Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Therapeutic Potential of Capsaicin in Various Neurodegenerative Diseases with Special Focus on Nrf2 Signaling

Author(s): Vibhav Varshney*, Abhishek Kumar, Vikas Parashar, Ankit Kumar, Ahsas Goyal and Debapriya Garabadu

Volume 25, Issue 13, 2024

Published on: 01 January, 2024

Page: [1693 - 1707] Pages: 15

DOI: 10.2174/0113892010277933231122111244

Price: $65

Abstract

Neurodegenerative disease is mainly characterized by the accumulation of misfolded proteins, contributing to mitochondrial impairments, increased production of proinflammatory cytokines and reactive oxygen species, and neuroinflammation resulting in synaptic loss and neuronal loss. These pathophysiological factors are a serious concern in the treatment of neurodegenerative diseases. Based on the symptoms of various neurodegenerative diseases, different treatments are available, but they have serious side effects and fail in clinical trials, too. Therefore, treatments for neurodegenerative diseases are still a challenge at present. Thus, it is important to study an alternative option. Capsaicin is a naturally occurring alkaloid found in capsicum. Besides the TRPV1 receptor activator in nociception, capsaicin showed a protective effect in brain-related disorders. Capsaicin also reduces the aggregation of misfolded proteins, improves mitochondrial function, and decreases ROS generation. Its antioxidant role is due to increased expression of an nrf2-mediated signaling pathway. Nrf2 is a nuclear erythroid 2-related factor, a transcription factor, which has a crucial role in maintaining the normal function of mitochondria and the cellular defense system against oxidative stress. Intriguingly, Nrf2 mediated pathway improved the upregulation of antioxidant genes and inhibition of microglial-induced inflammation, improved mitochondrial resilience and functions, leading to decreased ROS in neurodegenerative conditions, suggesting that Nrf2 activation could be a better therapeutic approach to target pathophysiology of neurodegenerative disease. Therefore, the present review has evaluated the potential role of capsaicin as a pharmacological agent for the treatment and management of various neurodegenerative diseases via the Nrf2-mediated signaling pathway.

Graphical Abstract

[1]
Mishra, A.; Mishra, P.S.; Bandopadhyay, R.; Khurana, N.; Angelopoulou, E.; Paudel, Y.N.; Piperi, C. Neuroprotective potential of chrysin: Mechanistic insights and therapeutic potential for neurological disorders. Molecules, 2021, 26(21), 6456.
[http://dx.doi.org/10.3390/molecules26216456] [PMID: 34770864]
[2]
Armstrong, R. What causes neurodegenerative disease? Folia Neuropathol., 2020, 58(2), 93-112.
[http://dx.doi.org/10.5114/fn.2020.96707] [PMID: 32729289]
[3]
Liu, Y.; Yu, C.; Zhang, X. Impaired long distance functional connectivity and weighted network architecture in Alzheimer’s disease. Cereb. Cortex, 2014, 24(6), 1422-1435.
[http://dx.doi.org/10.1093/cercor/bhs410]
[4]
Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415.
[http://dx.doi.org/10.1111/jfbc.14415] [PMID: 36106706]
[5]
Prusiner, S.B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet., 2013, 47(1), 601-623.
[http://dx.doi.org/10.1146/annurev-genet-110711-155524] [PMID: 24274755]
[6]
Walker, L.C.; Jucker, M. Neurodegenerative diseases: expanding the prion concept. Annu. Rev. Neurosci., 2015, 38(1), 87-103.
[http://dx.doi.org/10.1146/annurev-neuro-071714-033828] [PMID: 25840008]
[7]
Watts, J.C.; Giles, K.; Oehler, A.; Middleton, L.; Dexter, D.T.; Gentleman, S.M.; DeArmond, S.J.; Prusiner, S.B. Transmission of multiple system atrophy prions to transgenic mice. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19555-19560.
[http://dx.doi.org/10.1073/pnas.1318268110] [PMID: 24218576]
[8]
Cova, I.; Markova, A.; Campini, I.; Grande, G.; Mariani, C.; Pomati, S. Worldwide trends in the prevalence of dementia. J. Neurol. Sci., 2017, 379, 259-260.
[http://dx.doi.org/10.1016/j.jns.2017.06.030] [PMID: 28716255]
[9]
Das, S.K.; Ray, B.K.; Paul, N.; Hazra, A.; Das, S.; Ghosal, M.K.; Misra, A.K.; Banerjee, T.K.; Chaudhuri, A. Prevalence, burden, and risk factors of migraine: A community-based study from Eastern India. Neurol. India, 2017, 65(6), 1280-1288.
[http://dx.doi.org/10.4103/0028-3886.217979] [PMID: 29133701]
[10]
Bala, A.; Gupta, B.M. Parkinson′s disease in India: An analysis of publications output during 2002-2011. Int. J. Nutr. Pharmacol. Neurol. Dis., 2013, 3(3), 254.
[http://dx.doi.org/10.4103/2231-0738.114849]
[11]
Pandit, L.; Kundapur, R. Prevalence and patterns of demyelinating central nervous system disorders in urban Mangalore, South India. Mult. Scler., 2014, 20(12), 1651-1653.
[http://dx.doi.org/10.1177/1352458514521503] [PMID: 24493471]
[12]
Jellinger, K.A. Basic mechanisms of neurodegeneration: A critical update. J. Cell. Mol. Med., 2010, 14(3), 457-487.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01010.x] [PMID: 20070435]
[13]
Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci., 2022, 23(3), 1851.
[http://dx.doi.org/10.3390/ijms23031851] [PMID: 35163773]
[14]
Obermeier, B.; Daneman, R.; Ransohoff, R.M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med., 2013, 19(12), 1584-1596.
[http://dx.doi.org/10.1038/nm.3407] [PMID: 24309662]
[15]
Mishra, A.; Bandopadhyay, R.; Singh, P.K.; Mishra, P.S.; Sharma, N.; Khurana, N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab. Brain Dis., 2021, 36(7), 1591-1626.
[http://dx.doi.org/10.1007/s11011-021-00806-4] [PMID: 34387831]
[16]
Vasconcelos, A.R.; dos Santos, N.B.; Scavone, C.; Munhoz, C.D. Nrf2/ARE pathway modulation by dietary energy regulation in neurological disorders. Front. Pharmacol., 2019, 10, 33.
[http://dx.doi.org/10.3389/fphar.2019.00033] [PMID: 30778297]
[17]
Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[18]
Moratilla-Rivera, I.; Sánchez, M.; Valdés-González, J.A.; Gómez-Serranillos, M.P. Natural products as modulators of Nrf2 signaling pathway in neuroprotection. Int. J. Mol. Sci., 2023, 24(4), 3748.
[http://dx.doi.org/10.3390/ijms24043748] [PMID: 36835155]
[19]
Saha, S.; Buttari, B.; Profumo, E.; Tucci, P.; Saso, L. A perspective on nrf2 signaling pathway for neuroinflammation: A potential therapeutic target in Alzheimer’s and Parkinson’s diseases. Front. Cell. Neurosci., 2022, 15, 787258.
[http://dx.doi.org/10.3389/fncel.2021.787258] [PMID: 35126058]
[20]
Dexter, D.T.; Carter, C.J.; Wells, F.R.; Javoy-Agid, F.; Agid, Y.; Lees, A.; Jenner, P.; Marsden, C.D. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem., 1989, 52(2), 381-389.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb09133.x] [PMID: 2911023]
[21]
Pedersen, W.A.; Fu, W.; Keller, J.N.; Markesbery, W.R.; Appel, S.; Smith, R.G.; Kasarskis, E.; Mattson, M.P. Protein modification by the lipid peroxidation product 4‐hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol., 1998, 44(5), 819-824.
[http://dx.doi.org/10.1002/ana.410440518] [PMID: 9818940]
[22]
Selley, M.; Close, D.R.; Stern, S.E. The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol. Aging, 2002, 23(3), 383-388.
[http://dx.doi.org/10.1016/S0197-4580(01)00327-X] [PMID: 11959400]
[23]
Arlt, S.; Beisiegel, U.; Kontush, A. Lipid peroxidation in neurodegeneration: New insights into Alzheimerʼs disease. Curr. Opin. Lipidol., 2002, 13(3), 289-294.
[http://dx.doi.org/10.1097/00041433-200206000-00009] [PMID: 12045399]
[24]
Sayre, L.; Smith, M.; Perry, G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem., 2001, 8(7), 721-738.
[http://dx.doi.org/10.2174/0929867013372922] [PMID: 11375746]
[25]
Rauf, A.; Badoni, H.; Abu-Izneid, T.; Olatunde, A.; Rahman, M.M.; Painuli, S.; Semwal, P.; Wilairatana, P.; Mubarak, M.S. Neuroinflammatory markers: Key indicators in the pathology of neurodegenerative diseases. Molecules, 2022, 27(10), 3194.
[http://dx.doi.org/10.3390/molecules27103194] [PMID: 35630670]
[26]
Dadhania, V.P.; Trivedi, P.P.; Vikram, A.; Tripathi, D.N. Nutraceuticals against neurodegeneration: A mechanistic insight. Curr. Neuropharmacol., 2016, 14(6), 627-640.
[http://dx.doi.org/10.2174/1570159X14666160104142223] [PMID: 26725888]
[27]
Selvi, S.; Polat, R.; Çakilcioğlu, U.; Celep, F.; Dirmenci, T.; Ertuğ, Z.F. An ethnobotanical review on medicinal plants of the Lamiaceae family in Turkey. Turk. J. Bot., 2022, 46(4)
[http://dx.doi.org/10.55730/1300-008X.2712]
[28]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[29]
Mattson, M.P.; Son, T.G.; Camandola, S. Viewpoint: Mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response, 2007, 5(3), 174-186.
[http://dx.doi.org/10.2203/dose-response.07-004.Mattson] [PMID: 18648607]
[30]
Gezer, C. Stress response of dietary phytochemicals in a hormetic manner for health and longevity; Gene expression and regulation in mammalian cells - transcription toward the establishment of novel therapeutics. Gene expression and regulation in mammalian cells - transcription toward the establishment of novel therapeutics, 2018.
[http://dx.doi.org/10.5772/intechopen.71867]
[31]
Mattson, M.P.; Cheng, A. Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci., 2006, 29(11), 632-639.
[32]
Koppula, S.; Kumar, H.; More, S.V.; Lim, H.W.; Hong, S.M.; Choi, D.K. Recent updates in redox regulation and free radical scavenging effects by herbal products in experimental models of Parkinson’s disease. Molecules, 2012, 17(10), 11391-11420.
[http://dx.doi.org/10.3390/molecules171011391] [PMID: 23014498]
[33]
Van Kampen, J.M.; Baranowski, D.B.; Shaw, C.A.; Kay, D.G. Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease. Exp. Gerontol., 2014, 50(1), 95-105.
[http://dx.doi.org/10.1016/j.exger.2013.11.012] [PMID: 24316034]
[34]
Ríos, J.L.; Onteniente, M.; Picazo, D.; Montesinos, M.C. Medicinal plants and natural products as potential sources for antiparkinson drugs. Planta Med., 2016, 82(11/12), 942-951.
[http://dx.doi.org/10.1055/s-0042-107081] [PMID: 27224274]
[35]
Bi, Y.; Qu, P.C.; Wang, Q.S.; Zheng, L.; Liu, H.L.; Luo, R.; Chen, X.Q.; Ba, Y.Y.; Wu, X.; Yang, H. Neuroprotective effects of alkaloids from Piper longum in a MPTP-induced mouse model of Parkinson’s disease. Pharm. Biol., 2015, 53(10), 1516-1524.
[http://dx.doi.org/10.3109/13880209.2014.991835] [PMID: 25857256]
[36]
Sun, Y.; Yang, T.; Leak, R.K.; Chen, J.; Zhang, F. Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS Neurol. Disord. Drug Targets, 2017, 16(3), 326-338.
[http://dx.doi.org/10.2174/1871527316666170102120211] [PMID: 28042770]
[37]
Jadeja, R.N.; Upadhyay, K.K.; Devkar, R.V.; Khurana, S. Naturally occurring Nrf2 activators: Potential in treatment of liver injury. Oxid Med Cell Longev., 2016.
[38]
Balos, M.M. Determination of weeds and their floristic investigation in vineyards in some districts of Şanlıurfa. Int J Nat Lif Sci, 2023, 7(2), 1-17.
[39]
Çakılcıoğlu, U.; Türkoğlu, I. Plants used for hemorrhoid treatment in elaziǧ central district. Acta Hortic., 2009, 826(826), 89-96.
[http://dx.doi.org/10.17660/ActaHortic.2009.826.11]
[40]
Babbar, S.; Marier, J.F.; Mouksassi, M.S.; Beliveau, M.; Vanhove, G.F.; Chanda, S.; Bley, K. Pharmacokinetic analysis of capsaicin after topical administration of a high-concentration capsaicin patch to patients with peripheral neuropathic pain. Ther. Drug Monit., 2009, 31(4), 502-510.
[http://dx.doi.org/10.1097/FTD.0b013e3181a8b200] [PMID: 19494795]
[41]
Suresh, D.; Srinivasan, K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res., 2010, 131, 682-691.
[PMID: 20516541]
[42]
Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control. Release, 2014, 196, 96-105.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.027] [PMID: 25307998]
[43]
Chittepu, VCSR; Kalhotra, P Revilla, GIO Emerging Technologies to Improve Capsaicin Delivery and its Therapeutic Efficacy. Capsaicin and its Human Therapeutic Development InTech, 2018.
[http://dx.doi.org/10.5772/intechopen.77080]
[44]
Ran, F.; Yang, Y.; Yang, L. Capsaicin prevents contrast-associated acute kidney injury through activation of Nrf2 in mice. Oxid. Med. Cell. Longev., 2022, 2022, 1763922.
[http://dx.doi.org/10.1155/2022/1763922]
[45]
Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci., 2014, 39(4), 199-218.
[http://dx.doi.org/10.1016/j.tibs.2014.02.002] [PMID: 24647116]
[46]
Joung, E.J.; Li, M.H.; Lee, H.G. Capsaicin induces heme oxygenase-1 expression in HepG2 cells via activation of PI3K-Nrf2 signaling: NAD(P)H:quinone oxidoreductase as a potential target. Antioxid. Redox Signal., 2007, 9(12), 2087-2098.
[47]
Lv, Z.; Xu, X.; Sun, Z.; Yang, Y.X.; Guo, H.; Li, J.; Sun, K.; Wu, R.; Xu, J.; Jiang, Q.; Ikegawa, S.; Shi, D. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2 signaling pathway. Cell Death Dis., 2021, 12(6), 504.
[http://dx.doi.org/10.1038/s41419-021-03792-8] [PMID: 34006826]
[48]
Kwon, Y. Estimation of dietary capsaicinoid exposure in korea and assessment of its health effects. Nutrients, 2021, 13(7), 2461.
[http://dx.doi.org/10.3390/nu13072461] [PMID: 34371974]
[49]
Díaz-Laviada, I.; Rodríguez-Henche, N. The potential antitumor effects of capsaicin. Prog. Drug Res., 2014, 68, 181-208.
[http://dx.doi.org/10.1007/978-3-0348-0828-6_8] [PMID: 24941670]
[50]
Pasierski, M.; Szulczyk, B. Capsaicin inhibits sodium currents and epileptiform activity in prefrontal cortex pyramidal neurons. Neurochem. Int., 2020, 135, 104709.
[http://dx.doi.org/10.1016/j.neuint.2020.104709] [PMID: 32105721]
[51]
Onizuka, S.; Yonaha, T.; Tamura, R.; Hosokawa, N.; Kawasaki, Y.; Kashiwada, M.; Shirasaka, T.; Tsuneyoshi, I. Capsaicin indirectly suppresses voltage-gated Na+ currents through TRPV1 in rat dorsal root ganglion neurons. Anesth. Analg., 2011, 112(3), 703-709.
[http://dx.doi.org/10.1213/ANE.0b013e318204ea5b] [PMID: 21156986]
[52]
Anand, P.; Bley, K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth., 2011, 107(4), 490-502.
[http://dx.doi.org/10.1093/bja/aer260] [PMID: 21852280]
[53]
McCarty, M.F.; DiNicolantonio, J.J.; O’Keefe, J.H. Capsaicin may have important potential for promoting vascular and metabolic health: Table 1. Open Heart, 2015, 2(1), e000262.
[http://dx.doi.org/10.1136/openhrt-2015-000262] [PMID: 26113985]
[54]
Xu, X.; Wang, P.; Zhao, Z.; Cao, T.; He, H.; Luo, Z.; Zhong, J.; Gao, F.; Zhu, Z.; Li, L.; Yan, Z.; Chen, J.; Ni, Y.; Liu, D.; Zhu, Z. Activation of transient receptor potential vanilloid 1 by dietary capsaicin delays the onset of stroke in stroke-prone spontaneously hypertensive rats. Stroke, 2011, 42(11), 3245-3251.
[http://dx.doi.org/10.1161/STROKEAHA.111.618306] [PMID: 21852608]
[55]
Liu, L.; Oortgiesen, M.; Li, L.; Simon, S.A. Capsaicin inhibits activation of voltage-gated sodium currents in capsaicin-sensitive trigeminal ganglion neurons. J. Neurophysiol., 2001, 85(2), 745-758.
[http://dx.doi.org/10.1152/jn.2001.85.2.745] [PMID: 11160509]
[56]
Wang, C.; Huang, W.; Lu, J.; Chen, H.; Yu, Z. TRPV1-mediated microglial autophagy attenuates alzheimer’s disease-associated pathology and cognitive decline. Front. Pharmacol., 2022, 12, 763866.
[http://dx.doi.org/10.3389/fphar.2021.763866] [PMID: 35115924]
[57]
Baek, J.; Jeong, J.; Kim, K.; Won, S.Y.; Chung, Y.; Nam, J.; Cho, E.; Ahn, T.B.; Bok, E.; Shin, W.H.; Jin, B. Inhibition of microglia-derived oxidative stress by ciliary neurotrophic factor protects dopamine neurons in vivo from MPP+ neurotoxicity. Int. J. Mol. Sci., 2018, 19(11), 3543.
[http://dx.doi.org/10.3390/ijms19113543] [PMID: 30423807]
[58]
Jittiwat, J.; Suksamrarn, A.; Tocharus, C.; Tocharus, J. Dihydrocapsaicin effectively mitigates cerebral ischemia-induced pathological changes in vivo, partly via antioxidant and anti-apoptotic pathways. Life Sci., 2021, 283, 119842.
[http://dx.doi.org/10.1016/j.lfs.2021.119842] [PMID: 34298038]
[59]
Xia, J.; Gu, L.; Guo, Y.; Feng, H.; Chen, S.; Jurat, J.; Fu, W.; Zhang, D. Gut microbiota mediates the preventive effects of dietary capsaicin against depression-like behavior induced by lipopolysaccharide in mice. Front. Cell. Infect. Microbiol., 2021, 11, 627608.
[http://dx.doi.org/10.3389/fcimb.2021.627608] [PMID: 33987106]
[60]
Wang, J.; Sun, B.L.; Xiang, Y.; Tian, D.Y.; Zhu, C.; Li, W.W.; Liu, Y.H.; Bu, X.L.; Shen, L.L.; Jin, W.S.; Wang, Z.; Zeng, G.H.; Xu, W.; Chen, L.Y.; Chen, X.W.; Hu, Z.; Zhu, Z.M.; Song, W.; Zhou, H.D.; Yu, J.T.; Wang, Y.J. Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice. Transl. Psychiatry, 2020, 10(1), 230.
[http://dx.doi.org/10.1038/s41398-020-00918-y] [PMID: 32661266]
[61]
Du, Y.; Fu, M.; Huang, Z.; Tian, X.; Li, J.; Pang, Y.; Song, W.; Tian Wang, Y. Dong, Z. TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer’s disease. Aging Cell, 2020, 19(3), e13113.
[http://dx.doi.org/10.1111/acel.13113] [PMID: 32061032]
[62]
Chung, Y.C.; Baek, J.Y.; Kim, S.R.; Ko, H.W.; Bok, E.; Shin, W.H.; Won, S.Y.; Jin, B.K. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease. Exp. Mol. Med., 2017, 49(3), e298.
[http://dx.doi.org/10.1038/emm.2016.159] [PMID: 28255166]
[63]
Zhao, Z.; Wang, J.; Wang, L.; Yao, X.; Liu, Y.; Li, Y.; Chen, S.; Yue, T.; Wang, X.; Yu, W.; Liu, Y. Capsaicin protects against oxidative insults and alleviates behavioral deficits in rats with 6-OHDA-Induced Parkinson’s Disease via activation of TRPV1. Neurochem. Res., 2017, 42(12), 3431-3438.
[http://dx.doi.org/10.1007/s11064-017-2388-4] [PMID: 28861768]
[64]
Liu, J.; Liu, H.; Zhao, Z.; Wang, J.; Guo, D.; Liu, Y. Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinson’s disease. Biosci. Rep., 2020, 40(6), BSR20191796.
[http://dx.doi.org/10.1042/BSR20191796] [PMID: 32537633]
[65]
Bok, E.; Chung, Y.C.; Kim, K.S.; Baik, H.H.; Shin, W.H.; Jin, B.K. Modulation of M1/M2 polarization by capsaicin contributes to the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo. Exp. Mol. Med., 2018, 50(7), 1-14.
[http://dx.doi.org/10.1038/s12276-018-0111-4] [PMID: 29968707]
[66]
Ouyang, M.; Zhang, Q.; Shu, J.; Wang, Z.; Fan, J.; Yu, K.; Lei, L.; Li, Y.; Wang, Q. Capsaicin ameliorates the loosening of mitochondria-associated endoplasmic reticulum membranes and improves cognitive function in rats with chronic cerebral hypoperfusion. Front. Cell. Neurosci., 2022, 16, 822702.
[http://dx.doi.org/10.3389/fncel.2022.822702] [PMID: 35370565]
[67]
Goyal, A.; Solanki, A.; Verma, A. Preclinical evidence-based review on therapeutic potential of eugenol for the treatment of brain disorders. Curr. Mol. Med., 2023, 23(5), 390-400.
[http://dx.doi.org/10.2174/1566524022666220525145521] [PMID: 35619280]
[68]
Galano, A.; Martínez, A. Capsaicin, a tasty free radical scavenger: mechanism of action and kinetics. J. Phys. Chem. B, 2012, 116(3), 1200-1208.
[http://dx.doi.org/10.1021/jp211172f] [PMID: 22188587]
[69]
Lu, M.; Chen, C.; Lan, Y.; Xiao, J.; Li, R.; Huang, J.; Huang, Q.; Cao, Y.; Ho, C.T. Capsaicin—the major bioactive ingredient of chili peppers: bio-efficacy and delivery systems. Food Funct., 2020, 11(4), 2848-2860.
[http://dx.doi.org/10.1039/D0FO00351D] [PMID: 32246759]
[70]
Amna, T.; Hwang, I.; Shang, K.; Amina, M.; Al-Musayeib, N.M.; Al-Deyab, S.S. Influence of capsaicin on inflammatory cytokines induced by lipopolysaccharide in myoblast cells under in vitro environment. Pharmacogn. Mag., 2017, 13(49)(Suppl. 1), 26.
[http://dx.doi.org/10.4103/0973-1296.203984] [PMID: 28479722]
[71]
Tang, J.; Luo, K.; Li, Y.; Chen, Q.; Tang, D.; Wang, D.; Xiao, J. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα. Int. Immunopharmacol., 2015, 28(1), 264-269.
[http://dx.doi.org/10.1016/j.intimp.2015.06.007] [PMID: 26093270]
[72]
Abdel-Salam, O.M.E.; Sleem, A.A.; Sayed, M.A.E.B.M.; Youness, E.R.; Shaffie, N. Capsaicin exerts anti-convulsant and neuroprotective effects in pentylenetetrazole-induced seizures. Neurochem. Res., 2020, 45(5), 1045-1061.
[http://dx.doi.org/10.1007/s11064-020-02979-3] [PMID: 32036609]
[73]
Khatibi, N.H.; Jadhav, V.; Charles, S.; Chiu, J.; Buchholz, J.; Tang, J.; Zhang, J.H. Capsaicin pre-treatment provides neurovascular protection against neonatal hypoxic-ischemic brain injury in rats. Acta Neurochir. Suppl., 2011, 111(111), 225-230.
[http://dx.doi.org/10.1007/978-3-7091-0693-8_38] [PMID: 21725760]
[74]
Inyang, D.; Saumtally, T.; Nnadi, C.N.; Devi, S.; So, P.W. A systematic review of the effects of capsaicin on Alzheimer’s Disease. Int. J. Mol. Sci., 2023, 24(12), 10176.
[http://dx.doi.org/10.3390/ijms241210176] [PMID: 37373321]
[75]
He, F.Q.; Qiu, B.Y.; Zhang, X.H.; Li, T.K.; Xie, Q.; Cui, D.J.; Huang, X.L.; Gan, H.T. Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-κB activation in a rat model of Alzheimer’s disease induced by amyloid-β(1–42). Brain Res., 2011, 1384, 89-96.
[http://dx.doi.org/10.1016/j.brainres.2011.01.103] [PMID: 21300035]
[76]
Pákáski, M.; Hugyecz, M.; Sántha, P.; Jancsó, G.; Bjelik, A.; Domokos, Á.; Janka, Z.; Kálmán, J. Capsaicin promotes the amyloidogenic route of brain amyloid precursor protein processing. Neurochem. Int., 2009, 54(7), 426-430.
[http://dx.doi.org/10.1016/j.neuint.2009.01.012] [PMID: 19428784]
[77]
An, Y.; Li, Y.; Hou, Y.; Huang, S.; Pei, G. Alzheimer’s Amyloid- β accelerates cell senescence and suppresses the SIRT1/NRF2 pathway in human microglial cells. Oxid. Med. Cell. Longev., 2022, 2022, 3086010.
[78]
Bahn, G.; Park, J.S.; Yun, U.J.; Lee, Y.J.; Choi, Y.; Park, J.S.; Baek, S.H.; Choi, B.Y.; Cho, Y.S.; Kim, H.K.; Han, J.; Sul, J.H.; Baik, S.H.; Lim, J.; Wakabayashi, N.; Bae, S.H.; Han, J.W.; Arumugam, T.V.; Mattson, M.P.; Jo, D.G. NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer’s models. Proc. Natl. Acad. Sci. USA, 2019, 116(25), 12516-12523.
[http://dx.doi.org/10.1073/pnas.1819541116] [PMID: 31164420]
[79]
Noble, W.; Hanger, D.P.; Miller, C.C.J.; Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol., 2013, 4, 83.
[http://dx.doi.org/10.3389/fneur.2013.00083] [PMID: 23847585]
[80]
Ren, P.; Chen, J.; Li, B.; Zhang, M.; Yang, B.; Guo, X.; Chen, Z.; Cheng, H.; Wang, P.; Wang, S.; Wang, N.; Zhang, G.; Wu, X.; Ma, D.; Guan, D.; Zhao, R. Nrf2 ablation promotes Alzheimer’s disease-like pathology in APP/PS1 transgenic mice: The role of neuroinflammation and oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/3050971] [PMID: 32454936]
[81]
Rojo, A.I.; Pajares, M.; Rada, P.; Nuñez, A.; Nevado-Holgado, A.J.; Killik, R.; Van Leuven, F.; Ribe, E.; Lovestone, S.; Yamamoto, M.; Cuadrado, A. NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology. Redox Biol., 2017, 13, 444-451.
[http://dx.doi.org/10.1016/j.redox.2017.07.006] [PMID: 28704727]
[82]
Zgorzynska, E.; Dziedzic, B.; Walczewska, A. An overview of the nrf2/are pathway and its role in neurodegenerative diseases. Int. J. Mol. Sci., 2021, 22(17), 9592.
[http://dx.doi.org/10.3390/ijms22179592] [PMID: 34502501]
[83]
Janyou, A.; Wicha, P.; Jittiwat, J.; Suksamrarn, A.; Tocharus, C.; Tocharus, J. Dihydrocapsaicin attenuates blood brain barrier and cerebral damage in focal cerebral ischemia/reperfusion via oxidative stress and inflammatory. Sci. Rep., 2017, 7(1), 10556.
[http://dx.doi.org/10.1038/s41598-017-11181-5] [PMID: 28874782]
[84]
Kanninen, K.; Malm, T.M.; Jyrkkänen, H.K.; Goldsteins, G.; Keksa-Goldsteine, V.; Tanila, H.; Yamamoto, M.; Ylä-Herttuala, S.; Levonen, A.L.; Koistinaho, J. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol. Cell. Neurosci., 2008, 39(3), 302-313.
[http://dx.doi.org/10.1016/j.mcn.2008.07.010] [PMID: 18706502]
[85]
Eftekharzadeh, B.; Maghsoudi, N.; Khodagholi, F. Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid β formation in NT2N neurons. Biochimie, 2010, 92(3), 245-253.
[http://dx.doi.org/10.1016/j.biochi.2009.12.001] [PMID: 20026169]
[86]
Akhter, H.; Katre, A.; Li, L.; Liu, X.; Liu, R.M. Therapeutic potential and anti-amyloidosis mechanisms of tert-butylhydroquinone for Alzheimer’s disease. J. Alzheimers Dis., 2011, 26(4), 767-778.
[http://dx.doi.org/10.3233/JAD-2011-110512] [PMID: 21860091]
[87]
Kanninen, K.; Heikkinen, R.; Malm, T.; Rolova, T.; Kuhmonen, S.; Leinonen, H.; Ylä-Herttuala, S.; Tanila, H.; Levonen, A.L.; Koistinaho, M.; Koistinaho, J. Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16505-16510.
[http://dx.doi.org/10.1073/pnas.0908397106] [PMID: 19805328]
[88]
Hayes, M.T. Parkinson’s Disease and parkinsonism. Am. J. Med., 2019, 132(7), 802-807.
[http://dx.doi.org/10.1016/j.amjmed.2019.03.001] [PMID: 30890425]
[89]
Sung, VW. Nicholas, AP Nonmotor symptoms in Parkinson’s disease: Expanding the view of Parkinson’s disease beyond a pure motor, pure dopaminergic problem. Neurol. Clin., 2013, 31(3)(Suppl.), S1-S16.
[http://dx.doi.org/10.1016/j.ncl.2013.04.013]
[90]
Dauer, W.; Przedborski, S. Parkinson’s disease. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[91]
Huang, B.; Liu, J.; Ju, C. Licochalcone A prevents the loss of dopaminergic neurons by inhibiting microglial activation in Lipopolysaccharide (LPS)-induced Parkinson’s Disease models. Int. J. Mol. Sci., 2017, 18(10), 2043.
[92]
Wang, X.; Wang, C.; Wang, J.; Zhao, S.; Zhang, K.; Wang, J.; Zhang, W.; Wu, C.; Yang, J. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways. Neuropharmacology, 2014, 79, 642-656.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.022] [PMID: 24467851]
[93]
Kim, K.I.; Baek, J.Y.; Jeong, J.Y.; Nam, J.H.; Park, E.S.; Bok, E.; Shin, W.H.; Chung, Y.C.; Jin, B.K. Delayed treatment of capsaicin produces partial motor recovery by enhancing dopamine function in MPP + -lesioned rats via ciliary neurotrophic factor. Exp. Neurobiol., 2019, 28(2), 289-299.
[http://dx.doi.org/10.5607/en.2019.28.2.289] [PMID: 31138996]
[94]
Liu, J.; Liu, H.; Zhao, Z.; Wang, J.; Guo, D.; Liu, Y. Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinson’s disease. Biosci. Rep., 2020, 40(6)
[95]
Siddique, Y.H.; Naz, F.; Jyoti, S. Effect of capsaicin on the oxidative stress and dopamine content in the transgenic Drosophila model of Parkinson’s disease. Acta Biol. Hung., 2018, 69(2), 115-124.
[http://dx.doi.org/10.1556/018.69.2018.2.1] [PMID: 29888671]
[96]
Brandes, M.S.; Gray, N.E. NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro, 2020, 12.
[http://dx.doi.org/10.1177/1759091419899782] [PMID: 31964153]
[97]
Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat., 2015, 9, 91.
[http://dx.doi.org/10.3389/fnana.2015.00091] [PMID: 26217195]
[98]
Colamartino, M.; Duranti, G.; Ceci, R.; Sabatini, S.; Testa, A.; Cozzi, R. A multi-biomarker analysis of the antioxidant efficacy of Parkinson’s disease therapy. Toxicol. In Vitro, 2018, 47, 1-7.
[http://dx.doi.org/10.1016/j.tiv.2017.10.020] [PMID: 29080800]
[99]
Holmström, K.M.; Baird, L.; Zhang, Y.; Hargreaves, I.; Chalasani, A.; Land, J.M.; Stanyer, L.; Yamamoto, M.; Dinkova-Kostova, A.T.; Abramov, A.Y. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol. Open, 2013, 2(8), 761-770.
[http://dx.doi.org/10.1242/bio.20134853] [PMID: 23951401]
[100]
Manoharan, S; Guillemin, GJ; Abiramasundari, RS; Essa, MM; Akbar, M; Akbar, MD The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s Disease, and Huntington’s disease: A mini review. Oxid. Med. Cell. Longev., 2016.
[101]
Wei, Z.; Li, X.; Li, X.; Liu, Q.; Cheng, Y. Oxidative stress in Parkinson’s Disease: A systematic review and meta-analysis. Front. Mol. Neurosci., 2018, 11, 236.
[http://dx.doi.org/10.3389/fnmol.2018.00236] [PMID: 30026688]
[102]
Chen, P.C.; Vargas, M.R.; Pani, A.K.; Smeyne, R.J.; Johnson, D.A.; Kan, Y.W.; Johnson, J.A. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: Critical role for the astrocyte. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2933-2938.
[http://dx.doi.org/10.1073/pnas.0813361106] [PMID: 19196989]
[103]
Rojo, A.I.; Innamorato, N.G.; Martín-Moreno, A.M.; De Ceballos, M.L.; Yamamoto, M.; Cuadrado, A. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia, 2010, 58(5), 588-598.
[http://dx.doi.org/10.1002/glia.20947] [PMID: 19908287]
[104]
Williamson, T.P.; Johnson, D.A.; Johnson, J.A. Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity. Neurotoxicology, 2012, 33(3), 272-279.
[http://dx.doi.org/10.1016/j.neuro.2012.01.015] [PMID: 22342405]
[105]
Johnson, J.A.; Johnson, D.A.; Kraft, A.D.; Calkins, M.J.; Jakel, R.J.; Vargas, M.R.; Chen, P.C. The Nrf2-ARE pathway: An indicator and modulator of oxidative stress in neurodegeneration. Ann. N. Y. Acad. Sci., 2008, 1147(1), 61-69.
[http://dx.doi.org/10.1196/annals.1427.036] [PMID: 19076431]
[106]
Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med., 2017, 7(7), a024240.
[http://dx.doi.org/10.1101/cshperspect.a024240] [PMID: 27940602]
[107]
McColgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol., 2018, 25(1), 24-34.
[http://dx.doi.org/10.1111/ene.13413] [PMID: 28817209]
[108]
Hardingham, G.E. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans., 2009, 37(6), 1147-1160.
[http://dx.doi.org/10.1042/BST0371147] [PMID: 19909238]
[109]
Lastres-Becker, I.; De Miguel, R.; De Petrocellis, L.; Makriyannis, A.; Di Marzo, V.; Fernández-Ruiz, J. Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J. Neurochem., 2003, 84(5), 1097-1109.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01595.x] [PMID: 12603833]
[110]
Shih, A.Y.; Imbeault, S.; Barakauskas, V.; Erb, H.; Jiang, L.; Li, P.; Murphy, T.H. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J. Biol. Chem., 2005, 280(24), 22925-22936.
[http://dx.doi.org/10.1074/jbc.M414635200] [PMID: 15840590]
[111]
Jin, Y.N.; Johnson, G.V.W. The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. J. Bioenerg. Biomembr., 2010, 42(3), 199-205.
[http://dx.doi.org/10.1007/s10863-010-9286-7] [PMID: 20556492]
[112]
Gu, M.; Gash, M.T.; Mann, V.M.; Javoy-Agid, F.; Cooper, J.M.; Schapira, A.H.V. Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol., 1996, 39(3), 385-389.
[http://dx.doi.org/10.1002/ana.410390317] [PMID: 8602759]
[113]
Tabrizi, S.J.; Workman, J.; Hart, P.E.; Mangiarini, L.; Mahal, A.; Bates, G.; Cooper, J.M.; Schapira, A.H.V. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol., 2000, 47(1), 80-86.
[http://dx.doi.org/10.1002/1531-8249(200001)47:1<80:AID-ANA13>3.0.CO;2-K] [PMID: 10632104]
[114]
Steffan, J.S.; Bodai, L.; Pallos, J.; Poelman, M.; McCampbell, A.; Apostol, B.L.; Kazantsev, A.; Schmidt, E.; Zhu, Y.Z.; Greenwald, M.; Kurokawa, R.; Housman, D.E.; Jackson, G.R.; Marsh, J.L.; Thompson, L.M. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 2001, 413(6857), 739-743.
[http://dx.doi.org/10.1038/35099568] [PMID: 11607033]
[115]
Ganner, A.; Pfeiffer, Z.C.; Wingendorf, L.; Kreis, S.; Klein, M.; Walz, G.; Neumann-Haefelin, E. The acetyltransferase p300 regulates NRF2 stability and localization. Biochem. Biophys. Res. Commun., 2020, 524(4), 895-902.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.006] [PMID: 32057361]
[116]
Jin, Y.N.; Yu, Y.V.; Gundemir, S.; Jo, C.; Cui, M.; Tieu, K.; Johnson, G.V.W. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS One, 2013, 8(3), e57932.
[http://dx.doi.org/10.1371/journal.pone.0057932] [PMID: 23469253]
[117]
Stack, C.; Ho, D.; Wille, E.; Calingasan, N.Y.; Williams, C.; Liby, K.; Sporn, M.; Dumont, M.; Beal, M.F. Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington’s disease. Free Radic. Biol. Med., 2010, 49(2), 147-158.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.017] [PMID: 20338236]
[118]
Tsvetkov, A.S.; Arrasate, M.; Barmada, S.; Ando, D.M.; Sharma, P.; Shaby, B.A.; Finkbeiner, S. Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nat. Chem. Biol., 2013, 9(9), 586-592.
[http://dx.doi.org/10.1038/nchembio.1308] [PMID: 23873212]
[119]
Saito, Y.; Yako, T.; Otsu, W.; Nakamura, S.; Inoue, Y.; Muramatsu, A.; Nakagami, Y.; Shimazawa, M.; Hara, H. A triterpenoid Nrf2 activator, RS9, promotes LC3-associated phagocytosis of photoreceptor outer segments in a p62-independent manner. Free Radic. Biol. Med., 2020, 152, 235-247.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.03.012] [PMID: 32217192]
[120]
Ninomiya, Y.; Tanuma, S.; Tsukimoto, M. Differences in the effects of four TRPV1 channel antagonists on lipopolysaccharide-induced cytokine production and COX-2 expression in murine macrophages. Biochem. Biophys. Res. Commun., 2017, 484(3), 668-674.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.173] [PMID: 28153725]
[121]
Franklin, R.J.M. ffrench-Constant, C. Regenerating CNS myelin-from mechanisms to experimental medicines. Nat. Rev. Neurosci., 2017, 18(12), 753-769.
[http://dx.doi.org/10.1038/nrn.2017.136] [PMID: 29142295]
[122]
Legroux, L.; Arbour, N. Multiple sclerosis and T lymphocytes: An entangled story. J. Neuroimmune Pharmacol., 2015, 10(4), 528-546.
[http://dx.doi.org/10.1007/s11481-015-9614-0] [PMID: 25946987]
[123]
Al-Kafaji, G; Bakheit, HF; AlAli, F Next-generation sequencing of the whole mitochondrial genome identifies functionally deleterious mutations in patients with multiple sclerosis. PLoS ONE, 2022, 17(2 February)
[124]
Campbell, G.R.; Mahad, D.J. Mitochondrial changes associated with demyelination: Consequences for axonal integrity. Mitochondrion, 2012, 12(2), 173-179.
[http://dx.doi.org/10.1016/j.mito.2011.03.007] [PMID: 21406249]
[125]
Brooks, J.W.; Pryce, G.; Bisogno, T.; Jaggar, S.I.; Hankey, D.J.R.; Brown, P.; Bridges, D.; Ledent, C.; Bifulco, M.; Rice, A.S.C.; Di Marzo, V.; Baker, D. Arvanil-induced inhibition of spasticity and persistent pain: evidence for therapeutic sites of action different from the vanilloid VR1 receptor and cannabinoid CB1/CB2 receptors. Eur. J. Pharmacol., 2002, 439(1-3), 83-92.
[http://dx.doi.org/10.1016/S0014-2999(02)01369-9] [PMID: 11937096]
[126]
’t Hart, B.A.; Gran, B.; Weissert, R. EAE: imperfect but useful models of multiple sclerosis. Trends Mol. Med., 2011, 17(3), 119-125.
[http://dx.doi.org/10.1016/j.molmed.2010.11.006] [PMID: 21251877]
[127]
Rangachari, M.; Kuchroo, V.K. Using EAE to better understand principles of immune function and autoimmune pathology. J. Autoimmun., 2013, 45, 31-39.
[http://dx.doi.org/10.1016/j.jaut.2013.06.008] [PMID: 23849779]
[128]
Sharma, Y.; Garabadu, D. RETRACTED ARTICLE: Intracerebroventricular streptozotocin administration impairs mitochondrial calcium homeostasis and bioenergetics in memory-sensitive rat brain regions. Exp. Brain Res., 2020, 238(10), 2293-2306.
[http://dx.doi.org/10.1007/s00221-020-05896-7] [PMID: 32728854]
[129]
Noh, H.; Jeon, J.; Seo, H. Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem. Int., 2014, 69(1), 35-40.
[http://dx.doi.org/10.1016/j.neuint.2014.02.008] [PMID: 24607701]
[130]
Tsuji, F.; Murai, M.; Oki, K.; Seki, I.; Ueda, K.; Inoue, H.; Nagelkerken, L.; Sasano, M.; Aono, H. Transient receptor potential vanilloid 1 agonists as candidates for anti-inflammatory and immunomodulatory agents. Eur. J. Pharmacol., 2010, 627(1-3), 332-339.
[http://dx.doi.org/10.1016/j.ejphar.2009.10.044] [PMID: 19878665]
[131]
Wang, J.; Zou, Q.; Suo, Y.; Tan, X.; Yuan, T.; Liu, Z.; Liu, X. Lycopene ameliorates systemic inflammation-induced synaptic dysfunction via improving insulin resistance and mitochondrial dysfunction in the liver–brain axis. Food Funct., 2019, 10(4), 2125-2137.
[http://dx.doi.org/10.1039/C8FO02460J] [PMID: 30924473]
[132]
Rehman, S.U.; Ali, T.; Alam, S.I.; Ullah, R.; Zeb, A.; Lee, K.W.; Rutten, B.P.F.; Kim, M.O. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus. Mol. Neurobiol., 2019, 56(4), 2774-2790.
[http://dx.doi.org/10.1007/s12035-018-1280-9] [PMID: 30058023]
[133]
Khan, A.; Ali, T.; Rehman, S.U. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol., 2018, 9, 1383.
[http://dx.doi.org/10.3389/fphar.2018.01383]
[134]
Chen, W.J.; Du, J.K.; Hu, X.; Yu, Q.; Li, D.X.; Wang, C.N.; Zhu, X.Y.; Liu, Y.J. Protective effects of resveratrol on mitochondrial function in the hippocampus improves inflammation-induced depressive-like behavior. Physiol. Behav., 2017, 182, 54-61.
[http://dx.doi.org/10.1016/j.physbeh.2017.09.024] [PMID: 28964807]
[135]
Singh, N.K.; Garabadu, D. Quercetin Exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-induced mitochondrial toxicity and cognitive impairments in experimental rodents. Neurotox. Res., 2021, 39(6), 1859-1879.
[http://dx.doi.org/10.1007/s12640-021-00410-5] [PMID: 34554409]
[136]
Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 344(22), 1688-1700.
[137]
Ravits, J.M.; La Spada, A.R. ALS motor phenotype heterogeneity, focality, and spread: Deconstructing motor neuron degeneration. Neurology, 2009, 73(10), 805-811.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bbbd] [PMID: 19738176]
[138]
Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; McCluskey, L.F.; Miller, B.L.; Masliah, E.; Mackenzie, I.R.; Feldman, H.; Feiden, W.; Kretzschmar, H.A.; Trojanowski, J.Q.; Lee, V.M.Y. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006, 314(5796), 130-133.
[http://dx.doi.org/10.1126/science.1134108] [PMID: 17023659]
[139]
Higashi, T.; Murata, N.; Fujimoto, M.; Miyake, S.; Egusa, M.; Higuchi, H.; Maeda, S.; Miyawaki, T. Capsaicin may improve swallowing impairment in patients with amyotrophic lateral sclerosis: A randomized controlled trial. Acta Med. Okayama, 2022, 76(2), 179-186.
[PMID: 35503446]
[140]
Obrador, E.; Salvador, R.; López-Blanch, R.; Jihad-Jebbar, A.; Vallés, S.L.; Estrela, J.M. Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants, 2020, 9(9), 901.
[http://dx.doi.org/10.3390/antiox9090901] [PMID: 32971909]
[141]
McCombe, P.A.; Henderson, R.D. The Role of immune and inflammatory mechanisms in ALS. Curr. Mol. Med., 2011, 11(3), 246-254.
[http://dx.doi.org/10.2174/156652411795243450] [PMID: 21375489]
[142]
Mhatre, M.; Floyd, R.A.; Hensley, K. Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: Common links and potential therapeutic targets. J. Alzheimers Dis., 2004, 6(2), 147-157.
[http://dx.doi.org/10.3233/JAD-2004-6206] [PMID: 15096698]
[143]
Minj, E.; Yadav, R.K.; Mehan, S. Targeting abnormal Nrf2/HO-1 signaling in amyotrophic lateral sclerosis: Current insights on drug targets and influences on neurological disorders. Curr. Mol. Med., 2021, 21(8), 630-644.
[http://dx.doi.org/10.2174/18755666MTEz5MTUw0] [PMID: 33430731]
[144]
Ghezzi, P.; Bernardini, R.; Giuffrida, R.; Bellomo, M.; Manzoni, C.; Comoletti, D.; Di Santo, E.; Benigni, F.; Mennini, T. Tumor necrosis factor is increased in the spinal cord of an animal model of motor neuron degeneration. Eur. Cytokine Netw., 1998, 9(2), 139-144.
[PMID: 9681389]
[145]
Kobayashi, E.H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Hayashi, M.; Sekine, H.; Tanaka, N.; Moriguchi, T.; Motohashi, H.; Nakayama, K.; Yamamoto, M. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun., 2016, 7(1), 11624.
[http://dx.doi.org/10.1038/ncomms11624] [PMID: 27211851]
[146]
Shibata, N.; Nagai, R.; Uchida, K.; Horiuchi, S.; Yamada, S.; Hirano, A.; Kawaguchi, M.; Yamamoto, T.; Sasaki, S.; Kobayashi, M. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res., 2001, 917(1), 97-104.
[http://dx.doi.org/10.1016/S0006-8993(01)02926-2] [PMID: 11602233]
[147]
Sarlette, A.; Krampfl, K.; Grothe, C.; Neuhoff, N.; Dengler, R.; Petri, S. Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2008, 67(11), 1055-1062.
[http://dx.doi.org/10.1097/NEN.0b013e31818b4906] [PMID: 18957896]
[148]
Wang, Y.; Tang, C.; Tang, Y.; Yin, H.; Liu, X. Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations. Food Nutr. Res., 2020, 64(0)
[http://dx.doi.org/10.29219/fnr.v64.3525] [PMID: 32180694]
[149]
Chen, L.; Huang, Z.; Du, Y.; Fu, M.; Han, H.; Wang, Y.; Dong, Z. Capsaicin attenuates Amyloid-β-induced synapse loss and cognitive impairments in mice. J. Alzheimers Dis., 2017, 59(2), 683-694.
[http://dx.doi.org/10.3233/JAD-170337] [PMID: 28671132]
[150]
Lu, J.; Zhou, W.; Dou, F.; Wang, C.; Yu, Z. TRPV1 sustains microglial metabolic reprogramming in Alzheimer’s disease. EMBO Rep., 2021, 22(6), e52013.
[http://dx.doi.org/10.15252/embr.202052013] [PMID: 33998138]
[151]
Jiang, X.; Jia, L.W.; Li, X.H.; Cheng, X.S.; Xie, J.Z.; Ma, Z.W.; Xu, W.J.; Liu, Y.; Yao, Y.; Du, L.L.; Zhou, X.W. Capsaicin ameliorates stress-induced Alzheimer’s disease-like pathological and cognitive impairments in rats. J. Alzheimers Dis., 2013, 35(1), 91-105.
[http://dx.doi.org/10.3233/JAD-121837] [PMID: 23340038]
[152]
Xu, W.; Liu, J.; Ma, D.; Yuan, G.; Lu, Y.; Yang, Y. Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats. PLoS One, 2017, 12(2), e0172477.
[http://dx.doi.org/10.1371/journal.pone.0172477] [PMID: 28225806]
[153]
Park, E.S.; Kim, S.R.; Jin, B.K. Transient receptor potential vanilloid subtype 1 contributes to mesencephalic dopaminergic neuronal survival by inhibiting microglia-originated oxidative stress. Brain Res. Bull., 2012, 89(3-4), 92-96.
[http://dx.doi.org/10.1016/j.brainresbull.2012.07.001] [PMID: 22796104]
[154]
Cabranes, A.; Venderova, K.; de Lago, E.; Fezza, F.; Sánchez, A.; Mestre, L.; Valenti, M.; García-Merino, A.; Ramos, J.A.; Di Marzo, V.; Fernández-Ruiz, J. Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. Neurobiol. Dis., 2005, 20(2), 207-217.
[http://dx.doi.org/10.1016/j.nbd.2005.03.002] [PMID: 16242629]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy