Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Identification of Crosstalk Genes Between Lung Adenocarcinoma and Periodontitis

In Press, (this is not the final "Version of Record"). Available online 03 January, 2024
Author(s): Pengcheng Wang, Hui Yu, Xiaoli Gao, Ziyi Guo, Zheng Zhang* and Zuomin Wang*
Published on: 03 January, 2024

DOI: 10.2174/0109298673273414231101082153

Price: $95

Abstract

Background: Lung adenocarcinoma (LUAD) represents a significant global health issue. Smoking contributes to the development of periodontitis and LUAD. The connections between the two are still ambiguous.

Methods: Based on RNA expression data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, differentially expressed genes (DEGs) in Periodontitis and LUAD were collected. Protein-protein interaction (PPI) networks were produced by mining genes intersecting with crossover DEGs. Genes in the subnetwork and the top 15 genes of the topology score were defined as the crosstalk gene. Feature selection and diagnostic model construction were conducted based on Recursive Feature Elimination (RFE) and support vector machines (SVM). additionally, we analyzed the immune cells and signaling pathways influenced by the crosstalk gene.

Results: A total of 29 crossover DEGs between Periodontitis and LUAD were filtered, with 20 genes interacting with them in the PPI network. Five subnetworks with similar interaction patterns in the PPI network were detected. Based on the network topology analysis, genes ranking in the top 15 were used to take the intersection with those genes in the 5 subnetworks. Twelve intersecting genes were identified. Based on RFE and SVM algorithms, FKBP11 and MMP13 were considered as the Crosstalk genes for both Periodontitis and LUAD. The diagnostic model composed of FKBP11 and MMP13 showed excellent diagnostic potential. In addition, we found that FKBP11 and MMP13 influenced Macrophages, M1, T cells, CD8 activity, immune-related pathways, and cell cycle pathways.

Conclusion: We identified the crosstalk genes (FKBP11 and MMP13) between periodontitis and LUAD. The two genes affected the comorbidity status between the two diseases through immune cell activity.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Chen, Y.; Wu, H.; Jiao, A.; Tong, J.; Zhu, J.; Zhang, M.; Li, Z.; Li, P. Chinese herbal prescription QYSL prevents progression of lung cancer by targeting tumor microenvironment. Oncologie, 2022, 24(2), 295-307.
[http://dx.doi.org/10.32604/oncologie.2022.022116]
[3]
Wang, H.; Fang, J.; Wang, Y.; Li, S.; Wang, Z.; He, W.; Wang, N.; Luo, S.; Zou, H.; Zhang, F. Gene editing in non-small cell lung cancer: Current application and future perspective. Oncologie, 2022, 24(1), 65-83.
[http://dx.doi.org/10.32604/oncologie.2022.021863]
[4]
Liu, J.; Gu, M.; Xue, Y.; Wang, Q.; Ren, Y.; Huang, W. Clinical significance of PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in patients with cavitary lung adenocarcinoma. Oncologie, 2021, 23(3), 439-452.
[http://dx.doi.org/10.32604/oncologie.2021.017220]
[5]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[6]
Kwon, T.; Lamster, I.B.; Levin, L. Current concepts in the management of periodontitis. Int. Dent. J., 2021, 71(6), 462-476.
[http://dx.doi.org/10.1111/idj.12630] [PMID: 34839889]
[7]
Ray, R.R. Periodontitis: An oral disease with severe consequences. Appl. Biochem. Biotechnol., 2023, 195(1), 17-32.
[http://dx.doi.org/10.1007/s12010-022-04127-9] [PMID: 36098930]
[8]
Pai, S.I.; Matheus, H.R.; Guastaldi, F.P.S. Effects of periodontitis on cancer outcomes in the era of immunotherapy. Lancet Healthy Longev., 2023, 4(4), e166-e175.
[http://dx.doi.org/10.1016/S2666-7568(23)00021-1] [PMID: 37003275]
[9]
Figueira, E.A.; de Rezende, M.L.R.; Torres, S.A.; Garlet, G.P.; Lara, V.S.; Santos, C.F.; Avila-Campos, M.J.; da Silva, J.S.; Campanelli, A.P. Inhibitory signals mediated by programmed death-1 are involved with T-cell function in chronic periodontitis. J. Periodontol., 2009, 80(11), 1833-1844.
[http://dx.doi.org/10.1902/jop.2009.090057] [PMID: 19905953]
[10]
Dai, Z.; Zhang, J.; Wu, Q.; Fang, H.; Shi, C.; Li, Z.; Lin, C.; Tang, D.; Wang, D. Intestinal microbiota: A new force in cancer immunotherapy. Cell Commun. Signal., 2020, 18(1), 90.
[http://dx.doi.org/10.1186/s12964-020-00599-6] [PMID: 32522267]
[11]
Schuller, H.M. The impact of smoking and the influence of other factors on lung cancer. Expert Rev. Respir. Med., 2019, 13(8), 761-769.
[http://dx.doi.org/10.1080/17476348.2019.1645010] [PMID: 31311354]
[12]
Siasos, G.; Tsigkou, V.; Kokkou, E.; Oikonomou, E.; Vavuranakis, M.; Vlachopoulos, C.; Verveniotis, A.; Limperi, M.; Genimata, V.; Papavassiliou, A.; Stefanadis, C.; Tousoulis, D. Smoking and atherosclerosis: Mechanisms of disease and new therapeutic approaches. Curr. Med. Chem., 2014, 21(34), 3936-3948.
[http://dx.doi.org/10.2174/092986732134141015161539] [PMID: 25174928]
[13]
Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; Li, S.; Song, X. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 2022, 1(3), e36.
[http://dx.doi.org/10.1002/imt2.36]
[14]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[15]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[16]
Yu, G.; Wang, L.G.; Yan, G.R.; He, Q.Y. DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics, 2015, 31(4), 608-609.
[http://dx.doi.org/10.1093/bioinformatics/btu684] [PMID: 25677125]
[17]
Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res., 2018, 46(W1), W60-W64.
[http://dx.doi.org/10.1093/nar/gky311] [PMID: 29912392]
[18]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[19]
Kuhn, M. The caret package; R Foundation for Statistical Computing: Vienna, Austria, 2012.
[20]
Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259.
[http://dx.doi.org/10.1007/978-1-4939-7493-1_12] [PMID: 29344893]
[21]
Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112.
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
[22]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[23]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[24]
Wang, X.; Jia, Y.; Wen, L.; Mu, W.; Wu, X.; Liu, T.; Liu, X.; Fang, J.; Luan, Y.; Chen, P.; Gao, J.; Nguyen, K.A.; Cui, J.; Zeng, G.; Lan, P.; Chen, Q.; Cheng, B.; Wang, Z. Porphyromonas gingivalis promotes colorectal carcinoma by activating the hematopoietic NLRP3 inflammasome. Cancer Res., 2021, 81(10), 2745-2759.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3827] [PMID: 34003774]
[25]
Sung, C.E.; Lin, F.G.; Huang, R.Y.; Fang, W.H.; Cheng, W.C.; Tsai, Y.W.C.; Chen, W.L. Periodontitis, Helicobacter pylori infection, and gastrointestinal tract cancer mortality. J. Clin. Periodontol., 2022, 49(3), 210-220.
[http://dx.doi.org/10.1111/jcpe.13590] [PMID: 34961943]
[26]
Kavarthapu, A.; Gurumoorthy, K. Linking chronic periodontitis and oral cancer: A review. Oral Oncol., 2021, 121, 105375.
[http://dx.doi.org/10.1016/j.oraloncology.2021.105375] [PMID: 34140233]
[27]
Gao, X.; Jiang, C.; Yao, S.; Ma, L.; Wang, X.; Cao, Z. Identification of hub genes related to immune cell infiltration in periodontitis using integrated bioinformatic analysis. J. Periodontal Res., 2022, 57(2), 392-401.
[http://dx.doi.org/10.1111/jre.12970] [PMID: 34993975]
[28]
Wang, C.C.; Shen, W.J.; Anuraga, G.; Hsieh, Y.H.; Khoa Ta, H.; Xuan, D.; Shen, C.F.; Wang, C.Y.; Wang, W.J. Penetrating exploration of prognostic correlations of the FKBP gene family with lung adenocarcinoma. J. Pers. Med., 2022, 13(1), 49.
[http://dx.doi.org/10.3390/jpm13010049] [PMID: 36675710]
[29]
Zhang, X.; Deng, Q.; Wan, X.; Zhao, J.; Zheng, X.; Wang, H.; Wang, H.Q.; Yang, W. Pan-cancer analysis reveals the associations between MMP13 high expression and carcinogenesis and its value as a serum diagnostic marker. Aging, 2023, 15(6), 2115-2135.
[http://dx.doi.org/10.18632/aging.204599] [PMID: 37000142]
[30]
Shih, D.J.H.; Nayyar, N.; Bihun, I.; Dagogo-Jack, I.; Gill, C.M.; Aquilanti, E.; Bertalan, M.; Kaplan, A.; D’Andrea, M.R.; Chukwueke, U.; Ippen, F.M.; Alvarez-Breckenridge, C.; Camarda, N.D.; Lastrapes, M.; McCabe, D.; Kuter, B.; Kaufman, B.; Strickland, M.R.; Martinez-Gutierrez, J.C.; Nagabhushan, D.; De Sauvage, M.; White, M.D.; Castro, B.A.; Hoang, K.; Kaneb, A.; Batchelor, E.D.; Paek, S.H.; Park, S.H.; Martinez-Lage, M.; Berghoff, A.S.; Merrill, P.; Gerstner, E.R.; Batchelor, T.T.; Frosch, M.P.; Frazier, R.P.; Borger, D.R.; Iafrate, A.J.; Johnson, B.E.; Santagata, S.; Preusser, M.; Cahill, D.P.; Carter, S.L.; Brastianos, P.K. Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nat. Genet., 2020, 52(4), 371-377.
[http://dx.doi.org/10.1038/s41588-020-0592-7] [PMID: 32203465]
[31]
Chen, X.; Lei, H.; Cheng, Y.; Fang, S.; Sun, W.; Zhang, X.; Jin, Z. CXCL8, MMP12, and MMP13 are common biomarkers of periodontitis and oral squamous cell carcinoma. Oral Dis., 2022, odi.14419.
[http://dx.doi.org/10.1111/odi.14419] [PMID: 36321868]
[32]
Lam, R.S.; O’Brien-Simpson, N.M.; Lenzo, J.C.; Holden, J.A.; Brammar, G.C.; Walsh, K.A.; McNaughtan, J.E.; Rowler, D.K.; Van Rooijen, N.; Reynolds, E.C. Macrophage depletion abates Porphyromonas gingivalis-induced alveolar bone resorption in mice. J. Immunol., 2014, 193(5), 2349-2362.
[http://dx.doi.org/10.4049/jimmunol.1400853] [PMID: 25070844]
[33]
Wang, T.; He, X.; Liu, X.; Liu, Y.; Zhang, W.; Huang, Q.; Liu, W.; Xiong, L.; Tan, R.; Wang, H.; Zeng, H. Weighted gene co-expression network analysis identifies FKBP11 as a key regulator in acute aortic dissection through a NF-kb dependent pathway. Front. Physiol., 2017, 8, 1010.
[http://dx.doi.org/10.3389/fphys.2017.01010] [PMID: 29255427]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy