Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Role of Ubiquitin-specific Proteases in Hepatocellular Carcinoma Pathogenesis

Author(s): Xinwen Zhang, Jiamin Jin, Jiacheng Cong, Siqi Chen, Ting Wang, Bin Gao, Guanlin Huang, Zhiqiang Huang, Juzheng Zhang, Zhenran Wang* and Jinfeng Yang*

Volume 24, Issue 3, 2024

Published on: 03 January, 2024

Page: [179 - 191] Pages: 13

DOI: 10.2174/0115680266279228231219101233

Price: $65

Abstract

Signaling pathways in hepatocellular carcinoma are primarily mediated by the phosphorylation and ubiquitination of post-translational proteins. In mammalian cells, ubiquitin-specific proteases (USPs) account for the majority of protein deubiquitination activities. In addition to transcriptional and post-translational regulation, ubiquitination plays an important role in the regulation of key proteins. There is a possibility that altered biological processes may lead to serious human diseases, including cancer. Recent studies have revealed the role of USPs in hepatocellular carcinoma tumorigenesis. The purpose of this review is to summarize the involvement of this class of enzymes in the regulation of cell signaling in hepatocellular carcinoma and the therapeutic development of inhibitors that target USPs, which may lead to novel therapies to treat hepatocellular carcinoma.

Next »
Graphical Abstract

[1]
Ganesan, P.; Kulik, L.M. Hepatocellular carcinoma. Clin. Liver Dis., 2023, 27(1), 85-102.
[http://dx.doi.org/10.1016/j.cld.2022.08.004] [PMID: 36400469]
[2]
Llovet, J.M.; Pinyol, R.; Kelley, R.K.; El-Khoueiry, A.; Reeves, H.L.; Wang, X.W.; Gores, G.J.; Villanueva, A. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nat. Can., 2022, 3(4), 386-401.
[http://dx.doi.org/10.1038/s43018-022-00357-2] [PMID: 35484418]
[3]
Roy, B.; Ghose, S.; Biswas, S. Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma. Semin. Cell Dev. Biol., 2022, 124, 134-144.
[http://dx.doi.org/10.1016/j.semcdb.2021.04.006] [PMID: 33926792]
[4]
Hernandez-Meza, G.; von Felden, J.; Gonzalez-Kozlova, E.E.; Garcia-Lezana, T.; Peix, J.; Portela, A.; Craig, A.J.; Sayols, S.; Schwartz, M.; Losic, B.; Mazzaferro, V.; Esteller, M.; Llovet, J.M.; Villanueva, A. DNA methylation profiling of human hepatocarcinogenesis. Hepatology, 2021, 74(1), 183-199.
[http://dx.doi.org/10.1002/hep.31659] [PMID: 33237575]
[5]
Rimassa, L.; Finn, R.S.; Sangro, B. Combination immunotherapy for hepatocellular carcinoma. J. Hepatol., 2023, 79(2), 506-515.
[http://dx.doi.org/10.1016/j.jhep.2023.03.003] [PMID: 36933770]
[6]
Dong, Y.; Zheng, Q.; Wang, Z.; Lin, X.; You, Y.; Wu, S.; Wang, Y.; Hu, C.; Xie, X.; Chen, J.; Gao, D.; Zhao, Y.; Wu, W.; Liu, Y.; Ren, Z.; Chen, R.; Cui, J. Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis. J. Hematol. Oncol., 2019, 12(1), 112.
[http://dx.doi.org/10.1186/s13045-019-0795-5] [PMID: 31703598]
[7]
Zhao, J.; Guo, J.; Wang, Y.; Ma, Q.; Shi, Y.; Cheng, F.; Lu, Q.; Fu, W.; Ouyang, G.; Zhang, J.; Xu, Q.; Hu, X. Research progress of DUB enzyme in hepatocellular carcinoma. Front. Oncol., 2022, 12, 920287.
[http://dx.doi.org/10.3389/fonc.2022.920287] [PMID: 35875077]
[8]
Snyder, N.A.; Silva, G.M. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J. Biol. Chem., 2021, 297(3), 101077.
[http://dx.doi.org/10.1016/j.jbc.2021.101077] [PMID: 34391779]
[9]
Park, J.; Cho, J.; Song, E.J. Ubiquitin–proteasome system (UPS) as a target for anticancer treatment. Arch. Pharm. Res., 2020, 43(11), 1144-1161.
[http://dx.doi.org/10.1007/s12272-020-01281-8] [PMID: 33165832]
[10]
Chen, S.; Liu, Y.; Zhou, H. Advances in the development ubiquitin-specific peptidase (USP) inhibitors. Int. J. Mol. Sci., 2021, 22(9), 4546.
[http://dx.doi.org/10.3390/ijms22094546] [PMID: 33925279]
[11]
Pal, A.; Young, M.A.; Donato, N.J. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res., 2014, 74(18), 4955-4966.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1211] [PMID: 25172841]
[12]
Zhao, B.; Schlesiger, C.; Masucci, M.G.; Lindsten, K. The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. J. Cell. Mol. Med., 2009, 13(8b), 1886-1895.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00682.x] [PMID: 20141612]
[13]
Jung, H.; Kim, B-G.; Han, W.H.; Lee, J.H.; Cho, J-Y.; Park, W.S.; Maurice, M.M.; Han, J-K.; Lee, M.J.; Finley, D.; Jho, E. Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis, 2013, 2(8), e64.
[http://dx.doi.org/10.1038/oncsis.2013.28] [PMID: 23958854]
[14]
Yuan, X.; Sun, X.; Shi, X.; Wang, H.; Wu, G.; Jiang, C.; Yu, D.; Zhang, W.; Xue, B.; Ding, Y. USP39 promotes colorectal cancer growth and metastasis through the Wnt/β-catenin pathway. Oncol. Rep., 2017, 37(4), 2398-2404.
[http://dx.doi.org/10.3892/or.2017.5454] [PMID: 28259917]
[15]
Yun, S.I.; Kim, H.H.; Yoon, J.H.; Park, W.S.; Hahn, M.J.; Kim, H.C.; Chung, C.H.; Kim, K.K. Ubiquitin specific protease 4 positively regulates the WNT/β-catenin signaling in colorectal cancer. Mol. Oncol., 2015, 9(9), 1834-1851.
[http://dx.doi.org/10.1016/j.molonc.2015.06.006] [PMID: 26189775]
[16]
Qiu, C.; Liu, Y.; Mei, Y.; Zou, M.; Zhao, Z.; Ye, M.; Wu, X. Ubiquitin-specific protease 4 promotes metastasis of hepatocellular carcinoma by increasing TGF-β signaling-induced epithelial-mesenchymal transition. Aging, 2018, 10(10), 2783-2799.
[http://dx.doi.org/10.18632/aging.101587] [PMID: 30335615]
[17]
Gao, Y.; Zhang, X.; Xiao, L.; Zhai, C.; Yi, T.; Wang, G.; Wang, E.; Ji, X.; Hu, L.; Shen, G.; Wu, S. Usp10 modulates the hippo pathway by deubiquitinating and stabilizing the transcriptional coactivator yorkie. Int. J. Mol. Sci., 2019, 20(23), 6013.
[http://dx.doi.org/10.3390/ijms20236013] [PMID: 31795326]
[18]
Zhang, X.; Liu, T.; Xu, S.; Gao, P.; Dong, W.; Liu, W.; Gao, M.; Song, L.; Cui, L.; Dong, X. A pro-inflammatory mediator USP11 enhances the stability of p53 and inhibits KLF2 in intracerebral hemorrhage. Mol. Ther. Methods Clin. Dev., 2021, 21, 681-692.
[http://dx.doi.org/10.1016/j.omtm.2021.01.015] [PMID: 34141823]
[19]
Das, T.; Song, E.J.; Kim, E.E. The Multifaceted Roles of USP15 in Signal Transduction. Int. J. Mol. Sci., 2021, 22(9), 4728.
[http://dx.doi.org/10.3390/ijms22094728] [PMID: 33946990]
[20]
Perugorria, M.J.; Olaizola, P.; Labiano, I.; Esparza-Baquer, A.; Marzioni, M.; Marin, J.J.G.; Bujanda, L.; Banales, J.M. Wnt–β-catenin signalling in liver development, health and disease. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(2), 121-136.
[http://dx.doi.org/10.1038/s41575-018-0075-9] [PMID: 30451972]
[21]
He, S.; Tang, S. WNT/β-catenin signaling in the development of liver cancers. Biomed. Pharmacother., 2020, 132, 110851.
[http://dx.doi.org/10.1016/j.biopha.2020.110851] [PMID: 33080466]
[22]
Wang, W.; Lei, Y.; Zhang, G.; Li, X.; Yuan, J.; Li, T.; Zhong, W.; Zhang, Y.; Tan, X.; Song, G. USP39 stabilizes β-catenin by deubiquitination and suppressing E3 ligase TRIM26 pre-mRNA maturation to promote HCC progression. Cell Death Dis., 2023, 14(1), 63.
[http://dx.doi.org/10.1038/s41419-023-05593-7] [PMID: 36707504]
[23]
Garcia-Lezana, T.; Lopez-Canovas, J.L.; Villanueva, A. Signaling pathways in hepatocellular carcinoma. Adv. Cancer Res., 2021, 149, 63-101.
[http://dx.doi.org/10.1016/bs.acr.2020.10.002] [PMID: 33579428]
[24]
Wang, X.; Zhang, Q.; Wang, Y.; Zhuang, H.; Chen, B. Clinical significance of ubiquitin specific protease 7 (USP7) in predicting prognosis of hepatocellular carcinoma and its functional mechanisms. Med. Sci. Monit., 2018, 24, 1742-1750.
[http://dx.doi.org/10.12659/MSM.909368] [PMID: 29574466]
[25]
Bian, S.; Ni, W.; Zhu, M.; Zhang, X.; Qiang, Y.; Zhang, J.; Ni, Z.; Shen, Y.; Qiu, S.; Song, Q.; Xiao, M.; Zheng, W. Flap endonuclease 1 facilitated hepatocellular carcinoma progression by enhancing USP7/MDM2-mediated P53 inactivation. Int. J. Biol. Sci., 2022, 18(3), 1022-1038.
[http://dx.doi.org/10.7150/ijbs.68179] [PMID: 35173534]
[26]
Zhang, W.; Zhang, J.; Xu, C.; Zhang, S.; Bian, S.; Jiang, F.; Ni, W.; Qu, L.; Lu, C.; Ni, R.; Fan, Y.; Xiao, M.; Liu, J. Ubiquitin-specific protease 7 is a drug-able target that promotes hepatocellular carcinoma and chemoresistance. Cancer Cell Int., 2020, 20(1), 28.
[http://dx.doi.org/10.1186/s12935-020-1109-2] [PMID: 32002017]
[27]
Kim, J.; Alavi Naini, F.; Sun, Y.; Ma, L. Ubiquitin-specific peptidase 2a (USP2a) deubiquitinates and stabilizes β-catenin. Am. J. Cancer Res., 2018, 8(9), 1823-1836.
[PMID: 30323974]
[28]
Ling, S.; Li, J.; Shan, Q.; Dai, H.; Lu, D.; Wen, X.; Song, P.; Xie, H.; Zhou, L.; Liu, J.; Xu, X.; Zheng, S. USP22 mediates the multidrug resistance of hepatocellular carcinoma via the SIRT1/AKT/MRP1 signaling pathway. Mol. Oncol., 2017, 11(6), 682-695.
[http://dx.doi.org/10.1002/1878-0261.12067] [PMID: 28417539]
[29]
Jing, T.; Wang, B.; Yang, Z.; Liu, Y.; Xu, G.; Xu, X.; Jiao, K.; Chen, Z.; Xiang, L.; Zhang, L.; Liu, Y. Deubiquitination of the repressor E2F6 by USP22 facilitates AKT activation and tumor growth in hepatocellular carcinoma. Cancer Lett., 2021, 518, 266-277.
[http://dx.doi.org/10.1016/j.canlet.2021.07.044] [PMID: 34339800]
[30]
Sun, X.; Cai, M.; Wu, L.; Zhen, X.; Chen, Y.; Peng, J.; Han, S.; Zhang, P. Ubiquitin-specific protease 28 deubiquitinates TCF7L2 to govern the action of the Wnt signaling pathway in hepatic carcinoma. Cancer Sci., 2022, 113(10), 3463-3475.
[http://dx.doi.org/10.1111/cas.15509] [PMID: 35880246]
[31]
Zhao, Y.; Xue, C.; Xie, Z.; Ouyang, X.; Li, L. Comprehensive analysis of ubiquitin-specific protease 1 reveals its importance in hepatocellular carcinoma. Cell Prolif., 2020, 53(10), e12908.
[http://dx.doi.org/10.1111/cpr.12908] [PMID: 32951278]
[32]
Liao, Y.; Shao, Z.; Liu, Y.; Xia, X.; Deng, Y.; Yu, C.; Sun, W.; Kong, W.; He, X.; Liu, F.; Guo, Z.; Chen, G.; Tang, D.; Gan, H.; Liu, J.; Huang, H. USP1-dependent RPS16 protein stability drives growth and metastasis of human hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res., 2021, 40(1), 201.
[http://dx.doi.org/10.1186/s13046-021-02008-3] [PMID: 34154657]
[33]
Li, Y.; Xu, Y.; Gao, C.; Sun, Y.; Zhou, K.; Wang, P.; Cheng, J.; Guo, W.; Ya, C.; Fan, J.; Yang, X. USP1 maintains the survival of liver circulating tumor cells by deubiquitinating and stabilizing TBLR1. Front. Oncol., 2020, 10, 554809.
[http://dx.doi.org/10.3389/fonc.2020.554809] [PMID: 33102219]
[34]
Chen, Z.; Ma, Y.; Guo, Z.; Song, D.; Chen, Z.; Sun, M. Ubiquitin-specific protease 1 acts as an oncogene and promotes lenvatinib efficacy in hepatocellular carcinoma by stabilizing c-kit. Ann. Hepatol., 2022, 27(2), 100669.
[http://dx.doi.org/10.1016/j.aohep.2022.100669] [PMID: 35045360]
[35]
Wang, L.; Hu, T.; Shen, Z.; Zheng, Y.; Geng, Q.; Li, L.; Sha, B.; Li, M.; Sun, Y.; Guo, Y.; Xue, W.; Xuan, D.; Chen, P.; Zhao, J. Inhibition of USP1 activates ER stress through Ubi-protein aggregation to induce autophagy and apoptosis in HCC. Cell Death Dis., 2022, 13(11), 951.
[http://dx.doi.org/10.1038/s41419-022-05341-3] [PMID: 36357365]
[36]
Lu, Z.; Zhang, Z.; Yang, M.; Xiao, M. Ubiquitin-specific protease 1 inhibition sensitizes hepatocellular carcinoma cells to doxorubicin by ubiquitinated proliferating cell nuclear antigen–mediated attenuation of stemness. Anticancer Drugs, 2022, 33(7), 622-631.
[http://dx.doi.org/10.1097/CAD.0000000000001311] [PMID: 35324534]
[37]
Xiong, B.; Huang, J.; Liu, Y.; Zou, M.; Zhao, Z.; Gong, J.; Wu, X.; Qiu, C. Ubiquitin-specific protease 2a promotes hepatocellular carcinoma progression via deubiquitination and stabilization of RAB1A. Cell Oncol., 2021, 44(2), 329-343.
[http://dx.doi.org/10.1007/s13402-020-00568-8] [PMID: 33074477]
[38]
Zhang, X.; Nadolny, C.; Chen, Q.; Ali, W.; Hashmi, S.F.; Deng, R. Dysregulation and oncogenic activities of ubiquitin specific peptidase 2a in the pathogenesis of hepatocellular carcinoma. Am. J. Cancer Res., 2023, 13(6), 2392-2409.
[PMID: 37424823]
[39]
Nadolny, C.; Zhang, X.; Chen, Q.; Hashmi, S.F.; Ali, W.; Hemme, C.; Ahsan, N.; Chen, Y.; Deng, R. Dysregulation and activities of ubiquitin specific peptidase 2b in the pathogenesis of hepatocellular carcinoma. Am. J. Cancer Res., 2021, 11(10), 4746-4767.
[PMID: 34765291]
[40]
Li, T.; Yan, B.; Ma, Y.; Weng, J.; Yang, S.; Zhao, N.; Wang, X.; Sun, X. Ubiquitin-specific protease 4 promotes hepatocellular carcinoma progression via cyclophilin A stabilization and deubiquitination. Cell Death Dis., 2018, 9(2), 148.
[http://dx.doi.org/10.1038/s41419-017-0182-5] [PMID: 29396555]
[41]
Heo, M.J.; Kim, Y.M.; Koo, J.H.; Yang, Y.M.; An, J.; Lee, S.K.; Lee, S.J.; Kim, K.M.; Park, J.W.; Kim, S.G. microRNA-148a dysregulation discriminates poor prognosis of hepatocellular carcinoma in association with USP4 overexpression. Oncotarget, 2014, 5(9), 2792-2806.
[http://dx.doi.org/10.18632/oncotarget.1920] [PMID: 24798342]
[42]
Meng, J.; Ai, X.; Lei, Y.; Zhong, W.; Qian, B.; Qiao, K.; Wang, X.; Zhou, B.; Wang, H.; Huai, L.; Zhang, X.; Han, J.; Xue, Y.; Liang, Y.; Zhou, H.; Chen, S.; Sun, T.; Yang, C. USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma. Theranostics, 2019, 9(2), 573-587.
[http://dx.doi.org/10.7150/thno.27654] [PMID: 30809294]
[43]
Liu, Y.; Wang, W.M.; Lu, Y.F.; Feng, L.; Li, L.; Pan, M.Z.; Sun, Y.; Suen, C.W.; Guo, W.; Pang, J.X.; Zhang, J.F.; Fu, W.M. Usp5 functions as an oncogene for stimulating tumorigenesis in hepatocellular carcinoma. Oncotarget, 2017, 8(31), 50655-50664.
[http://dx.doi.org/10.18632/oncotarget.16901] [PMID: 28881591]
[44]
Cai, J.B.; Shi, G.M.; Dong, Z.R.; Ke, A.W.; Ma, H.H.; Gao, Q.; Shen, Z.Z.; Huang, X.Y.; Chen, H.; Yu, D.D.; Liu, L.X.; Zhang, P.F.; Zhang, C.; Hu, M.Y.; Yang, L.X.; Shi, Y.H.; Wang, X.Y.; Ding, Z.B.; Qiu, S.J.; Sun, H.C.; Zhou, J.; Shi, Y.G.; Fan, J. Ubiquitin-specific protease 7 accelerates p14ARF degradation by deubiquitinating thyroid hormone receptor-interacting protein 12 and promotes hepatocellular carcinoma progression. Hepatology, 2015, 61(5), 1603-1614.
[http://dx.doi.org/10.1002/hep.27682] [PMID: 25557975]
[45]
Sakamoto, T.; Kuboki, S.; Furukawa, K.; Takayashiki, T.; Takano, S.; Yoshizumi, A.; Ohtsuka, M. TRIM27-USP7 complex promotes tumour progression viaSTAT3 activation in human hepatocellular carcinoma. Liver Int., 2023, 43(1), 194-207.
[http://dx.doi.org/10.1111/liv.15346] [PMID: 35753056]
[46]
Zhu, Y.; Xu, J.; Hu, W.; Wang, F.; Zhou, Y.; Gong, W.; Xu, W. Inhibiting USP8 overcomes hepatocellular carcinoma resistance via suppressing receptor tyrosine kinases. Aging, 2021, 13(11), 14999-15012.
[http://dx.doi.org/10.18632/aging.203061] [PMID: 34081623]
[47]
Tang, J.; Long, G.; Xiao, L.; Zhou, L. USP8 positively regulates hepatocellular carcinoma tumorigenesis and confers ferroptosis resistance through β-catenin stabilization. Cell Death Dis., 2023, 14(6), 360.
[http://dx.doi.org/10.1038/s41419-023-05747-7] [PMID: 37311739]
[48]
Chen, M.; Li, Z.; Sun, Z.; Ma, M. USP9X promotes the progression of hepatocellular carcinoma by regulating beta-catenin. Ir. J. Med. Sci., 2020, 189(3), 865-871.
[http://dx.doi.org/10.1007/s11845-020-02199-2] [PMID: 32065347]
[49]
Lu, C.; Ning, Z.; Wang, A.; Chen, D.; Liu, X.; Xia, T.; Tekcham, D.S.; Wang, W.; Li, T.; Liu, X.; Liu, J.; Qi, H.; Luo, H.; Du, J.; Ma, C.; Yan, Q.; Liu, J.; Xu, G.; Piao, H.; Tan, G. USP10 suppresses tumor progression by inhibiting mTOR activation in hepatocellular carcinoma. Cancer Lett., 2018, 436, 139-148.
[http://dx.doi.org/10.1016/j.canlet.2018.07.032] [PMID: 30056112]
[50]
Liu, C.; Li, X.; Feng, G.; Cao, M.; Liu, F.; Zhang, G.; Lu, Y. Downregulation of USP12 inhibits tumor growth via the p38/MAPK pathway in hepatocellular carcinoma. Mol. Med. Rep., 2020, 22(6), 4899-4908.
[http://dx.doi.org/10.3892/mmr.2020.11557] [PMID: 33174033]
[51]
Lv, C.; Wang, S.; Lin, L.; Wang, C.; Zeng, K.; Meng, Y.; Sun, G.; Wei, S.; Liu, Y.; Zhao, Y. USP14 maintains HIF1-α stabilization via its deubiquitination activity in hepatocellular carcinoma. Cell Death Dis., 2021, 12(9), 803.
[http://dx.doi.org/10.1038/s41419-021-04089-6] [PMID: 34420039]
[52]
Huang, G.; Li, L.; Zhou, W. USP14 activation promotes tumor progression in hepatocellular carcinoma. Oncol. Rep., 2015, 34(6), 2917-2924.
[http://dx.doi.org/10.3892/or.2015.4296] [PMID: 26397990]
[53]
Yao, X.Q.; Li, L.; Piao, L.Z.; Zhang, G.J.; Huang, X.Z.; Wang, Y.; Liang, Z.L. Overexpression of ubiquitin-specific protease15 (USP15) promotes tumor growth and inhibits apoptosis and correlated with poor disease-free survival in hepatocellular carcinoma. Technol. Cancer Res. Treat., 2020, 19
[http://dx.doi.org/10.1177/1533033820967455] [PMID: 33267707]
[54]
Qian, Y.; Wang, B.; Ma, A.; Zhang, L.; Xu, G.; Ding, Q.; Jing, T.; Wu, L.; Liu, Y.; Yang, Z.; Liu, Y. USP16 downregulation by carboxyl-terminal truncated hbx promotes the growth of hepatocellular carcinoma cells. Sci. Rep., 2016, 6(1), 33039.
[http://dx.doi.org/10.1038/srep33039] [PMID: 27633997]
[55]
Wen, X.; Ling, S.; Wu, W.; Shan, Q.; Liu, P.; Wang, C.; Wei, X.; Ding, W.; Teng, X.; Xu, X. Ubiquitin-specific protease 22/Silent information regulator 1 axis plays a pivotal role in the prognosis and 5-fluorouracil resistance in hepatocellular carcinoma. Dig. Dis. Sci., 2020, 65(4), 1064-1073.
[http://dx.doi.org/10.1007/s10620-019-05844-8] [PMID: 31587155]
[56]
Ning, Z.; Guo, X.; Liu, X.; Lu, C.; Wang, A.; Wang, X.; Wang, W.; Chen, H.; Qin, W.; Liu, X.; Zhou, L.; Ma, C.; Du, J.; Lin, Z.; Luo, H.; Otkur, W.; Qi, H.; Chen, D.; Xia, T.; Liu, J.; Tan, G.; Xu, G.; Piao, H. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma. Nat. Commun., 2022, 13(1), 2187.
[http://dx.doi.org/10.1038/s41467-022-29846-9] [PMID: 35449157]
[57]
Zhai, R.; Tang, F.; Gong, J.; Zhang, J.; Lei, B.; Li, B.; Wei, Y.; Liang, X.; Tang, B.; He, S. The relationship between the expression of USP22, BMI1, and EZH2 in hepatocellular carcinoma and their impacts on prognosis. OncoTargets Ther., 2016, 9, 6987-6998.
[http://dx.doi.org/10.2147/OTT.S110985] [PMID: 27920552]
[58]
Chang, Y.S.; Su, C.W.; Chen, S.C.; Chen, Y.Y.; Liang, Y.J.; Wu, J.C. Upregulation of USP22 and ABCC1 during sorafenib treatment of hepatocellular carcinoma contribute to development of resistance. Cells, 2022, 11(4), 634.
[http://dx.doi.org/10.3390/cells11040634] [PMID: 35203285]
[59]
Dong, L.; Yu, L.; Bai, C.; Liu, L.; Long, H.; Shi, L.; Lin, Z. USP27-mediated Cyclin E stabilization drives cell cycle progression and hepatocellular tumorigenesis. Oncogene, 2018, 37(20), 2702-2713.
[http://dx.doi.org/10.1038/s41388-018-0137-z] [PMID: 29497124]
[60]
Gao, R.; Buechel, D.; Kalathur, R.K.R.; Morini, M.F.; Coto-Llerena, M.; Ercan, C.; Piscuoglio, S.; Chen, Q.; Blumer, T.; Wang, X.; Dazert, E.; Heim, M.H.; Hall, M.N.; Tang, F.; Christofori, G. USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis, 2021, 10(7), 52.
[http://dx.doi.org/10.1038/s41389-021-00338-7] [PMID: 34272356]
[61]
Li, X.; Yuan, J.; Song, C.; Lei, Y.; Xu, J.; Zhang, G.; Wang, W.; Song, G. Deubiquitinase USP39 and E3 ligase TRIM26 balance the level of ZEB1 ubiquitination and thereby determine the progression of hepatocellular carcinoma. Cell Death Differ., 2021, 28(8), 2315-2332.
[http://dx.doi.org/10.1038/s41418-021-00754-7] [PMID: 33649471]
[62]
Dong, X.; Liu, Z.; Zhang, E.; Zhang, P.; Wang, Y.; Hang, J.; Li, Q. USP39 promotes tumorigenesis by stabilizing and deubiquitinating SP1 protein in hepatocellular carcinoma. Cell. Signal., 2021, 85, 110068.
[http://dx.doi.org/10.1016/j.cellsig.2021.110068] [PMID: 34197957]
[63]
Liu, Y.; Wu, Q.; Sun, T.; Huang, J.; Han, G.; Han, H. DNAAF5 promotes hepatocellular carcinoma malignant progression by recruiting USP39 to improve PFKL protein stability. Front. Oncol., 2022, 12, 1032579.
[http://dx.doi.org/10.3389/fonc.2022.1032579] [PMID: 36276075]
[64]
Qiu, Y.; Huang, D.; Sheng, Y.; Huang, J.; Li, N.; Zhang, S.; Hong, Z.; Yin, X.; Yan, J. Deubiquitinating enzyme USP46 suppresses the progression of hepatocellular carcinoma by stabilizing MST1. Exp. Cell Res., 2021, 405(1), 112646.
[http://dx.doi.org/10.1016/j.yexcr.2021.112646] [PMID: 34029571]
[65]
Sarkari, F.; La Delfa, A.; Arrowsmith, C.H.; Frappier, L.; Sheng, Y.; Saridakis, V. Further insight into substrate recognition by USP7: Structural and biochemical analysis of the HdmX and Hdm2 interactions with USP7. J. Mol. Biol., 2010, 402(5), 825-837.
[http://dx.doi.org/10.1016/j.jmb.2010.08.017] [PMID: 20713061]
[66]
Tavana, O.; Li, D.; Dai, C.; Lopez, G.; Banerjee, D.; Kon, N.; Chen, C.; Califano, A.; Yamashiro, D.J.; Sun, H.; Gu, W. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat. Med., 2016, 22(10), 1180-1186.
[http://dx.doi.org/10.1038/nm.4180] [PMID: 27618649]
[67]
Song, M.S.; Salmena, L.; Carracedo, A.; Egia, A.; Lo-Coco, F.; Teruya-Feldstein, J.; Pandolfi, P.P. The deubiquitinylation and localization of PTEN are regulated by a HAUSP–PML network. Nature, 2008, 455(7214), 813-817.
[http://dx.doi.org/10.1038/nature07290] [PMID: 18716620]
[68]
van Loosdregt, J.; Fleskens, V.; Fu, J.; Brenkman, A.B.; Bekker, C.P.J.; Pals, C.e.g.M.; Meerding, J.; Berkers, C.R.; Barbi, J.; Gröne, A.; Sijts, A.J.A.M.; Maurice, M.M.; Kalkhoven, E.; Prakken, B.J.; Ovaa, H.; Pan, F.; Zaiss, D.M.W.; Coffer, P.J. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity, 2013, 39(2), 259-271.
[http://dx.doi.org/10.1016/j.immuni.2013.05.018] [PMID: 23973222]
[69]
Zhou, Z.; Yao, X.; Li, S.; Xiong, Y.; Dong, X.; Zhao, Y.; Jiang, J.; Zhang, Q. Deubiquitination of Ci/Gli by Usp7/HAUSP regulates hedgehog signaling. Dev. Cell, 2015, 34(1), 58-72.
[http://dx.doi.org/10.1016/j.devcel.2015.05.016] [PMID: 26120032]
[70]
Gao, Y.; Koppen, A.; Rakhshandehroo, M.; Tasdelen, I.; van de Graaf, S.F.; van Loosdregt, J.; van Beekum, O.; Hamers, N.; van Leenen, D.; Berkers, C.R.; Berger, R.; Holstege, F.C.P.; Coffer, P.J.; Brenkman, A.B.; Ovaa, H.; Kalkhoven, E. Early adipogenesis is regulated through USP7-mediated deubiquitination of the histone acetyltransferase TIP60. Nat. Commun., 2013, 4(1), 2656.
[http://dx.doi.org/10.1038/ncomms3656] [PMID: 24141283]
[71]
Ji, L.; Lu, B.; Zamponi, R.; Charlat, O.; Aversa, R.; Yang, Z.; Sigoillot, F.; Zhu, X.; Hu, T.; Reece-Hoyes, J.S.; Russ, C.; Michaud, G.; Tchorz, J.S.; Jiang, X.; Cong, F. USP7 inhibits Wnt/β-catenin signaling through promoting stabilization of Axin. Nat. Commun., 2019, 10(1), 4184.
[http://dx.doi.org/10.1038/s41467-019-12143-3] [PMID: 31519875]
[72]
Ye, M.; He, J.; Zhang, J.; Liu, B.; Liu, X.; Xie, L.; Wei, M.; Dong, R.; Li, K.; Ma, D.; Dong, K. USP7 promotes hepatoblastoma progression through activation of PI3K/AKT signaling pathway. Cancer Biomark., 2021, 31(2), 107-117.
[http://dx.doi.org/10.3233/CBM-200052] [PMID: 33780361]
[73]
Ren, Y.; Song, Z.; Rieser, J.; Ackermann, J.; Koch, I.; Lv, X.; Ji, T.; Cai, X. USP15 represses hepatocellular carcinoma progression by regulation of pathways of cell proliferation and cell migration: A system biology analysis. Cancers, 2023, 15(5), 1371.
[http://dx.doi.org/10.3390/cancers15051371] [PMID: 36900163]
[74]
Eichhorn, P.J.A.; Rodón, L.; Gonzàlez-Juncà, A.; Dirac, A.; Gili, M.; Martínez-Sáez, E.; Aura, C.; Barba, I.; Peg, V.; Prat, A.; Cuartas, I.; Jimenez, J.; García-Dorado, D.; Sahuquillo, J.; Bernards, R.; Baselga, J.; Seoane, J. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat. Med., 2012, 18(3), 429-435.
[http://dx.doi.org/10.1038/nm.2619] [PMID: 22344298]
[75]
Zou, Q.; Jin, J.; Hu, H.; Li, H.S.; Romano, S.; Xiao, Y.; Nakaya, M.; Zhou, X.; Cheng, X.; Yang, P.; Lozano, G.; Zhu, C.; Watowich, S.S.; Ullrich, S.E.; Sun, S.C. USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nat. Immunol., 2014, 15(6), 562-570.
[http://dx.doi.org/10.1038/ni.2885] [PMID: 24777531]
[76]
Zhang, F.; Zhao, Y.; Sun, Y. USP2 is an SKP2 deubiquitylase that stabilizes both SKP2 and its substrates. J. Biol. Chem., 2021, 297(4), 101109.
[http://dx.doi.org/10.1016/j.jbc.2021.101109] [PMID: 34425107]
[77]
Shen, G.; Lin, Y.; Yang, X.; Zhang, J.; Xu, Z.; Jia, H. MicroRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting USP9X. BMC Cancer, 2014, 14(1), 393.
[http://dx.doi.org/10.1186/1471-2407-14-393] [PMID: 24890815]
[78]
Hu, H.; Tang, C.; Jiang, Q.; Luo, W.; Liu, J.; Wei, X.; Liu, R.; Wu, Z. Reduced ubiquitin-specific protease 9X expression induced by RNA interference inhibits the bioactivity of hepatocellular carcinoma cells. Oncol. Lett., 2015, 10(1), 268-272.
[http://dx.doi.org/10.3892/ol.2015.3152] [PMID: 26171012]
[79]
Yuan, X.; Sun, X.; Shi, X.; Jiang, C.; Yu, D.; Zhang, W.; Guan, W.; Zhou, J.; Wu, Y.; Qiu, Y.; Ding, Y. USP39 promotes the growth of human hepatocellular carcinoma in vitro and in vivo. Oncol. Rep., 2015, 34(2), 823-832.
[http://dx.doi.org/10.3892/or.2015.4065] [PMID: 26081192]
[80]
Yan, C.; Yuan, J.; Xu, J.; Zhang, G.; Li, X.; Zhang, B.; Hu, T.; Huang, X.; Mao, Y.; Song, G. Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT. Med. Oncol., 2019, 36(11), 95.
[http://dx.doi.org/10.1007/s12032-019-1308-7] [PMID: 31637536]
[81]
Liu, C.; Yao, X.; Li, M.; Xi, Y.; Zhao, L. USP39 regulates the cell cycle, survival, and growth of human leukemia cells. Biosci. Rep., 2019, 39(4), BSR20190040.
[http://dx.doi.org/10.1042/BSR20190040] [PMID: 30898977]
[82]
Zhang, Z.; Liu, W.; Bao, X.; Sun, T.; Wang, J.; Li, M.; Liu, C. USP39 facilitates breast cancer cell proliferation through stabilization of FOXM1. Am. J. Cancer Res., 2022, 12(8), 3644-3661.
[PMID: 36119839]
[83]
Dong, L.; Yu, L.; Li, H.; Shi, L.; Luo, Z.; Zhao, H.; Liu, Z.; Yin, G.; Yan, X.; Lin, Z. An NAD+-dependent deacetylase SIRT7 promotes HCC development through deacetylation of USP39. iScience, 2020, 23(8), 101351.
[http://dx.doi.org/10.1016/j.isci.2020.101351] [PMID: 32711345]
[84]
Gao, H.; Yin, J.; Ji, C.; Yu, X.; Xue, J.; Guan, X.; Zhang, S.; Liu, X.; Xing, F. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: From basic research to preclinical application. J. Exp. Clin. Cancer Res., 2023, 42(1), 225.
[http://dx.doi.org/10.1186/s13046-023-02805-y] [PMID: 37658402]
[85]
D’Arcy, P.; Brnjic, S.; Olofsson, M.H.; Fryknäs, M.; Lindsten, K.; De Cesare, M.; Perego, P.; Sadeghi, B.; Hassan, M.; Larsson, R.; Linder, S. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med., 2011, 17(12), 1636-1640.
[http://dx.doi.org/10.1038/nm.2536] [PMID: 22057347]
[86]
Robak, T.; Huang, H.; Jin, J.; Zhu, J.; Liu, T.; Samoilova, O.; Pylypenko, H.; Verhoef, G.; Siritanaratkul, N.; Osmanov, E.; Alexeeva, J.; Pereira, J.; Drach, J.; Mayer, J.; Hong, X.; Okamoto, R.; Pei, L.; Rooney, B.; van de Velde, H.; Cavalli, F. Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. N. Engl. J. Med., 2015, 372(10), 944-953.
[http://dx.doi.org/10.1056/NEJMoa1412096] [PMID: 25738670]
[87]
Scott, K.; Hayden, P.J.; Will, A.; Wheatley, K.; Coyne, I. Bortezomib for the treatment of multiple myeloma. Cochrane Libr., 2016, 2016(4), CD010816.
[http://dx.doi.org/10.1002/14651858.CD010816.pub2] [PMID: 27096326]
[88]
Ma, Y.S.; Wang, X.F.; Yu, F.; Wu, T.M.; Liu, J.B.; Zhang, Y.J.; Xia, Q.; Jiang, Z.Y.; Lin, Q.L.; Fu, D. Inhibition of USP14 and UCH37 deubiquitinating activity by b-AP15 as a potential therapy for tumors with p53 deficiency. Signal Transduct. Target. Ther., 2020, 5(1), 30.
[http://dx.doi.org/10.1038/s41392-020-0143-9] [PMID: 32296042]
[89]
Wang, X.; Mazurkiewicz, M.; Hillert, E.K.; Olofsson, M.H.; Pierrou, S.; Hillertz, P.; Gullbo, J.; Selvaraju, K.; Paulus, A.; Akhtar, S.; Bossler, F.; Khan, A.C.; Linder, S.; D’Arcy, P. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci. Rep., 2016, 6(1), 26979.
[http://dx.doi.org/10.1038/srep26979] [PMID: 27264969]
[90]
Wang, L.; Li, M.; Sha, B.; Hu, X.; Sun, Y.; Zhu, M.; Xu, Y.; Li, P.; Wang, Y.; Guo, Y.; Li, J.; Shi, J.; Li, P.; Hu, T.; Chen, P. Inhibition of deubiquitination by PR-619 induces apoptosis and autophagy via ubi-protein aggregation-activated ER stress in oesophageal squamous cell carcinoma. Cell Prolif., 2021, 54(1), e12919.
[http://dx.doi.org/10.1111/cpr.12919] [PMID: 33129231]
[91]
Chen, J.; Dexheimer, T.S.; Ai, Y.; Liang, Q.; Villamil, M.A.; Inglese, J.; Maloney, D.J.; Jadhav, A.; Simeonov, A.; Zhuang, Z. Selective and cell-active inhibitors of the USP1/ UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem. Biol., 2011, 18(11), 1390-1400.
[http://dx.doi.org/10.1016/j.chembiol.2011.08.014] [PMID: 22118673]
[92]
Turnbull, A.P.; Ioannidis, S.; Krajewski, W.W.; Pinto-Fernandez, A.; Heride, C.; Martin, A.C.L.; Tonkin, L.M.; Townsend, E.C.; Buker, S.M.; Lancia, D.R.; Caravella, J.A.; Toms, A.V.; Charlton, T.M.; Lahdenranta, J.; Wilker, E.; Follows, B.C.; Evans, N.J.; Stead, L.; Alli, C.; Zarayskiy, V.V.; Talbot, A.C.; Buckmelter, A.J.; Wang, M.; McKinnon, C.L.; Saab, F.; McGouran, J.F.; Century, H.; Gersch, M.; Pittman, M.S.; Marshall, C.G.; Raynham, T.M.; Simcox, M.; Stewart, L.M.D.; McLoughlin, S.B.; Escobedo, J.A.; Bair, K.W.; Dinsmore, C.J.; Hammonds, T.R.; Kim, S.; Urbé, S.; Clague, M.J.; Kessler, B.M.; Komander, D. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature, 2017, 550(7677), 481-486.
[http://dx.doi.org/10.1038/nature24451] [PMID: 29045389]
[93]
Kategaya, L.; Di Lello, P.; Rougé, L.; Pastor, R.; Clark, K.R.; Drummond, J.; Kleinheinz, T.; Lin, E.; Upton, J.P.; Prakash, S.; Heideker, J.; McCleland, M.; Ritorto, M.S.; Alessi, D.R.; Trost, M.; Bainbridge, T.W.; Kwok, M.C.M.; Ma, T.P.; Stiffler, Z.; Brasher, B.; Tang, Y.; Jaishankar, P.; Hearn, B.R.; Renslo, A.R.; Arkin, M.R.; Cohen, F.; Yu, K.; Peale, F.; Gnad, F.; Chang, M.T.; Klijn, C.; Blackwood, E.; Martin, S.E.; Forrest, W.F.; Ernst, J.A.; Ndubaku, C.; Wang, X.; Beresini, M.H.; Tsui, V.; Schwerdtfeger, C.; Blake, R.A.; Murray, J.; Maurer, T.; Wertz, I.E. USP7 small- molecule inhibitors interfere with ubiquitin binding. Nature, 2017, 550(7677), 534-538.
[http://dx.doi.org/10.1038/nature24006] [PMID: 29045385]
[94]
Magiera, K.; Tomala, M.; Kubica, K.; De Cesare, V.; Trost, M.; Zieba, B.J.; Kachamakova-Trojanowska, N.; Les, M.; Dubin, G.; Holak, T.A.; Skalniak, L. Lithocholic acid hydroxyamide destabilizes cyclin D1 and Induces G 0 /G 1 arrest by inhibiting deubiquitinase USP2a. Cell Chem. Biol., 2017, 24(4), 458-470.e18.
[http://dx.doi.org/10.1016/j.chembiol.2017.03.002] [PMID: 28343940]
[95]
Davis, M.I.; Pragani, R.; Fox, J.T.; Shen, M.; Parmar, K.; Gaudiano, E.F.; Liu, L.; Tanega, C.; McGee, L.; Hall, M.D.; McKnight, C.; Shinn, P.; Nelson, H.; Chattopadhyay, D.; D’Andrea, A.D.; Auld, D.S.; DeLucas, L.J.; Li, Z.; Boxer, M.B.; Simeonov, A. Small molecule inhibition of the ubiquitin-specific protease usp2 accelerates cyclin d1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J. Biol. Chem., 2016, 291(47), 24628-24640.
[http://dx.doi.org/10.1074/jbc.M116.738567] [PMID: 27681596]
[96]
Mistry, H.; Hsieh, G.; Buhrlage, S.J.; Huang, M.; Park, E.; Cuny, G.D.; Galinsky, I.; Stone, R.M.; Gray, N.S.; D’Andrea, A.D.; Parmar, K. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol. Cancer Ther., 2013, 12(12), 2651-2662.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0103-T] [PMID: 24130053]
[97]
Schauer, N.J.; Liu, X.; Magin, R.S.; Doherty, L.M.; Chan, W.C.; Ficarro, S.B.; Hu, W.; Roberts, R.M.; Iacob, R.E.; Stolte, B.; Giacomelli, A.O.; Perera, S.; McKay, K.; Boswell, S.A.; Weisberg, E.L.; Ray, A.; Chauhan, D.; Dhe-Paganon, S.; Anderson, K.C.; Griffin, J.D.; Li, J.; Hahn, W.C.; Sorger, P.K.; Engen, J.R.; Stegmaier, K.; Marto, J.A.; Buhrlage, S.J. Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Sci. Rep., 2020, 10(1), 5324.
[http://dx.doi.org/10.1038/s41598-020-62076-x] [PMID: 32210275]
[98]
Tang, J.; Long, G.; Hu, K.; Xiao, D.; Liu, S.; Xiao, L.; Zhou, L.; Tao, Y. Targeting USP8 inhibits o-glcnacylation of slc7a11 to promote ferroptosis of hepatocellular carcinoma via stabilization of OGT. Adv. Sci., 2023, 10(33), 2302953.
[http://dx.doi.org/10.1002/advs.202302953] [PMID: 37867237]
[99]
Tanguturi, P.; Kim, K.S.; Ramakrishna, S. The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemother. Pharmacol., 2020, 85(4), 627-639.
[http://dx.doi.org/10.1007/s00280-020-04046-8] [PMID: 32146496]
[100]
Yi, L.; Cui, Y.; Xu, Q.; Jiang, Y. Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol. Rep., 2016, 36(5), 2935-2945.
[http://dx.doi.org/10.3892/or.2016.5099] [PMID: 27632941]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy