Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Human Umbilical Cord Mesenchymal Stem Cells Alleviate Chronic Salpingitis by Modulating Macrophage-Associated Inflammatory Factors

Author(s): Wenjuan Liao, Xiaomao Li* and Xinrang Tang

Volume 19, Issue 11, 2024

Published on: 03 January, 2024

Page: [1442 - 1448] Pages: 7

DOI: 10.2174/011574888X261128231108043931

Price: $65

Abstract

Introduction: Mesenchymal stem cells (MSCs) have been widely studied because of their established anti-inflammatory properties. During chronic salpingitis (CS), infiltrated macrophages have vital roles in inflammation and tissue remodeling.

Methods: We employed the type of MSCs, human umbilical cord (huc) MSCs in an experimental CS model and therapeutic efficacy was assessed. hucMSCs exerted this therapeutic effect by regulating macrophage function. To verify the regulatory effects of hucMSCs on the macrophage, macrophage line RAW264.7 markers were analyzed under LPS stimulation with or without co-culturing with hucMSCs for 12h and 24h. In addition, flow cytometry analysis was applied to reveal the interaction of co-culture. For animal studies, CS was induced by the MoPn strain Chlamydia trachomatis (CT), hucMSCs were intravaginally injected in the CS, and we analyzed the infiltrated macrophage by immunofluorescence.

Results: We found the markers IL-10 was markedly increased and IL-1β, caspase-1 was notably downregulated after co-culturing with hucMSCs by RT-PCR. hucMSCs promote macrophage line RAW264.7 apoptosis. We also found that hucMSCs treatment can alleviate CS by decreasing the mRNA expression of IL-1β, caspase-1 and MCP-1 in the tubal tissue by RT-PCR and decreasing the protein expression of IL-1β, caspase-1 and TGF-β by western blotting.

Conclusion: These results suggest that macrophage function may be related to the immune-modulating characteristics of hucMSCs that contribute to CS.

[1]
Dun, E.C.; Nezhat, C.H. Tubal factor infertility: Diagnosis and management in the era of assisted reproductive technology. Obstet. Gynecol. Clin. North Am., 2012, 39(4), 551-566.
[http://dx.doi.org/10.1016/j.ogc.2012.09.006] [PMID: 23182560]
[2]
Liao, W.; Tang, X.; Li, X.; Li, T. Therapeutic effect of human umbilical cord mesenchymal stem cells on tubal factor infertility using a chronic salpingitis murine model. Arch. Gynecol. Obstet., 2019, 300(2), 421-429.
[http://dx.doi.org/10.1007/s00404-019-05209-6] [PMID: 31190174]
[3]
Li, Z.; Zhang, Z.; Ming, W.; Chen, X.; Xiao, X. Tracing GFP-labeled WJMSCs in vivo using a chronic salpingitis model: an animal experiment. Stem Cell Res. Ther., 2017, 8(1), 272.
[http://dx.doi.org/10.1186/s13287-017-0714-z] [PMID: 29191249]
[4]
Mao, F.; Wu, Y.; Tang, X.; Wang, J.; Pan, Z.; Zhang, P.; Zhang, B.; Yan, Y.; Zhang, X.; Qian, H.; Xu, W. Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease through the regulation of 15-LOX-1 in macrophages. Biotechnol. Lett., 2017, 39(6), 929-938.
[http://dx.doi.org/10.1007/s10529-017-2315-4] [PMID: 28258529]
[5]
Shin, T.H.; Kim, H.S.; Kang, T.W.; Lee, B.C.; Lee, H.Y.; Kim, Y.J.; Shin, J.H.; Seo, Y.; Won Choi, S.; Lee, S.; Shin, K.; Seo, K.W.; Kang, K.S. Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis. Cell Death Dis., 2016, 7(12), e2524-e2524.
[http://dx.doi.org/10.1038/cddis.2016.442] [PMID: 28005072]
[6]
Gu, W.; Song, L.; Li, X.M.; Wang, D.; Guo, X.J.; Xu, W.G. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci. Rep., 2015, 5(1), 8733.
[http://dx.doi.org/10.1038/srep08733] [PMID: 25736434]
[7]
Peng, X; Xu, H; Zhou, Y; Wang, B; Yan, Y; Zhang, X; Wang, M; Gao, S; Zhu, W; Xu, W; Qian, H Human umbilical cord mesenchymal stem cells attenuate cisplatin-induced acute and chronic renal injury. Exp Biol Med, 2013.
[8]
Regmi, S.; Pathak, S.; Kim, J.O.; Yong, C.S.; Jeong, J.H. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur. J. Cell Biol., 2019, 98(5-8), 151041.
[http://dx.doi.org/10.1016/j.ejcb.2019.04.002] [PMID: 31023504]
[9]
Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity, 2010, 32(5), 593-604.
[http://dx.doi.org/10.1016/j.immuni.2010.05.007] [PMID: 20510870]
[10]
Ma, S.; Xie, N.; Li, W.; Yuan, B.; Shi, Y.; Wang, Y. Immunobiology of mesenchymal stem cells. Cell Death Differ., 2014, 21(2), 216-225.
[http://dx.doi.org/10.1038/cdd.2013.158] [PMID: 24185619]
[11]
Ding, D.C.; Chang, Y.H.; Shyu, W.C.; Lin, S.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplant., 2015, 24(3), 339-347.
[http://dx.doi.org/10.3727/096368915X686841] [PMID: 25622293]
[12]
Maggini, J.; Mirkin, G.; Bognanni, I.; Holmberg, J.; Piazzón, I.M.; Nepomnaschy, I.; Costa, H.; Cañones, C.; Raiden, S.; Vermeulen, M.; Geffner, J.R. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One, 2010, 5(2), e9252.
[http://dx.doi.org/10.1371/journal.pone.0009252] [PMID: 20169081]
[13]
Choulaki, C.; Papadaki, G.; Repa, A.; Kampouraki, E.; Kambas, K.; Ritis, K.; Bertsias, G.; Boumpas, D.T.; Sidiropoulos, P. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res. Ther., 2015, 17(1), 257.
[http://dx.doi.org/10.1186/s13075-015-0775-2] [PMID: 26385789]
[14]
Mathews, R.J.; Robinson, J.I.; Battellino, M.; Wong, C.; Taylor, J.C.; Eyre, S.; Churchman, S.M.; Wilson, A.G.; Isaacs, J.D.; Hyrich, K.; Barton, A.; Plant, D.; Savic, S.; Cook, G.P.; Sarzi-Puttini, P.; Emery, P.; Barrett, J.H.; Morgan, A.W.; McDermott, M.F. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann. Rheum. Dis., 2014, 73(6), 1202-1210.
[http://dx.doi.org/10.1136/annrheumdis-2013-203276] [PMID: 23687262]
[15]
Gross, O.; Thomas, C.J.; Guarda, G.; Tschopp, J. The inflammasome: An integrated view. Immunol. Rev., 2011, 243(1), 136-151.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01046.x] [PMID: 21884173]
[16]
Kean, T.J.; Lin, P.; Caplan, A.I.; Dennis, J.E. MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/732742] [PMID: 24000286]
[17]
Guan, X.J.; Song, L.; Han, F.F.; Cui, Z.L.; Chen, X.; Guo, X.J.; Xu, W.G. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J. Cell. Biochem., 2013, 114(2), 323-335.
[http://dx.doi.org/10.1002/jcb.24377] [PMID: 22949406]
[18]
Ito, H. Chemokines in mesenchymal stem cell therapy for bone repair: A novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod. Rheumatol., 2011, 21(2), 113-121.
[http://dx.doi.org/10.3109/s10165-010-0357-8] [PMID: 20830500]
[19]
Oh, J.Y.; Ko, J.H.; Lee, H.J.; Yu, J.M.; Choi, H.; Kim, M.K.; Wee, W.R.; Prockop, D.J. Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species. Stem Cells, 2014, 32(6), 1553-1563.
[http://dx.doi.org/10.1002/stem.1608] [PMID: 24307525]
[20]
Prockop, D.J.; Youn Oh, J. Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Mol. Ther., 2012, 20(1), 14-20.
[http://dx.doi.org/10.1038/mt.2011.211] [PMID: 22008910]
[21]
Cofano, F.; Boido, M.; Monticelli, M.; Zenga, F.; Ducati, A.; Vercelli, A.; Garbossa, D. Mesenchymal stem cells for spinal cord injury: Current options, limitations, and future of cell therapy. Int. J. Mol. Sci., 2019, 20(11), 2698.
[http://dx.doi.org/10.3390/ijms20112698] [PMID: 31159345]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy