Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Advances in the Preparation of Protein/peptide Microspheres by Solvent Evaporation Method

Author(s): Huayan Sun, Weiwei Luo and Xiaowu Huang*

Volume 25, Issue 14, 2024

Published on: 04 January, 2024

Page: [1807 - 1817] Pages: 11

DOI: 10.2174/0113892010261032231214115415

Price: $65

Abstract

Protein/peptide drugs are extensively used to treat various chronic and serious diseases. The short half-life in vivo of protein and peptide as therapeutics drug limit the realization of complete effects. Encapsulating drugs in microspheres can slow the speed of drug release and prolong the efficacy of drugs. The solvent evaporation method is widely used to prepare protein/ peptide microspheres because of its facile operation and minimal equipment requirements. This method has several challenges in the lower encapsulation efficiency, fluctuant release profiles and the stabilization of protein/peptides, which researchers believe may be solved by adjusting the preparation parameter or formulation of microspheres. The article discusses the formulation parameters that govern the preparation of protein/peptide-loaded microspheres by the solvent evaporation method, which provides an overview of the current promising strategies for solvent evaporation for protein/peptide microspheres. The article takes parameter evaluation as the framework, facilitating subsequent researchers to quickly find possible solutions when encountering problems.

Graphical Abstract

[1]
Ding, D.; Zhu, Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater. Sci. Eng. C, 2018, 92, 1041-1060.
[http://dx.doi.org/10.1016/j.msec.2017.12.036] [PMID: 30184728]
[2]
Vaishya, R.D.; Mandal, A.; Patel, S.; Mitra, A.K. Extended release microparticle-in-gel formulation of octreotide: Effect of polymer type on acylation of peptide during in vitrorelease. Int. J. Pharm., 2015, 496(2), 676-688.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.002] [PMID: 26561725]
[3]
Injamuri, S.; Rahaman, M.N.; Shen, Y.; Huang, Y.W. Relaxin enhances bone regeneration with BMP‐2‐loaded hydroxyapatite microspheres. J. Biomed. Mater. Res. A, 2020, 108(5), 1231-1242.
[http://dx.doi.org/10.1002/jbm.a.36897] [PMID: 32043751]
[4]
Minardi, S.; Fernandez-Moure, J.S.; Fan, D.; Murphy, M.B.; Yazdi, I.K.; Liu, X.; Weiner, B.K.; Tasciotti, E. Biocompatible PLGA-mesoporous silicon microspheres for the controlled release of BMP-2 for bone augmentation. Pharmaceutics, 2020, 12(2), 118.
[http://dx.doi.org/10.3390/pharmaceutics12020118] [PMID: 32024134]
[5]
Kudva, A.K.; Dikina, A.D.; Luyten, F.P.; Alsberg, E.; Patterson, J. Gelatin microspheres releasing transforming growth factor drive in vitrochondrogenesis of human periosteum derived cells in micromass culture. Acta Biomater., 2019, 90, 287-299.
[http://dx.doi.org/10.1016/j.actbio.2019.03.039] [PMID: 30905864]
[6]
Lin, S.J.; Chan, Y.C.; Su, Z.C.; Yeh, W.L.; Lai, P.L.; Chu, I.M. Growth factor‐loaded microspheres in MPEG ‐polypeptide hydrogel system for articular cartilage repair. J. Biomed. Mater. Res. A, 2021, 109(12), 2516-2526.
[http://dx.doi.org/10.1002/jbm.a.37246] [PMID: 34190399]
[7]
Haney, N.M.; Talwar, S.; Akula, P.K.; Reddy, A.G.; Pema, G.S.; Ninh, T.V.; Rezk, B.M.; Heidari, Z.; Bouljihad, M.T.; Sikka, S.C.; John, V.; Abdel-Mageed, A.B.; Hellstrom, W.J.G. Insulin-like growth factor-1–loaded polymeric poly(Lactic-Co-Glycolic) acid microspheres improved erectile function in a rat model of bilateral cavernous nerve injury. J. Sex. Med., 2019, 16(3), 383-393.
[http://dx.doi.org/10.1016/j.jsxm.2018.12.018] [PMID: 30846112]
[8]
Whitehead, T.J.; Avila, C.O.C.; Sundararaghavan, H.G. Combining growth factor releasing microspheres within aligned nanofibers enhances neurite outgrowth. J. Biomed. Mater. Res. A, 2018, 106(1), 17-25.
[http://dx.doi.org/10.1002/jbm.a.36204] [PMID: 28879680]
[9]
Rosellini, E.; Barbani, N.; Frati, C.; Madeddu, D.; Massai, D.; Morbiducci, U.; Lazzeri, L.; Falco, A.; Graiani, G.; Lagrasta, C.; Audenino, A.; Cascone, M.G.; Quaini, F. IGF-1 loaded injectable microspheres for potential repair of the infarcted myocardium. J. Biomater. Appl., 2021, 35(7), 762-775.
[http://dx.doi.org/10.1177/0885328220948501] [PMID: 32772783]
[10]
Kamimura, H.; Takeda, N.; Owaki, T.; Mizusawa, T.; Iwasawa, T.; Ikarashi, S.; Hashimoto, S.; Takamura, M.; Terai, S. Antiprogramed cell death‐1 therapy with microspheres for metastatic liver tumors. JGH Open, 2019, 3(6), 542-543.
[http://dx.doi.org/10.1002/jgh3.12213] [PMID: 31832559]
[11]
Chen, G.; Wei, R.; Huang, X.; Wang, F.; Chen, Z. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent. Int. J. Biol. Macromol., 2020, 155, 1450-1459.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.122] [PMID: 31734365]
[12]
Liu, H.; Zou, Y.; Zhu, J.; He, H.; Feng, Y.; Firempong, C.K.; Yu, Y.; Sun, C. Preparation and evaluation of rhINF-α-2b sodium hyaluronate cross-linked porous microspheres: Characterization, sustained-release properties, and antitumor activity. AAPS PharmSciTech, 2022, 23(1), 31.
[http://dx.doi.org/10.1208/s12249-021-02178-5] [PMID: 34931261]
[13]
Salvador, A.; Sandgren, K.J.; Liang, F.; Thompson, E.A.; Koup, R.A.; Pedraz, J.L.; Hernandez, R.M.; Loré, K.; Igartua, M. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses. Int. J. Pharm., 2015, 496(2), 371-381.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.037] [PMID: 26475970]
[14]
Arthanari, S.; Mani, G.; Peng, M.M.; Jang, H.T. Chitosan–HPMC-blended microspheres as a vaccine carrier for the delivery of tetanus toxoid. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 517-523.
[http://dx.doi.org/10.3109/21691401.2014.966193] [PMID: 25472756]
[15]
Taysi, A.; Cevher, E.; Sessevmez, M.; Olgac, V.; Taysi, N.; Atalay, B. The efficacy of sustained-release chitosan microspheres containing recombinant human parathyroid hormone on MRONJ. Braz. Oral Res., 2019, 33, e086.
[http://dx.doi.org/10.1590/1807-3107bor-2019.vol33.0086] [PMID: 31483052]
[16]
Yu, Z.; Huang, L.; Wen, R.; Li, Y.; Zhang, Q. Preparation and in vivo pharmacokinetics of rhGH-loaded PLGA microspheres. Pharm. Dev. Technol., 2019, 24(4), 395-401.
[http://dx.doi.org/10.1080/10837450.2018.1502316] [PMID: 30422727]
[17]
Bai, M.; He, J.; Kang, L.; Nie, J.; Yin, R. Regulated basal and bolus insulin release from glucose-responsive core-shell microspheres based on concanavalin A-sugar affinity. Int. J. Biol. Macromol., 2018, 113, 889-899.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.030] [PMID: 29524488]
[18]
Arunkumar, P.; Dougherty, J.A.; Weist, J.; Kumar, N.; Angelos, M.G.; Powell, H.M.; Khan, M. Sustained release of basic fibroblast growth factor (bFGF) encapsulated polycaprolactone (PCL) microspheres promote angiogenesis in vivo. Nanomaterials , 2019, 9(7), 1037.
[http://dx.doi.org/10.3390/nano9071037] [PMID: 31330782]
[19]
Han, B.; Tang, H.; Liang, Q.; Zhu, M.; Xie, Y.; Chen, J.; Li, Q.; Jia, J.; Li, Y.; Ren, Z.; Cong, D.; Yu, X.; Sui, D.; Pei, J. Preparation of long-acting microspheres loaded with octreotide for the treatment of portal hypertensive. Drug Deliv., 2021, 28(1), 719-732.
[http://dx.doi.org/10.1080/10717544.2021.1898702] [PMID: 33825592]
[20]
Shi, N.Q.; Zhou, J.; Walker, J.; Li, L.; Hong, J.K.Y.; Olsen, K.F.; Tang, J.; Ackermann, R.; Wang, Y.; Qin, B.; Schwendeman, A.; Schwendeman, S.P. Microencapsulation of luteinizing hormone-releasing hormone agonist in poly (lactic-co-glycolic acid) microspheres by spray-drying. J. Control. Release, 2020, 321, 756-772.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.023] [PMID: 31935481]
[21]
Patrício, T.M.; Mumcuoglu, D.; Montesi, M.; Panseri, S.; Witte-Bouma, J.; Garcia, S.F.; Sandri, M.; Tampieri, A.; Farrell, E.; Sprio, S. Bio-inspired polymeric iron-doped hydroxyapatite microspheres as a tunable carrier of rhBMP-2. Mater. Sci. Eng. C, 2021, 119, 111410.
[http://dx.doi.org/10.1016/j.msec.2020.111410] [PMID: 33321577]
[22]
Wang, P.; Meng, X.; Wang, R.; Yang, W.; Yang, L.; Wang, J.; Wang, D.A.; Fan, C. Biomaterial scaffolds made of chemically cross‐linked gelatin microsphere aggregates (C‐GMSs) promote vascularized bone regeneration. Adv. Healthc. Mater., 2022, 11(13), 2102818.
[http://dx.doi.org/10.1002/adhm.202102818] [PMID: 35306762]
[23]
Kenechukwu, F.; Momoh, M. Formulation, characterization and evaluation of the effect of polymer concentration on the release behavior of insulin-loaded eudragit ® -entrapped mucoadhesive microspheres. Int. J. Pharm. Investig., 2016, 6(2), 69-77.
[http://dx.doi.org/10.4103/2230-973X.177806] [PMID: 27051626]
[24]
Pilipenko, N.; Gonçalves, O.H.; Bona, E.; Fernandes, I.P.; Pinto, J.A.; Sorita, G.D.; Leimann, F.V.; Barreiro, M.F. Tailoring swelling of alginate-gelatin hydrogel microspheres by crosslinking with calcium chloride combined with transglutaminase. Carbohydr. Polym., 2019, 223, 115035.
[http://dx.doi.org/10.1016/j.carbpol.2019.115035] [PMID: 31426956]
[25]
Yang, H.; Yang, Y.; Li, B.Z.; Adhikari, B.; Wang, Y.; Huang, H.L.; Chen, D. Production of protein-loaded starch microspheres using water-in-water emulsion method. Carbohydr. Polym., 2020, 231, 115692.
[http://dx.doi.org/10.1016/j.carbpol.2019.115692] [PMID: 31888840]
[26]
Negrini, N.; Lipreri, M.V.; Tanzi, M.C.; Farè, S. in vitro cell delivery by gelatin microspheres prepared in water-in-oil emulsion. J. Mater. Sci. Mater. Med., 2020, 31(3), 26.
[http://dx.doi.org/10.1007/s10856-020-6363-2] [PMID: 32060637]
[27]
Cleland, J.L.; Duenas, E.T.; Park, A.; Daugherty, A.; Kahn, J.; Kowalski, J.; Cuthbertson, A. Development of poly-(d,l-lactide–coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J. Control. Release, 2001, 72(1-3), 13-24.
[http://dx.doi.org/10.1016/S0168-3659(01)00258-9] [PMID: 11389981]
[28]
Min, Q.; Liu, J.; Li, J.; Wan, Y.; Wu, J. Chitosan-polylactide/hyaluronic acid complex microspheres as carriers for controlled release of bioactive transforming growth factor-β1. Pharmaceutics, 2018, 10(4), 239.
[http://dx.doi.org/10.3390/pharmaceutics10040239] [PMID: 30453642]
[29]
Zhang, W.; Wang, X.; Wang, J.; Zhang, L. Drugs adsorption and release behavior of collagen/bacterial cellulose porous microspheres. Int. J. Biol. Macromol., 2019, 140, 196-205.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.139] [PMID: 31430489]
[30]
Sato, H.; Tabata, A.; Moritani, T.; Morinaga, T.; Mizumoto, T.; Seto, Y.; Onoue, S. Correction: Sato et al. Design and characterizations of inhalable poly(lactic-co-glycolic acid) microspheres prepared by the fine droplet drying process for a sustained effect of salmon calcitonin. Molecules 2020, 25, 1311. Molecules, 2022, 27(20), 27.
[http://dx.doi.org/10.3390/molecules27206775] [PMID: 36296736]
[31]
Qu, J.; Wang, L.; Niu, L.; Lin, J.; Huang, Q.; Jiang, X.; Li, M. Porous silk fibroin microspheres sustainably releasing bioactive basic fibroblast growth factor. Materials , 2018, 11(8), 1280.
[http://dx.doi.org/10.3390/ma11081280] [PMID: 30044408]
[32]
Mashhadian, A.; Afjoul, H.; Shamloo, A. An integrative method to increase the reliability of conventional double emulsion method. Anal. Chim. Acta, 2022, 1197, 339523.
[http://dx.doi.org/10.1016/j.aca.2022.339523] [PMID: 35168721]
[33]
Wan, B.; Bao, Q.; Burgess, D.J. In vitro-in vivo correlation of PLGA microspheres: Effect of polymer source variation and temperature. J. Control. Release, 2022, 347, 347-355.
[http://dx.doi.org/10.1016/j.jconrel.2022.05.014] [PMID: 35569590]
[34]
Liu, J.; Xu, Y.; Liu, Z.; Ren, H.; Meng, Z.; Liu, K.; Liu, Z.; Yong, J.; Wang, Y.; Li, X. A modified hydrophobic ion-pairing complex strategy for long-term peptide delivery with high drug encapsulation and reduced burst release from PLGA microspheres. Eur. J. Pharm. Biopharm., 2019, 144, 217-229.
[http://dx.doi.org/10.1016/j.ejpb.2019.09.022] [PMID: 31563632]
[35]
Lin, A.; Liu, S.; Xiao, L.; Fu, Y.; Liu, C.; Li, Y. Controllable preparation of bioactive open porous microspheres for tissue engineering. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(34), 6464-6471.
[http://dx.doi.org/10.1039/D2TB01198K] [PMID: 35960152]
[36]
Maciel, V.; Yoshida, C.; Pereira, S.; Goycoolea, F.; Franco, T. Electrostatic self-assembled chitosan-pectin nano- and microparticles for insulin delivery. Molecules, 2017, 22(10), 1707.
[http://dx.doi.org/10.3390/molecules22101707] [PMID: 29023400]
[37]
Wang, Y.; Sun, T.; Zhang, Y.; Chaurasiya, B.; Huang, L.; Liu, X.; Tu, J.; Xiong, Y.; Sun, C. Exenatide loaded PLGA microspheres for long-acting antidiabetic therapy: preparation, characterization, pharmacokinetics and pharmacodynamics. RSC Advances, 2016, 6(44), 37452-37462.
[http://dx.doi.org/10.1039/C6RA02994A]
[38]
Zhou, J.; Walker, J.; Ackermann, R.; Olsen, K.; Hong, J.K.Y.; Wang, Y.; Schwendeman, S.P. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide. Mol. Pharm., 2020, 17(5), 1502-1515.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01188] [PMID: 32074448]
[39]
Zhang, J.X.; Zhu, K.J. An improvement of double emulsion technique for preparing bovine serum albumin-loaded PLGA microspheres. J. Microencapsul., 2004, 21(7), 775-785.
[http://dx.doi.org/10.1080/02652040400008465] [PMID: 15799227]
[40]
Whitely, M.; Rodriguez-Rivera, G.; Waldron, C.; Mohiuddin, S.; Cereceres, S.; Sears, N.; Ray, N.; Cosgriff-Hernandez, E. Porous PolyHIPE microspheres for protein delivery from an injectable bone graft. Acta Biomater., 2019, 93, 169-179.
[http://dx.doi.org/10.1016/j.actbio.2019.01.044] [PMID: 30685476]
[41]
Jung, S.; Abel, J.H.; Starger, J.L.; Yi, H. Porosity-tuned chitosan–polyacrylamide hydrogel microspheres for improved protein conjugation. Biomacromolecules, 2016, 17(7), 2427-2436.
[http://dx.doi.org/10.1021/acs.biomac.6b00582] [PMID: 27351270]
[42]
Wei, Y.; Wang, Y.; Zhang, H.; Zhou, W.; Ma, G. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading. J. Colloid Interface Sci., 2016, 478, 46-53.
[http://dx.doi.org/10.1016/j.jcis.2016.05.045] [PMID: 27285778]
[43]
Ansary, R.H.; Rahman, M.M.; Awang, M.B.; Katas, H.; Hadi, H.; Doolaanea, A.A. Preparation, characterization, and in vitrorelease studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres. Drug Deliv. Transl. Res., 2016, 6(3), 308-318.
[http://dx.doi.org/10.1007/s13346-016-0278-y] [PMID: 26817478]
[44]
Wu, J.; Williams, G.R.; Branford-White, C.; Li, H.; Li, Y.; Zhu, L.M. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation. Eur. J. Pharm. Sci., 2016, 92, 28-38.
[http://dx.doi.org/10.1016/j.ejps.2016.06.018] [PMID: 27343696]
[45]
Zhai, P.; Chen, X.B.; Schreyer, D.J. PLGA/alginate composite microspheres for hydrophilic protein delivery. Mater. Sci. Eng. C, 2015, 56, 251-259.
[http://dx.doi.org/10.1016/j.msec.2015.06.015] [PMID: 26249587]
[46]
Zhu, K.J.; Jiang, H.L.; Du, X.Y.; Wang, J.; Xu, W.X.; Liu, S.F. Preparation and characterization of hCG-loaded polylactide or poly(lactide-co-glycolide) microspheres using a modified water-in-oil-in-water (w/o/w) emulsion solvent evaporation technique. J. Microencapsul., 2001, 18(2), 247-260.
[http://dx.doi.org/10.1080/02652040010000474] [PMID: 11253941]
[47]
Rui, J.; Dadsetan, M.; Runge, M.B.; Spinner, R.J.; Yaszemski, M.J.; Windebank, A.J.; Wang, H. Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: in vitrocharacterization and application in polycaprolactone fumarate nerve conduits. Acta Biomater., 2012, 8(2), 511-518.
[http://dx.doi.org/10.1016/j.actbio.2011.10.001] [PMID: 22019759]
[48]
Robinson, R.; Bertram, J.P.; Reiter, J.L.; Lavik, E.B. New platform for controlled and sustained delivery of the EGF receptor tyrosine kinase inhibitor AG1478 using poly(lactic-co-glycolic acid) microspheres. J. Microencapsul., 2010, 27(3), 263-271.
[http://dx.doi.org/10.3109/02652040903131285] [PMID: 20055747]
[49]
Yenying, A.; Tangamatakul, K.; Supanchart, C.; Jenvoraphot, T.; Manokruang, K.; Worajittiphon, P.; Punyodom, W.; Daranarong, D. Preparation and characterization of PLG microparticles by the multiple emulsion method for the sustained release of proteins. Micromachines , 2022, 13(10), 1761.
[http://dx.doi.org/10.3390/mi13101761] [PMID: 36296114]
[50]
Shi, M.; Yang, Y.Y.; Chaw, C.S.; Goh, S.H.; Moochhala, S.M.; Ng, S.; Heller, J. Double walled POE/PLGA microspheres: Encapsulation of water-soluble and water-insoluble proteins and their release properties. J. Control. Release, 2003, 89(2), 167-177.
[http://dx.doi.org/10.1016/S0168-3659(02)00493-5] [PMID: 12711441]
[51]
Jiang, H.; Hu, X.; Jiang, W.; Guan, X.; Li, Y.; Ngai, T. Water-in-oil pickering emulsions stabilized by hydrophobized protein microspheres. Langmuir, 2022, 38(40), 12273-12280.
[http://dx.doi.org/10.1021/acs.langmuir.2c01904] [PMID: 36172706]
[52]
van der Kooij, R.S.; Steendam, R.; Frijlink, H.W.; Hinrichs, W.L.J. An overview of the production methods for core–shell microspheres for parenteral controlled drug delivery. Eur. J. Pharm. Biopharm., 2022, 170, 24-42.
[http://dx.doi.org/10.1016/j.ejpb.2021.11.007] [PMID: 34861359]
[53]
Xia, Y.; Ribeiro, P.F.; Pack, D.W. Controlled protein release from monodisperse biodegradable double-wall microspheres of controllable shell thickness. J. Control. Release, 2013, 172(3), 707-714.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.009] [PMID: 23954731]
[54]
Wei, D.; Qiao, R.; Dao, J.; Su, J.; Jiang, C.; Wang, X.; Gao, M.; Zhong, J. Soybean lecithin‐mediated nanoporous plga microspheres with highly entrapped and controlled released BMP‐2 as a stem cell platform. Small, 2018, 14(22), 1800063.
[http://dx.doi.org/10.1002/smll.201800063] [PMID: 29682876]
[55]
Mao, S.; Xu, J.; Cai, C.; Germershaus, O.; Schaper, A.; Kissel, T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int. J. Pharm., 2007, 334(1-2), 137-148.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.036] [PMID: 17196348]
[56]
Li, L.; Li, Z.; Guo, Y.; Zhang, K.; Mi, W.; Liu, J. Preparation of uniform-sized GeXIVA[1,2]-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency. Drug Deliv., 2022, 29(1), 2283-2295.
[http://dx.doi.org/10.1080/10717544.2022.2089297] [PMID: 35866254]
[57]
Gasmi, H.; Siepmann, F.; Hamoudi, M.C.; Danede, F.; Verin, J.; Willart, J.F.; Siepmann, J. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Int. J. Pharm., 2016, 514(1), 189-199.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.032] [PMID: 27543353]
[58]
Acharya, G.; Shin, C.S.; Vedantham, K.; McDermott, M.; Rish, T.; Hansen, K.; Fu, Y.; Park, K. A study of drug release from homogeneous PLGA microstructures. J. Control. Release, 2010, 146(2), 201-206.
[http://dx.doi.org/10.1016/j.jconrel.2010.03.024] [PMID: 20381555]
[59]
Allison, S.D. Analysis of initial burst in PLGA microparticles. Expert Opin. Drug Deliv., 2008, 5(6), 615-628.
[http://dx.doi.org/10.1517/17425247.5.6.615] [PMID: 18532918]
[60]
Ruan, S.; Gu, Y.; Liu, B.; Gao, H.; Hu, X.; Hao, H.; Jin, L.; Cai, T. Long-acting release microspheres containing novel GLP-1 analog as an antidiabetic system. Mol. Pharm., 2018, 15(7), 2857-2869.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00344] [PMID: 29763559]
[61]
Bao, Y.; Wang, S.; Li, H.; Wang, Y.; Chen, H.; Yuan, M. Characterization, stability and biological activity in vitroof cathelicidin-BF-30 loaded 4-arm star-shaped PEG-PLGA microspheres. Molecules, 2018, 23(2), 497.
[http://dx.doi.org/10.3390/molecules23020497] [PMID: 29473887]
[62]
Yang, Y.; Chung, T.S.; Ng, N.P. Morphology, drug distribution, and in vitrorelease profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials, 2001, 22(3), 231-241.
[http://dx.doi.org/10.1016/S0142-9612(00)00178-2] [PMID: 11197498]
[63]
Liu, J.; Ren, H.; Xu, Y.; Wang, Y.; Liu, K.; Zhou, Y.; Wang, Y.; Li, W.; Tang, J.; Huang, H.; Li, X. Mechanistic evaluation of the opposite effects on initial burst induced by two similar hydrophilic additives from octreotide acetate–loaded PLGA microspheres. J. Pharm. Sci., 2019, 108(7), 2367-2376.
[http://dx.doi.org/10.1016/j.xphs.2019.02.012] [PMID: 30802455]
[64]
Ochi, M.; Wan, B.; Bao, Q.; Burgess, D.J. Influence of PLGA molecular weight distribution on leuprolide release from microspheres. Int. J. Pharm., 2021, 599, 120450.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120450] [PMID: 33675924]
[65]
Beig, A.; Ackermann, R.; Wang, Y.; Schutzman, R.; Schwendeman, S.P. Minimizing the initial burst of octreotide acetate from glucose star PLGA microspheres prepared by the solvent evaporation method. Int. J. Pharm., 2022, 624, 121842.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121842] [PMID: 35609832]
[66]
Ansary, R.; Rahman, M.; Mohamad, N.; Arrif, T.; Latif, A.; Katas, H.; Nik, W.; Awang, M. Controlled release of lysozyme from double-walled poly(lactide-co-glycolide) (plga) microspheres. Polymers , 2017, 9(12), 485.
[http://dx.doi.org/10.3390/polym9100485] [PMID: 30965787]
[67]
Lopac, S.K.; Torres, M.P.; Wilson-Welder, J.H.; Wannemuehler, M.J.; Narasimhan, B. Effect of polymer chemistry and fabrication method on protein release and stability from polyanhydride microspheres. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 91B(2), 938-947.
[http://dx.doi.org/10.1002/jbm.b.31478] [PMID: 19642209]
[68]
Lin, S.J.; Chan, Y.C.; Su, Z.C.; Yeh, W.L.; Lai, P.L.; Chu, I.M. Growth factor-loaded microspheres in mPEG-polypeptide hydrogel system for articular cartilage repair. J. Biomed. Mater. Res. A, 2021, 109, 2516-2526.
[69]
Scheiner, K.C.; Maas-Bakker, R.F.; Nguyen, T.T.; Duarte, A.M.; Hendriks, G.; Sequeira, L.; Duffy, G.P.; Steendam, R.; Hennink, W.E.; Kok, R.J. Sustained release of vascular endothelial growth factor from poly(ε-caprolactone-PEG-ε-caprolactone)- b -Poly(L -lactide) multiblock copolymer microspheres. ACS Omega, 2019, 4(7), 11481-11492.
[http://dx.doi.org/10.1021/acsomega.9b01272] [PMID: 31460253]
[70]
Wang, T.; Xue, P.; Wang, A.; Yin, M.; Han, J.; Tang, S.; Liang, R. Pore change during degradation of octreotide acetate-loaded PLGA microspheres: The effect of polymer blends. Eur. J. Pharm. Sci., 2019, 138, 104990.
[http://dx.doi.org/10.1016/j.ejps.2019.104990] [PMID: 31302216]
[71]
Sellers, D.L.; Kim, T.H.; Mount, C.W.; Pun, S.H.; Horner, P.J. Poly(lactic-co-glycolic) acid microspheres encapsulated in Pluronic F-127 prolong hirudin delivery and improve functional recovery from a demyelination lesion. Biomaterials, 2014, 35(31), 8895-8902.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.051] [PMID: 25064804]
[72]
Liu, G.; Hong, X.; Jiang, M.; Yuan, W. Sustained-release G-CSF microspheres using a novel solid-in-oil-in-oil-in-water emulsion method. Int. J. Nanomedicine, 2012, 7, 4559-4569.
[PMID: 22923993]
[73]
Chen, M.M.; Cao, H.; Liu, Y.Y.; Liu, Y.; Song, F.F.; Chen, J.D.; Zhang, Q.Q.; Yang, W.Z. Sequential delivery of chlorhexidine acetate and bFGF from PLGA-glycol chitosan core-shell microspheres. Colloids Surf. B Biointerfaces, 2017, 151, 189-195.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.045] [PMID: 28012407]
[74]
Xia, Y.; Xu, Q.; Wang, C.; Pack, D.W. Protein encapsulation in and release from monodisperse double-wall polymer microspheres. J. Pharm. Sci., 2013, 102(5), 1601-1609.
[http://dx.doi.org/10.1002/jps.23511] [PMID: 23529836]
[75]
Andhariya, J.V.; Jog, R.; Shen, J.; Choi, S.; Wang, Y.; Zou, Y.; Burgess, D.J. In vitro-in vivo correlation of parenteral PLGA microspheres: Effect of variable burst release. J. Control. Release, 2019, 314, 25-37.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.014] [PMID: 31654687]
[76]
Ye, M.; Duan, H.; Yao, L.; Fang, Y.; Zhang, X.; Dong, L.; Yang, F.; Yang, X.; Pan, W. A method of elevated temperatures coupled with magnetic stirring to predict real time release from long acting progesterone PLGA microspheres. Asian Journal of Pharmaceutical Sciences, 2019, 14(2), 222-232.
[http://dx.doi.org/10.1016/j.ajps.2018.05.010] [PMID: 32104454]
[77]
Bazybek, N.; Wei, Y.; Ma, G. Advances in encapsulating gonadotropin-releasing hormone agonists for controlled release: a review. J. Microencapsul., 2022, 39(5), 452-466.
[http://dx.doi.org/10.1080/02652048.2022.2100934] [PMID: 35876729]
[78]
Perugini, P.; Genta, I.; Pavanetto, F.; Modena, T.; Maculotti, K.; Conti, B. Evaluation of enzyme stability during preparation of polylactide-co-glycolide microspheres. J. Microencapsul., 2002, 19(5), 591-602.
[http://dx.doi.org/10.1080/02652040210144252] [PMID: 12433302]
[79]
Srinivasan, C.; Katare, Y.K.; Muthukumaran, T.; Panda, A.K. Effect of additives on encapsulation efficiency, stability and bioactivity of entrapped lysozyme from biodegradable polymer particles. J. Microencapsul., 2005, 22(2), 127-138.
[http://dx.doi.org/10.1080/02652040400026400] [PMID: 16019899]
[80]
Wang, P.; Wang, Q.; Ren, T.; Gong, H.; Gou, J.; Zhang, Y.; Cai, C.; Tang, X. Effects of Pluronic F127-PEG multi-gel-core on the release profile and pharmacodynamics of Exenatide loaded in PLGA microspheres. Colloids Surf. B Biointerfaces, 2016, 147, 360-367.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.032] [PMID: 27559996]
[81]
Li, L.; Wang, Q.; Li, H.; Yuan, M.; Yuan, M. Preparation, characterization, in vitrorelease and degradation of cathelicidin-BF-30-PLGA microspheres. PLoS One, 2014, 9(6), e100809.
[http://dx.doi.org/10.1371/journal.pone.0100809] [PMID: 24963652]
[82]
Sun, H.; Xu, F.; Guo, D.; Liu, G. in vitro evaluation of the effects of various additives and polymers on nerve growth factor microspheres. Drug Dev. Ind. Pharm., 2014, 40(4), 452-457.
[http://dx.doi.org/10.3109/03639045.2013.767829] [PMID: 23565585]
[83]
Xu, W.; He, J.; Wu, G.; Xiong, F.; Du, H.; Wang, G. Stabilization and immune response of HBsAg encapsulated within poly(lactic-co-glycolic acid) microspheres using HSA as a stabilizer. Int. J. Pharm., 2015, 496(2), 332-341.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.004] [PMID: 26453785]
[84]
Ouchi, T.; Saito, T.; Kontani, T.; Ohya, Y. Encapsulation and/or release behavior of bovine serum albumin within and from polylactide-grafted dextran microspheres. Macromol. Biosci., 2004, 4(4), 458-463.
[http://dx.doi.org/10.1002/mabi.200300106] [PMID: 15468238]
[85]
Ghassemi, A.H.; van Steenbergen, M.J.; Barendregt, A.; Talsma, H.; Kok, R.J.; van Nostrum, C.F.; Crommelin, D.J.A.; Hennink, W.E. Controlled release of octreotide and assessment of peptide acylation from poly(D,L-lactide-co-hydroxymethyl glycolide) compared to PLGA microspheres. Pharm. Res., 2012, 29(1), 110-120.
[http://dx.doi.org/10.1007/s11095-011-0517-3] [PMID: 21744173]
[86]
Shirangi, M.; Najafi, M.; Rijkers, D.T.S.; Kok, R.J.; Hennink, W.E.; van Nostrum, C.F. Inhibition of octreotide acylation inside PLGA microspheres by derivatization of the amines of the peptide with a self-immolative protecting group. Bioconjug. Chem., 2016, 27(3), 576-585.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00598] [PMID: 26726953]
[87]
Agrawal, G.R.; Wakte, P.; Shelke, S.; Shelke, S. Formulation, physicochemical characterization and in vitroevaluation of human insulin-loaded microspheres as potential oral carrier. Prog. Biomater., 2017, 6(3), 125-136.
[http://dx.doi.org/10.1007/s40204-017-0072-z] [PMID: 28864917]
[88]
Turino, L.N.; Mariano, R.N.; Boimvaser, S.; Luna, J.A. In situ-formed microparticles of PLGA from O/W emulsions stabilized with PVA: Encapsulation and controlled release of progesterone. J. Pharm. Innov., 2014, 9(2), 132-140.
[http://dx.doi.org/10.1007/s12247-014-9180-7]
[89]
Turino, L.N.; Mariano, R.N.; Mengatto, L.N.; Luna, J.A. In vitro evaluation of suspoemulsions for in situ -forming polymeric microspheres and controlled release of progesterone. J. Microencapsul., 2015, 32(6), 538-546.
[http://dx.doi.org/10.3109/02652048.2015.1065914] [PMID: 26218541]
[90]
Castellanos, I.J.; Carrasquillo, K.G.; López, J.D.J.; Alvarez, M.; Griebenow, K. Encapsulation of bovine serum albumin in poly(lactide-co-glycolide) microspheres by the solid-in-oil-in-water technique. J. Pharm. Pharmacol., 2010, 53(2), 167-178.
[http://dx.doi.org/10.1211/0022357011775361] [PMID: 11273012]
[91]
Baldascini, H.; Janssen, D.B. Interfacial inactivation of epoxide hydrolase in a two-liquid-phase system. Enzyme Microb. Technol., 2005, 36(2-3), 285-293.
[http://dx.doi.org/10.1016/j.enzmictec.2003.08.007]
[92]
Singh, P.; Medronho, B.; Miguel, M.G.; Esquena, J. On the encapsulation and viability of probiotic bacteria in edible carboxymethyl cellulose-gelatin water-in-water emulsions. Food Hydrocoll., 2018, 75, 41-50.
[http://dx.doi.org/10.1016/j.foodhyd.2017.09.014]
[93]
Zhang, L.; Cai, L.H.; Lienemann, P.S.; Rossow, T.; Polenz, I.; Vallmajo-Martin, Q.; Ehrbar, M.; Na, H.; Mooney, D.J.; Weitz, D.A. One-step microfluidic fabrication of polyelectrolyte microcapsules in aqueous conditions for protein release. Angew. Chem. Int. Ed., 2016, 55(43), 13470-13474.
[http://dx.doi.org/10.1002/anie.201606960] [PMID: 27717141]
[94]
Ma, C.; Jing, Y.; Sun, H.; Liu, X. Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration. Adv. Healthc. Mater., 2015, 4(17), 2699-2708.
[http://dx.doi.org/10.1002/adhm.201500531] [PMID: 26462137]
[95]
Na, D.H.; Lee, J.E.; Jang, S.W.; Lee, K.C. Formation of acylated growth hormone-releasing peptide-6 by poly(lactide-co-glycolide) and its biological activity. AAPS PharmSciTech, 2007, 8(2), E105-E109.
[http://dx.doi.org/10.1208/pt0802043] [PMID: 17622118]
[96]
Shirangi, M.; Hennink, W.E.; Somsen, G.W.; van Nostrum, C.F. Acylation of arginine in goserelin-loaded PLGA microspheres. Eur. J. Pharm. Biopharm., 2016, 99, 18-23.
[http://dx.doi.org/10.1016/j.ejpb.2015.11.008] [PMID: 26607434]
[97]
Diwan, M.; Park, T.G. Stabilization of recombinant interferon-α by pegylation for encapsulation in PLGA microspheres. Int. J. Pharm., 2003, 252(1-2), 111-122.
[http://dx.doi.org/10.1016/S0378-5173(02)00636-1] [PMID: 12550786]
[98]
Flores-Fernández, G.M.; Griebenow, K. Glycosylation improves α-chymotrypsin stability upon encapsulation in poly(lactic-co-glycolic)acid microspheres. Results Pharma Sci., 2012, 2, 46-51.
[http://dx.doi.org/10.1016/j.rinphs.2012.08.001] [PMID: 23419866]
[99]
Varcheh, N.; Aboofazeli, R. An approach to the design of a particulate system for oral protein delivery. II. preparation and stability study of rhgh-loaded microspheres in simulated gastrointestinal fluids. Iran. J. Pharm. Res., 2011, 10(2), 183-192.
[PMID: 24250342]
[100]
Liu, Y.; Ghassemi, A.H.; Hennink, W.E.; Schwendeman, S.P. The microclimate pH in poly(d,l-lactide-co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials, 2012, 33(30), 7584-7593.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.013] [PMID: 22819499]
[101]
Delgado-Rivera, R.; Rosario-Meléndez, R.; Yu, W.; Uhrich, K.E. Biodegradable salicylate-based poly(anhydride-ester) microspheres for controlled insulin delivery. J. Biomed. Mater. Res. A, 2014, 102(8), 2736-2742.
[http://dx.doi.org/10.1002/jbm.a.34949] [PMID: 24027012]
[102]
Chen, X.; Lv, G.; Zhang, J.; Tang, S.; Yan, Y.; Su, J.; Wu, Z.; Wei, J. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery. Int. J. Nanomedicine, 2014, 9, 1957-1965.
[http://dx.doi.org/10.2147/IJN.S57048] [PMID: 24855351]
[103]
Guo, Z.; Bo, D.; He, Y.; Luo, X.; Li, H. Degradation properties of chitosan microspheres/poly(L-lactic acid) composite in vitroand in vivo. Carbohydr. Polym., 2018, 193, 1-8.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.067] [PMID: 29773361]
[104]
Guo, N.; Zhang, Q.; Sun, Y.; Yang, H. Separation and identification of acylated leuprorelin inside PLGA microspheres. Int. J. Pharm., 2019, 560, 273-281.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.061] [PMID: 30731258]
[105]
Friess, W.; Schlapp, M. Release mechanisms from gentamicin loaded poly(lactic-co-glycolic acid) (PLGA) microparticles. J. Pharm. Sci., 2002, 91(3), 845-855.
[http://dx.doi.org/10.1002/jps.10012] [PMID: 11920769]
[107]
Zhang, J.X.; Zhu, K.J.; Chen, D. Preparation of bovine serum albumin loaded poly (D, L-lactic-co-glycolic acid) microspheres by a modified phase separation technique. J. Microencapsul., 2005, 22(2), 117-126.
[http://dx.doi.org/10.1080/02652040400026335] [PMID: 16019898]
[108]
Giles, M.B.; Hong, J.K.Y.; Liu, Y.; Tang, J.; Li, T.; Beig, A.; Schwendeman, A.; Schwendeman, S.P. Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid). Nat. Commun., 2022, 13(1), 3282.
[http://dx.doi.org/10.1038/s41467-022-30813-7] [PMID: 35676271]
[109]
Beig, A.; Feng, L.; Walker, J.; Ackermann, R.; Hong, J.K.Y.; Li, T.; Wang, Y.; Schwendeman, S.P. Development and characterization of composition-equivalent formulations to the Sandostatin LAR® by the solvent evaporation method. Drug Deliv. Transl. Res., 2022, 12(3), 695-707.
[http://dx.doi.org/10.1007/s13346-021-01013-5] [PMID: 34215997]
[110]
Wen, K.; Na, X.; Yuan, M.; Bazybek, N.; Li, X.; Wei, Y.; Ma, G. Preparation of novel ropivacaine hydrochloride-loaded PLGA microspheres based on post-loading mode and efficacy evaluation. Colloids Surf. B Biointerfaces, 2022, 210, 112215.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112215] [PMID: 34839050]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy