2058.
[http://dx.doi.org/10.1002/jps.2600621241] [PMID: 4762187]
[25]
Bates, T.R.; Young, J.M.; Wu, C.M.; Rosenberg, H.A. pH-dependent dissolution rate of nitrofurantoin from commercial suspensions, tablets, and capsules. J. Pharm. Sci., 1974, 63(4), 643-645.
[http://dx.doi.org/10.1002/jps.2600630441] [PMID: 4828728]
[26]
Chen, L.K.; Cadwallader, D.E.; Jun, H.W. Nitrofurantoin solubility in aqueous urea and creatinine solutions. J. Pharm. Sci., 1976, 65(6), 868-872.
[http://dx.doi.org/10.1002/jps.2600650617] [PMID: 6782]
[27]
Cadwallader, D.E.; Lee, B.H.; Ansel, H.C. Nitrofurantoin solubility in aqueous pyridoxine hydrochloride solutions. J. Pharm. Sci., 1977, 66(9), 1357-1358.
[http://dx.doi.org/10.1002/jps.2600660946] [PMID: 20496]
[28]
Cherukuvada, S.; Babu, N.J.; Nangia, A. Nitrofurantoin– p ‐aminobenzoic acid cocrystal: Hydration stability and dissolution rate studies. J. Pharm. Sci., 2011, 100(8), 3233-3244.
[http://dx.doi.org/10.1002/jps.22546] [PMID: 21425165]
[29]
Conklin, J.D.; Sobers, R.J.; Wagner, D.L. Urinary drug excretion in dogs during therapeutic doses of different nitrofurantoin dosage forms. J. Pharm. Sci., 1969, 58(11), 1365-1368.
[http://dx.doi.org/10.1002/jps.2600581114] [PMID: 5349751]
[30]
Huttner, A.; Wijma, R.A.; Stewardson, A.J.; Olearo, F.; Von Dach, E.; Harbarth, S.; Brüggemann, R.J.M.; Mouton, J.W.; Muller, A.E. The pharmacokinetics of nitrofurantoin in healthy female volunteers: A randomized crossover study. J. Antimicrob. Chemother., 2019, 74(6), 1656-1661.
[http://dx.doi.org/10.1093/jac/dkz095] [PMID: 30859184]
[31]
Kabbara, W.K.; Meski, M.M.; Ramadan, W.H.; Maaliki, D.S.; Salameh, P. Adherence to international guidelines for the treatment of uncomplicated urinary tract infections in lebanon. Can. J. Infect. Dis. Med. Microbiol., 2018, 2018, 1-6.
[http://dx.doi.org/10.1155/2018/7404095] [PMID: 29675117]
[32]
Stewardson, A.J.; Vervoort, J.; Adriaenssens, N.; Coenen, S.; Godycki-Cwirko, M.; Kowalczyk, A.; Huttner, B.D.; Lammens, C.; Malhotra-Kumar, S.; Goossens, H.; Harbarth, S.; Vervoort, J.; Lammens, C.; Malhotra-Kumar, S.; Goossens, H.; Adriaenssens, N.; Coenen, S.; Kowalczyk, A.; Godycki-Cwirko, M.; Stewardson, A.J.; Huttner, B.; Harbarth, S.; Brossier, C.; Delémont, C.; de Tejada, B.M.; Renzi, G.; Schrenzel, J.; Van Bylen, S.; Vanbergen, J.; Koeck, P.; Leysen, P.; Vandercam, K.; Kluijtmans, J.; Borkiewicz, A.; Heyvaert, F.; Michels, N.; Deswaef, G.; Beckx, T.; Declerck, H.; Embrechts, K.; Verheyen, N.; Bauwens, T.; Béghin, J.; Verpooten, L.; Bombeke, K.; Vandenabeele, T.; Muras, M.; Świstak, J.; Wesołowska, A.; Sterniczuk, E.; Brzozowska, L.; Cichowska, K.; Szewczyk, J.; Krupińska, G.; Błaszczyk, H.; Stawińska, U.; Szyler, M.; Kasielski, M.; Rydz, R.; Myszkowska, A.; Żebrowska, L. Effect of outpatient antibiotics for urinary tract infections on antimicrobial resistance among commensal Enterobacteriaceae: A multinational prospective cohort study. Clin. Microbiol. Infect., 2018, 24(9), 972-979.
[http://dx.doi.org/10.1016/j.cmi.2017.12.026] [PMID: 29331548]
[33]
Wijma, R.A.; Huttner, A.; Koch, B.C.P.; Mouton, J.W.; Muller, A.E. Review of the pharmacokinetic properties of nitrofurantoin and nitroxoline. J. Antimicrob. Chemother., 2018, 73(11), 2916-2926.
[http://dx.doi.org/10.1093/jac/dky255] [PMID: 30184207]
[34]
Guay, D.R. An update on the role of nitrofurans in the management of urinary tract infections. Drugs, 2001, 61(3), 353-364.
[http://dx.doi.org/10.2165/00003495-200161030-00004] [PMID: 11293646]
[35]
Gleckman, R.; Alvarez, S.; Joubert, D.W. Drug therapy reviews. Nitrofurantoin. Am. J. Hosp. Pharm., 1979, 36(3), 342-351.
[PMID: 369367]
[36]
Meyer, M.C.; Slywka, G.W.A.; Dann, R.E.; Whyatt, P.L. Bioavailability of 14 nitrofurantoin products. J. Pharm. Sci., 1974, 63(11), 1693-1698.
[http://dx.doi.org/10.1002/jps.2600631105] [PMID: 4427226]
[37]
Meyer, M.C.; Wood, G.C.; Straughn, A.B. In vitro and in vivo evaluation of seven 50 mg and 100 mg nitrofurantoin tablets. Biopharm. Drug Dispos., 1989, 10(3), 321-329.
[http://dx.doi.org/10.1002/bdd.2510100310] [PMID: 2720135]
[38]
Niazi, S.; Vishnupad, K.S.; Veng-Pedersen, P. Absorption and disposition characteristics of nitrofurantoin in dogs. Biopharm. Drug Dispos., 1983, 4(3), 213-223.
[http://dx.doi.org/10.1002/bdd.2510040303] [PMID: 6626697]
[39]
Gaginella, T.S. GI intolerance and nitrofurantoin. J. Pharm. Sci., 1977, 66(10), i.
[http://dx.doi.org/10.1002/jps.2600661003] [PMID: 925888]
[40]
Novelli, A.; Rosi, E. Pharmacological properties of oral antibiotics for the treatment of uncomplicated urinary tract infections. J. Chemother., 2017, 29(S1), 10-18.
[41]
Reynolds, T.D.; Thomas, J. Nitrofurantoin related pulmonary disease: A clinical reminder. BMJ Case Rep., 2013, 2013(may31 1), bcr2013009299.
[http://dx.doi.org/10.1136/bcr-2013-009299] [PMID: 23729707]
[42]
Ellenhorn, M. Medical Toxicology. Diagnosis and treatment of human poisoning; Elsevier Publishing: New York, 1997.
[43]
Conklin, J.D. The pharmacokinetics of nitrofurantoin and its related bioavailability. Antibiot. Chemother., 1978, 25(25), 233-252.
[http://dx.doi.org/10.1159/000401065] [PMID: 352255]
[44]
D’Arcy, P.F. Nitrofurantoin. Drug Intell. Clin. Pharm., 1985, 19(7-8), 540-547.
[http://dx.doi.org/10.1177/106002808501900706] [PMID: 3896715]
[45]
Reynolds, J.E. Ed.; Martindale, The Extra Pharmacopea. 30th; The Pharmaceutical Press: London, 1993.
[46]
Hebert, M.F.; Roberts, J.P. Endstage liver disease associated with nitrofurantoin requiring liver transplantation. Ann. Pharmacother., 1993, 27(10), 1193-1194.
[http://dx.doi.org/10.1177/106002809302701007] [PMID: 8251685]
[47]
Adam, A.; Smith, L.L.; Cohen, G.M. An assessment of the role of redox cycling in mediating the toxicity of paraquat and nitrofurantoin. Environ. Health Perspect., 1990, 85, 113-117.
[PMID: 2384057]
[48]
Kurtis, D.K. Casarett & Doull’s Toxicology. In: The Basic Science of Poisoning, 5th.ed; The McGraw-Hill Companies, Inc.: USA, 1996.
[49]
Witten, CM. Pulmonary toxicity of nitrofurantoin. Arch. Phys. Med. Rehabil., 1989, 70(1), 55-57.
[http://dx.doi.org/10.1016/S0003-9993(21)01648-8]
[50]
MacHeras, P.E.; Reppas, C.I. Studies on freeze-dried drug-milk formulations. II: Effect of regenerated fluid volume on nitrofurantoin bioavailability. J. Pharm. Sci., 1986, 75(12), 1145-1150.
[http://dx.doi.org/10.1002/jps.2600751206] [PMID: 3559923]
[51]
Mendes, R.W.; Masih, S.Z.; Ranga Kanumuri, R. Effect of formulation and process variables on bioequivalency of nitrofurantoin I: Preliminary studies. J. Pharm. Sci., 1978, 67(11), 1613-1616.
[http://dx.doi.org/10.1002/jps.2600671128] [PMID: 712602]
[52]
Parrott, E.L.; Matheson, L.E., Jr Rectal absorption of nitrofurantoin. J. Pharm. Sci., 1977, 66(7), 955-958.
[http://dx.doi.org/10.1002/jps.2600660713] [PMID: 886458]
[53]
Paul, H.E.; Hayes, K.J.; Paul, M.F.; Borgmann, A.R. Laboratory studies with nitrofurantoin. Relationship between crystal size, urinary excretion in the rat and man, and emesis in dogs. J. Pharm. Sci., 1967, 56(7), 882-885.
[http://dx.doi.org/10.1002/jps.2600560719] [PMID: 6034831]
[54]
Soci, M.M.; Parrott, E.L. Influence of viscosity on absorption from nitrofurantoin suspensions. J. Pharm. Sci., 1980, 69(4), 403-406.
[http://dx.doi.org/10.1002/jps.2600690410] [PMID: 7373534]
[55]
Stoll, R.G.; Bates, T.R.; Swarbrick, J. In vitro dissolution and in vivo absorption of nitrofurantoin from deoxycholic acid coprecipitates. J. Pharm. Sci., 1973, 62(1), 65-68.
[http://dx.doi.org/10.1002/jps.2600620111] [PMID: 4682935]
[56]
Watari, N.; Aizawa, K.; Kaneniwa, N. Dose- and time-dependent kinetics of the renal excretion of nitrofurantoin in the rabbit. J. Pharm. Sci., 1985, 74(2), 165-170.
[http://dx.doi.org/10.1002/jps.2600740212] [PMID: 3989686]
[57]
Golfar, Y.; Shayanfar, A. Prediction of biopharmaceutical drug disposition classification system (BDDCS) by structural parameters. J. Pharm. Pharm. Sci., 2019, 22(1), 247-269.
[http://dx.doi.org/10.18433/jpps30271] [PMID: 31287788]
[58]
Teoh, X.Y. bt Mahyuddin, F.N.; Ahmad, W.; Chan, S.Y. Formulation strategy of nitrofurantoin: Co-crystal or solid dispersion? Pharm. Dev. Technol., 2020, 25(2), 245-251.
[http://dx.doi.org/10.1080/10837450.2019.1689401] [PMID: 31690150]
[59]
Lippman, R.W.; Wrobel, C.J.; Rees, R.; Hoyt, R. A theory concerning recurrence of urinary infection: Prolonged administration of nitrofurantoin for prevention. J. Urol., 1958, 80(1), 77-81.
[http://dx.doi.org/10.1016/S0022-5347(17)66138-X] [PMID: 13564592]
[60]
Sullivan, J.W.; Bueschen, A.J.; Schlegel, J.U. Nitrofurantoin, sulfamethizole and cephalexin urinary concentration in unequally functioning pyelonephritic kidneys. J. Urol., 1975, 114(3), 343-347.
[http://dx.doi.org/10.1016/S0022-5347(17)67025-3] [PMID: 238048]
[61]
Frederick, D.C. Michael, JK Nitrofurantoin crystals. US Patent 3852459A, 1992.
[62]
Kishi, A.; Otsuka, M.; Matsuda, Y. The effect of humidity on dehydration behavior of nitrofurantoin monohydrate studied by humidity controlled simultaneous instrument for X-ray Diffractometry and Differential Scanning Calorimetry (XRD–DSC). Colloids Surf. B Biointerfaces, 2002, 25(4), 281-291.
[http://dx.doi.org/10.1016/S0927-7765(01)00290-9]
[63]
Koradia, V.; de Diego, H.L.; Elema, M.R.; Rantanen, J. Integrated approach to study the dehydration kinetics of nitrofurantoin monohydrate. J. Pharm. Sci., 2010, 99(9), 3966-3976.
[http://dx.doi.org/10.1002/jps.22244] [PMID: 20575054]
[64]
Pienaar, E.W.; Caira, M.R. Lotter, AP Polymorphs of nitrofurantoin I. Preparation and X-ray crystal structures of two monohydrated forms of nitrofurantoin. J Crystallogr Spectrosc Res., 1993, 23, 739-744.
[65]
Aparna, D.; Giash, U.; Saadullah, S.; Sarowar, U. Formulation and evaluation of nitrofurantoin sustained release capsule. World J. Pharm. Res., 2020, 9(1), 365-377.
[66]
Hosny, E.A.; Ahmed, A.M.S. Formulation of nitrofurantoin tablets fulfilling the pharmacopoeial specifications. Drug Dev. Ind. Pharm., 1994, 20(9), 1631-1638.
[http://dx.doi.org/10.3109/03639049409050203]
[67]
Karasulu, H.Y.; Ertan, G.; Günerï, T. 3(3) factorial design-based optimization of the formulation of nitrofurantoin microcapsules. Pharm. World Sci., 1996, 18(1), 20-25.
[http://dx.doi.org/10.1007/BF00449685] [PMID: 8861827]
[68]
Bedi, S.; Baidya, S.; Ghosh, L.K.; Gupta, B.K. Design and biopharmaceutical evaluation of nitrofurantoin-loaded Eudragit RS100 micropellets. Drug Dev. Ind. Pharm., 1999, 25(8), 937-944.
[http://dx.doi.org/10.1081/DDC-100102254] [PMID: 10434137]
[69]
Arici, M.; Kavukcu, S.; Tanriverdi, S.T.; Arici, A.; Gidener, S.; Gelal, A.; Ozer, O. A new application route of nitrofurantoin: Preparation and characterization of novel transdermal formulations. Curr. Drug Deliv., 2017, 14(3), 394-405.
[http://dx.doi.org/10.2174/1567201813666160729095229] [PMID: 27480119]
[70]
Shawky Tous, S.; Mohammed, F.A.; Sayed, M.A. Formulation and in vitro evaluation of nitrofurantoin floating matrix tablets. J. Drug Deliv. Sci. Technol., 2006, 16(3), 217-221.
[http://dx.doi.org/10.1016/S1773-2247(06)50038-3]
[71]
Bhatt, N.; Goyal, S. Sustained-release matrix tablets of nitrofurantoin: Formulation and evaluation. Int. J. Chemtech Res., 2013, 5, 491-501.
[72]
Goswami, N.; Patel, R.P. Development, characterization and evaluation of nanocrystals of Nitrofurantoin. Int. J. Pharm. Sci. Res., 2020, 11, 2718-2726.
[73]
Zhang, Z.; Cai, Q.; Xue, J.; Qin, J.; Liu, J.; Du, Y. Co-crystal formation of antibiotic nitrofurantoin drug and melamine co-former based on a vibrational spectroscopic study. Pharmaceutics, 2019, 11(2), 56.
[http://dx.doi.org/10.3390/pharmaceutics11020056] [PMID: 30704026]
[74]
Yu, H.; Pan, L.; Li, P.; Zhang, K.; Lin, X.; Zhang, Y.; Tang, X. Nitrofurantoin enteric pellets with high bioavailability based on aciform crystalline formation by wet milling. Pharm. Dev. Technol., 2015, 20(4), 433-441.
[http://dx.doi.org/10.3109/10837450.2013.879885] [PMID: 24467214]
[75]
Devkar, S.K.; Sulakhe, V.R.; Pol, S.L.; Patil, K.S.; Mali, S.S. Quality by design approach for development and evaluation of self-emulsifying drug delivery system of nitrofurantoin. Eur J Biomed Pharm Sci., 2018, 5, 244-252.
[76]
Onyeji, C.O.; Omotosho, J.A. Bioavailability of nitrofurantoin from multiple w/o/w emulsions in man and the influence of the oil phase of the emulsion. Indian J. Pharm. Sci., 1993, 55, 14-18.
[77]
Barakat, N.S. Self‐emulsifying system for improving drug dissolution and bioavailability: In vitro/in vivo evaluation. Drug Dev. Res., 2010, 71(2), 149-158.
[http://dx.doi.org/10.1002/ddr.20356]
[78]
Dokania, S.; Joshi, A.K. Self-microemulsifying drug delivery system (SMEDDS) – challenges and road ahead. Drug Deliv., 2015, 22(6), 675-690.
[http://dx.doi.org/10.3109/10717544.2014.896058] [PMID: 24670091]
[79]
Gonçalves, A.; Nikmaram, N.; Roohinejad, S.; Estevinho, B.N.; Rocha, F.; Greiner, R.; McClements, D.J. Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids Surf. A Physicochem. Eng. Asp., 2018, 538, 108-126.
[http://dx.doi.org/10.1016/j.colsurfa.2017.10.076]
[80]
Reddy, M.S.; Gurram, A.K.; Deshpande, P.B.; Kar, S.S.; Nayak, U.Y.; Udupa, N. Role of components in the formation of self-microemulsifying drug delivery systems. Indian J. Pharm. Sci., 2015, 77(3), 249-257.
[http://dx.doi.org/10.4103/0250-474X.159596] [PMID: 26180269]
[81]
Hong, J.Y.; Kim, J.K.; Song, Y.K.; Park, J.S.; Kim, C.K. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J. Control. Release, 2006, 110(2), 332-338.
[http://dx.doi.org/10.1016/j.jconrel.2005.10.002] [PMID: 16297483]
[82]
Kommuru, T.R.; Gurley, B.; Khan, M.A.; Reddy, I.K. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: Formulation development and bioavailability assessment. Int. J. Pharm., 2001, 212(2), 233-246.
[http://dx.doi.org/10.1016/S0378-5173(00)00614-1] [PMID: 11165081]
[83]
Nazzal, S.; Khan, M.A. Controlled release of a self-emulsifying formulation from a tablet dosage form: Stability assessment and optimization of some processing parameters. Int. J. Pharm., 2006, 315(1-2), 110-121.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.019] [PMID: 16563673]
[84]
Newton, M.; Petersson, J.; Podczeck, F.; Clarke, A.; Booth, S. The influence of formulation variables on the properties of pellets containing a self-emulsifying mixture. J. Pharm. Sci., 2001, 90(8), 987-995.
[http://dx.doi.org/10.1002/jps.1051] [PMID: 11536202]
[85]
Perlman, M.; Murdande, S.; Gumkowski, M.; Shah, T.; Rodricks, C.; Thorntonmanning, J.; Freel, D.; Erhart, L. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib. Int. J. Pharm., 2008, 351(1-2), 15-22.
[http://dx.doi.org/10.1016/j.ijpharm.2007.09.015] [PMID: 18024021]
[86]
Qi, X.; Wang, L.; Zhu, J.; Hu, Z.; Zhang, J. Self-double-emulsifying drug delivery system (SDEDDS): A new way for oral delivery of drugs with high solubility and low permeability. Int. J. Pharm., 2011, 409(1-2), 245-251.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.047] [PMID: 21356300]
[87]
Shanmugam, S.; Park, J.H.; Kim, K.S.; Piao, Z.Z.; Yong, C.S.; Choi, H.G.; Woo, J.S. Enhanced bioavailability and retinal accumulation of lutein from self-emulsifying phospholipid suspension (SEPS). Int. J. Pharm., 2011, 412(1-2), 99-105.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.015] [PMID: 21540096]
[88]
Wei, L.; Sun, P.; Nie, S.; Pan, W. Preparation and evaluation of SEDDS and SMEDDS containing carvedilol. Drug Dev. Ind. Pharm., 2005, 31(8), 785-794.
[http://dx.doi.org/10.1080/03639040500216428] [PMID: 16221613]
[89]
Tang, J.; Sun, J.; He, Z-G. Self-emulsifying drug delivery systems: Strategy for improving oral delivery of poorly soluble drugs. Curr. Drug Ther., 2007, 2(1), 85-93.
[http://dx.doi.org/10.2174/157488507779422400]
[90]
Arida, A.I.; Al-Tabakha, M.M.; Hamoury, H.A.J. Improving the high variable bioavailability of griseofulvin by SEDDS. Chem. Pharm. Bull., 2007, 55(12), 1713-1719.
[http://dx.doi.org/10.1248/cpb.55.1713] [PMID: 18057745]
[91]
Attama, A.A.; Nkemnele, M.O. In vitro evaluation of drug release from self micro-emulsifying drug delivery systems using a biodegradable homolipid from Capra hircus. Int. J. Pharm., 2005, 304(1-2), 4-10.
[http://dx.doi.org/10.1016/j.ijpharm.2005.08.018] [PMID: 16198521]
[92]
Balakrishnan, P.; Lee, B.J.; Oh, D.H.; Kim, J.O.; Lee, Y.I.; Kim, D.D.; Jee, J.P.; Lee, Y.B.; Woo, J.S.; Yong, C.S.; Choi, H.G. Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int. J. Pharm., 2009, 374(1-2), 66-72.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.008] [PMID: 19446761]
[93]
Cuiné, J.F.; McEvoy, C.L.; Charman, W.N.; Pouton, C.W.; Edwards, G.A.; Benameur, H.; Porter, C.J.H. Evaluation of the impact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J. Pharm. Sci., 2008, 97(2), 995-1012.
[http://dx.doi.org/10.1002/jps.21246] [PMID: 18064698]
[94]
Gao, P.; Akrami, A.; Alvarez, F.; Hu, J.; Li, L.; Ma, C.; Surapaneni, S. Characterization and optimization of AMG 517 supersaturatable self-emulsifying drug delivery system (S-SEDDS) for improved oral absorption. J. Pharm. Sci., 2009, 98(2), 516-528.
[http://dx.doi.org/10.1002/jps.21451] [PMID: 18543293]
[95]
Gursoy, N.; Garrigue, J.S.; Razafindratsita, A.; Lambert, G.; Benita, S.; Bloom, D.R. Excipient effects on in vitro cytotoxicity of a novel paclitaxel self‐emulsifying drug delivery system. J. Pharm. Sci., 2003, 92(12), 2411-2418.
[http://dx.doi.org/10.1002/jps.10501] [PMID: 14603486]
[96]
Lo, J.T.; Chen, B.H.; Lee, T.M.; Han, J.; Li, J.L. Self-emulsifying O/W formulations of paclitaxel prepared from mixed nonionic surfactants. J. Pharm. Sci., 2010, 99(5), 2320-2332.
[http://dx.doi.org/10.1002/jps.21993] [PMID: 19894274]
[97]
Khoo, S.M.; Humberstone, A.J.; Porter, C.J.H.; Edwards, G.A.; Charman, W.N. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int. J. Pharm., 1998, 167(1-2), 155-164.
[http://dx.doi.org/10.1016/S0378-5173(98)00054-4]
[98]
Kim, J.Y.; Ku, Y.S. Enhanced absorption of indomethacin after oral or rectal administration of a self-emulsifying system containing indomethacin to rats. Int. J. Pharm., 2000, 194(1), 81-89.
[http://dx.doi.org/10.1016/S0378-5173(99)00367-1] [PMID: 10601687]
[99]
Oostendorp, R.L.; Buckle, T.; Lambert, G.; Garrigue, J.S.; Beijnen, J.H.; Schellens, J.H.M.; van Tellingen, O. Paclitaxel in self-micro emulsifying formulations: Oral bioavailability study in mice. Invest. New Drugs, 2011, 29(5), 768-776.
[http://dx.doi.org/10.1007/s10637-010-9421-7] [PMID: 20390333]
[100]
Palamakula, A.; Khan, M.A. Evaluation of cytotoxicity of oils used in coenzyme q10 self-emulsifying drug delivery systems (SEDDS). Int. J. Pharm., 2004, 273(1-2), 63-73.
[http://dx.doi.org/10.1016/j.ijpharm.2003.12.010] [PMID: 15010131]
[101]
Park, M.J.; Ren, S.; Lee, B.J. In vitro and in vivo comparative study of itraconazole bioavailability when formulated in highly soluble self‐emulsifying system and in solid dispersion. Biopharm. Drug Dispos., 2007, 28(4), 199-207.
[http://dx.doi.org/10.1002/bdd.546] [PMID: 17377960]
[102]
Tuleu, C.; Newton, M.; Rose, J.; Euler, D.; Saklatvala, R.; Clarke, A.; Booth, S. Comparative bioavailability study in dogs of a self-emulsifying formulation of progesterone presented in a pellet and liquid form compared with an aqueous suspension of progesterone. J. Pharm. Sci., 2004, 93(6), 1495-1502.
[http://dx.doi.org/10.1002/jps.20068] [PMID: 15124207]
[103]
Wang, Z.; Sun, J.; Wang, Y.; Liu, X.; Liu, Y.; Fu, Q.; Meng, P.; He, Z. Solid self-emulsifying nitrendipine pellets: Preparation and in vitro/in vivo evaluation. Int. J. Pharm., 2010, 383(1-2), 1-6.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.014] [PMID: 19698771]
[104]
Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion components screening and selection: A technical note. AAPS PharmSciTech, 2009, 10(1), 69-76.
[http://dx.doi.org/10.1208/s12249-008-9178-x] [PMID: 19148761]
[105]
Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and their potential applications in food industry. Front. Sustain. Food Syst., 2019, 3, 95.
[http://dx.doi.org/10.3389/fsufs.2019.00095]
[106]
Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci., 2019, 24(3), 225-234.
[http://dx.doi.org/10.3746/pnf.2019.24.3.225] [PMID: 31608247]
[107]
Fernandez, P.; André, V.; Rieger, J.; Kühnle, A. Nano-emulsion formation by emulsion phase inversion. Colloids Surf. A Physicochem. Eng. Asp., 2004, 251(1-3), 53-58.
[http://dx.doi.org/10.1016/j.colsurfa.2004.09.029]
[108]
Gurupreet, K.; Singh, S.K. Review of nanoemulsion formulation and characterization techniques. Indian J. Pharm. Sci., 2018, 80(5), 781-789.
[109]
Gharibzahedi, S.M.T.; Hernández-Ortega, C.; Welti-Chanes, J.; Putnik, P.; Barba, F.J.; Mallikarjunan, K.; Escobedo-Avellaneda, Z.; Roohinejad, S. High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties. Food Hydrocoll., 2019, 87, 307-320.
[http://dx.doi.org/10.1016/j.foodhyd.2018.08.012]
[110]
Kotta, S.; Khan, A.W.; Ansari, S.H.; Sharma, R.K.; Ali, J. Formulation of nanoemulsion: A comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv., 2015, 22(4), 455-466.
[http://dx.doi.org/10.3109/10717544.2013.866992] [PMID: 24329559]
[111]
Demisli, S.; Mitsou, E.; Pletsa, V.; Xenakis, A.; Papadimitriou, V. Development and study of nanoemulsions and nanoemulsion-based hydrogels for the encapsulation of lipophilic compounds. Nanomaterials, 2020, 10(12), 2464.
[http://dx.doi.org/10.3390/nano10122464] [PMID: 33317080]
[112]
Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason. Sonochem., 2013, 20(1), 338-344.
[http://dx.doi.org/10.1016/j.ultsonch.2012.08.010] [PMID: 22954686]
[113]
García-Márquez, E.; Higuera-Ciapara, I.; Espinosa-Andrews, H. Design of fish oil-in-water nanoemulsion by microfluidization. Innov. Food Sci. Emerg. Technol., 2017, 40, 87-91.
[http://dx.doi.org/10.1016/j.ifset.2016.11.007]
[114]
de Oca-Ávalos, J.M.M.; Candal, R.J.; Herrera, M.L. Nanoemulsions: Stability and physical properties. Curr. Opin. Food Sci., 2017, 16, 1-6.
[http://dx.doi.org/10.1016/j.cofs.2017.06.003]
[115]
Akbas, E.; Soyler, B.; Oztop, M.H. Formation of capsaicin loaded nanoemulsions with high pressure homogenization and ultrasonication. Lebensm. Wiss. Technol., 2018, 96, 266-273.
[http://dx.doi.org/10.1016/j.lwt.2018.05.043]
[116]
Suyal, J.; Bhatt, G.; Singh, N. Formulation and evaluation of nanoemulsion for enhanced bioavailability of itraconazole. Int. J. Pharm. Sci. Res., 2018, 9, 2927-2931.
[117]
Borrin, T.R.; Georges, E.L.; Moraes, I.C.F.; Pinho, S.C. Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: An evaluation of process parameters and physico-chemical stability. J. Food Eng., 2016, 169, 1-9.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.08.012]
[118]
Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McLandsborough, L.; Julian McClements, D. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. J. Colloid Interface Sci., 2018, 514, 208-216.
[http://dx.doi.org/10.1016/j.jcis.2017.11.084] [PMID: 29257975]
[119]
Belhaj, N.; Arab-Tehrany, E.; Linder, M. Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochem., 2010, 45(2), 187-195.
[http://dx.doi.org/10.1016/j.procbio.2009.09.005]
[120]
Zeng, L.; Liu, Y.; Pan, J.; Liu, X. Formulation and evaluation of norcanthridin nanoemulsions against the Plutella xylostella (Lepidotera: Plutellidae). BMC Biotechnol., 2019, 19(1), 16.
[http://dx.doi.org/10.1186/s12896-019-0508-8] [PMID: 30871528]
[121]
Abdelmonem, R.; Younis, M.K.; Hassan, D.H.; El-Sayed Ahmed, M.A.E.G.; Hassanien, E.; El-Batouty, K.; Elfaham, A.; Elfaham, A. Formulation and characterization of chlorhexidine HCl nanoemulsion as a promising antibacterial root canal irrigant: In-vitro and ex-vivo studies. Int. J. Nanomedicine, 2019, 14, 4697-4708.
[http://dx.doi.org/10.2147/IJN.S204550] [PMID: 31303754]
[122]
Ali, H.H.; Hussein, A.A. Oral nanoemulsions of candesartan cilexetil: Formulation, characterization and in vitro drug release studies. AAPS Open, 2017, 3(1), 4.
[http://dx.doi.org/10.1186/s41120-017-0016-7]
[123]
Florence, A.T.; Whitehill, D. The formulation and stability of multiple emulsions. Int. J. Pharm., 1982, 11(4), 277-308.
[http://dx.doi.org/10.1016/0378-5173(82)90080-1]
[124]
Matsumoto, S.; Kita, Y.; Yonezawa, D. An attempt at preparing water-in-oil-in-water multiple-phase emulsions. J. Colloid Interface Sci., 1976, 57(2), 353-361.
[http://dx.doi.org/10.1016/0021-9797(76)90210-1]
[125]
Opawale, F.O.; Burgess, D.J. Influence of interfacial rheological properties of mixed emulsifier films on the stability of water-in-oil-in-water emulsions. J. Pharm. Pharmacol., 2011, 50(9), 965-973.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06910.x] [PMID: 9811156]
[126]
Raynal, S.; Grossiord, J.L.; Seiller, M.; Clausse, D. A topical W/O/W multiple emulsion containing several active substances: Formulation, characterization and study of release. J. Control. Release, 1993, 26(2), 129-140.
[http://dx.doi.org/10.1016/0168-3659(93)90112-I]
[127]
Okochi, H.; Nakano, M. Preparation and evaluation of w/o/w type emulsions containing vancomycin. Adv. Drug Deliv. Rev., 2000, 45(1), 5-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00097-1] [PMID: 11104894]
[128]
Sonakpuriya, P.; Bhowmick, M.; Pandey, G.K.; Joshi, A.; Dubey, B. Formulation and evaluation of multiple emulsion of valsartan. Int. J. Pharm. Tech. Res., 2013, 5, 132-146.
[129]
Farahmand, S.; Tajerzadeh, H.; Farboud, E.S. Formulation and evaluation of a vitamin C multiple emulsion. Pharm. Dev. Technol., 2006, 11(2), 255-261.
[http://dx.doi.org/10.1080/10837450500464172] [PMID: 16749536]
[130]
Erdal, M.S.; Araman, A. Development and evaluation of multiple emulsion systems containing cholesterol and squalene. Turkish J Pharm Sci, 2006, 3, 105-121.
[131]
Kleiber, M. Reunion with an old acquaintance: The azeotrope ethanol/water and options for its separation. Chemieingenieurtechnik, 2007, 79(9), 1365.
[http://dx.doi.org/10.1002/cite.200750017]
[132]
Meier, R.; Leistner, J.; Kobus, A. Three-phase distillation in packed columns: Guidelines for development, design and scale-up. Symposium Series 152; Ichem E, 2006.
[133]
Prajapati, P.; Vaghela, V.; Rawtani, D.; Patel, H.; Kubavat, J.; Baraiya, D. Azeotropic mixture used for development and validation of Lornoxicam in bulk and its tablet dosage form by spectrophotometric method. J. Pharm. Anal., 2012, 2(4), 306-309.
[http://dx.doi.org/10.1016/j.jpha.2012.02.004] [PMID: 29403758]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy