Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Selenomethionine Suppress the Progression of Poorly Differentiated Thyroid Cancer via LncRNA NONMMUT014201/miR-6963-5p/Srprb Pathway

Author(s): Rongfang Pan, Junyu Zhao, Jinming Yao, Yanyan Gao and Lin Liao*

Volume 27, Issue 16, 2024

Published on: 01 January, 2024

Page: [2419 - 2432] Pages: 14

DOI: 10.2174/0113862073286006231228070738

Price: $65

Abstract

Background: Poorly differentiated thyroid cancer (PDTC) is a special type of thyroid cancer that threatens the life of the patients. Unfortunately, there are no effective treatments for PDTC right now, so it is urgent to search for new efficacious drugs. This experiment was designed to elucidate the effects of selenomethionine (SeMet) on PDTC in vitro and vivo.

Methods: A xenograft animal model was used to assay the volume and weight of PDTC. LncRNA NOMMMUT014201 expression was detected by fluorescence in situ hybridization and Real-time quantitative PCR (qRT-PCR). In vitro experiments were carried on in WRO cells. The Cell Counting Kit-8 assay was performed to test the effect of SeMet on the proliferation of cells. And the migration and invasion of WRO cells by the wound-healing assay, Transwell migration and invasion assays. The cell apoptosis was measured by flow cytometry. In addition, genes related to proliferation, migration, invasion and apoptosis were detected through qRT-PCR and Western Blot.

Results: SeMet inhibited the proliferation, migration and invasion and promoted the apoptosis of WRO cells in a dose-dependent manner. Then vivo, SeMet significantly suppressed the volume and weight of PDTC. And SeMet downregulated the expressions of Ki67, PCNA, MMP2, MMP9 and BCL2, but upregulated that of BAX and Cleaved-Caspase 3. Moreover, SeMet upregulated the level of LncRNA NOMMMUT014201 both vivo and in vitro. In addition, repression of LncRNA NOMMMUT014201 removed the inhibition effect of SeMet on WRO cell growth significantly (p<0.05). Further investigation showed that LncRNA NOMMMUT014201 downregulated the expression of miR-6963-5p in PDTC cells, but miR-6963-5p inhibited the level of Srprb. In addition, sh-LncRNA NOMMMUT014201 enhanced the proliferation, migration and invasion but inhibited the apoptosis of WRO cells. However, inhibited miR-6963-5p or overexpressed Srprb relieved the effects of sh-LncRNA NOMMMUT014201on WRO cells.

Conclusion: Collectively, SeMet inhibits the growth of PDTC in a dose-dependent manner through LncRNA NONMMUT014201/miR-6963-5p/Srprb signal pathway, thus suggesting that SeMet might be a potential drug for PDTC treatment.

Graphical Abstract

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[3]
Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; Schuff, K.G.; Sherman, S.I.; Sosa, J.A.; Steward, D.L.; Tuttle, R.M.; Wartofsky, L. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1), 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[4]
Ibrahimpasic, T.; Ghossein, R.; Shah, J.P.; Ganly, I. Poorly differentiated carcinoma of the thyroid gland: Current status and future prospects. Thyroid, 2019, 29(3), 311-321.
[http://dx.doi.org/10.1089/thy.2018.0509] [PMID: 30747050]
[5]
Barczynski, M. Commentary on the study of Walczyk et al. Poorly differentiated thyroid cancer in the context of the revised 2015 american thyroid association guidelines and the updated american joint committee on cancer/tumor-node-metastasis staging system. In: Clin Endocrinol; (eighth edition), 2019; 91, pp. 245-246.
[6]
Rayman, M.P. The importance of selenium to human health. Lancet, 2000, 356(9225), 233-241.
[http://dx.doi.org/10.1016/S0140-6736(00)02490-9] [PMID: 10963212]
[7]
Rayman, M.P. Selenium and human health. Lancet, 2012, 379(9822), 1256-1268.
[http://dx.doi.org/10.1016/S0140-6736(11)61452-9] [PMID: 22381456]
[8]
Jablonska, E.; Vinceti, M. Selenium and human health: Witnessing a copernican revolution? J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2015, 33(3), 328-368.
[http://dx.doi.org/10.1080/10590501.2015.1055163] [PMID: 26074278]
[9]
Schomburg, L.; Orho-Melander, M.; Struck, J.; Bergmann, A.; Melander, O. Selenoprotein-P deficiency predicts cardiovascular disease and death. Nutrients, 2019, 11(8), 1852.
[http://dx.doi.org/10.3390/nu11081852] [PMID: 31404994]
[10]
Vinceti, M.; Filippini, T.; Rothman, K.J. Selenium exposure and the risk of type 2 diabetes: A systematic review and meta-analysis. Eur. J. Epidemiol., 2018, 33(9), 789-810.
[http://dx.doi.org/10.1007/s10654-018-0422-8] [PMID: 29974401]
[11]
Varikasuvu, S.R.; Prasad V, S.; Kothapalli, J.; Manne, M. Brain selenium in alzheimer’s disease (BRAIN SEAD Study): A systematic review and meta-analysis. Biol. Trace Elem. Res., 2019, 189(2), 361-369.
[http://dx.doi.org/10.1007/s12011-018-1492-x] [PMID: 30171594]
[12]
Adani, G.; Filippini, T.; Michalke, B.; Vinceti, M. Selenium and other trace elements in the etiology of parkinson’s disease: A systematic review and meta-analysis of case-control studies. Neuroepidemiology, 2020, 54(1), 1-23.
[http://dx.doi.org/10.1159/000502357] [PMID: 31454800]
[13]
Ma, Y.; Zhang, X.; Fan, D.; Xia, Q.; Wang, M.; Pan, F. Common trace metals in rheumatoid arthritis: A systematic review and meta-analysis. J. Trace Elem. Med. Biol., 2019, 56, 81-89.
[http://dx.doi.org/10.1016/j.jtemb.2019.07.007] [PMID: 31442958]
[14]
Evenson, J.K.; Sunde, R.A. Metabolism of tracer 75Se selenium from inorganic and organic selenocompounds into selenoproteins in rats, and the missing 75Se metabolites. Front. Nutr., 2021, 8, 699652.
[http://dx.doi.org/10.3389/fnut.2021.699652] [PMID: 34322513]
[15]
Ekins, S.; Balakin, K.V.; Savchuk, N.; Ivanenkov, Y. Insights for human ether-a-go-go-related gene potassium channel inhibition using recursive partitioning and kohonen and sammon mapping techniques. J. Med. Chem., 2006, 49(17), 5059-5071.
[http://dx.doi.org/10.1021/jm060076r] [PMID: 16913696]
[16]
Fernandes, A.P.; Gandin, V. Selenium compounds as therapeutic agents in cancer. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(8), 1642-1660.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.008] [PMID: 25459512]
[17]
Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev., 2018, 1(1), CD005195.
[PMID: 29376219]
[18]
Vinceti, M.; Filippini, T.; Cilloni, S.; Crespi, C.M. The epidemiology of selenium and human cancer. Adv. Cancer Res., 2017, 136, 1-48.
[http://dx.doi.org/10.1016/bs.acr.2017.07.001] [PMID: 29054414]
[19]
Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; Parsons, J.K.; Bearden, J.D., III; Crawford, E.D.; Goodman, G.E.; Claudio, J.; Winquist, E.; Cook, E.D.; Karp, D.D.; Walther, P.; Lieber, M.M.; Kristal, A.R.; Darke, A.K.; Arnold, K.B.; Ganz, P.A.; Santella, R.M.; Albanes, D.; Taylor, P.R.; Probstfield, J.L.; Jagpal, T.J.; Crowley, J.J.; Meyskens, F.L., Jr; Baker, L.H.; Coltman, C.A., Jr Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2009, 301(1), 39-51.
[http://dx.doi.org/10.1001/jama.2008.864] [PMID: 19066370]
[20]
Greenlee, H.; Kwan, M.L.; Kushi, L.H.; Song, J.; Castillo, A.; Weltzien, E.; Quesenberry, C.P., Jr; Caan, B.J. Antioxidant supplement use after breast cancer diagnosis and mortality in the life after cancer epidemiology (LACE) cohort. Cancer, 2012, 118(8), 2048-2058.
[http://dx.doi.org/10.1002/cncr.26526] [PMID: 21953120]
[21]
Clark, L.C.; Dalkin, B.; Krongrad, A.; Combs, G.F., Jr; Turnbull, B.W.; Slate, E.H.; Witherington, R.; Herlong, J.H.; Janosko, E.; Carpenter, D.; Borosso, C.; Falk, S.; Rounder, J. Decreased incidence of prostate cancer with selenium supplementation: Results of a double‐blind cancer prevention trial. Br. J. Urol., 1998, 81(5), 730-734.
[http://dx.doi.org/10.1046/j.1464-410x.1998.00630.x] [PMID: 9634050]
[22]
Hughes, D.J.; Duarte-Salles, T.; Hybsier, S.; Trichopoulou, A.; Stepien, M.; Aleksandrova, K.; Overvad, K.; Tjønneland, A.; Olsen, A.; Affret, A.; Fagherazzi, G.; Boutron-Ruault, M.C.; Katzke, V.; Kaaks, R.; Boeing, H.; Bamia, C.; Lagiou, P.; Peppa, E.; Palli, D.; Krogh, V.; Panico, S.; Tumino, R.; Sacerdote, C.; Bueno-de-Mesquita, H.B.; Peeters, P.H.; Engeset, D.; Weiderpass, E.; Lasheras, C.; Agudo, A.; Sánchez, M.J.; Navarro, C.; Ardanaz, E.; Dorronsoro, M.; Hemmingsson, O.; Wareham, N.J.; Khaw, K.T.; Bradbury, K.E.; Cross, A.J.; Gunter, M.; Riboli, E.; Romieu, I.; Schomburg, L.; Jenab, M. Prediagnostic selenium status and hepatobiliary cancer risk in the european prospective investigation into cancer and nutrition cohort. Am. J. Clin. Nutr., 2016, 104(2), 406-414.
[http://dx.doi.org/10.3945/ajcn.116.131672] [PMID: 27357089]
[23]
Hughes, D.J.; Fedirko, V.; Jenab, M.; Schomburg, L.; Méplan, C.; Freisling, H.; Bueno-de-Mesquita, H.B.; Hybsier, S.; Becker, N.P.; Czuban, M.; Tjønneland, A.; Outzen, M.; Boutron-Ruault, M.C.; Racine, A.; Bastide, N.; Kühn, T.; Kaaks, R.; Trichopoulos, D.; Trichopoulou, A.; Lagiou, P.; Panico, S.; Peeters, P.H.; Weiderpass, E.; Skeie, G.; Dagrun, E.; Chirlaque, M.D.; Sánchez, M.J.; Ardanaz, E.; Ljuslinder, I.; Wennberg, M.; Bradbury, K.E.; Vineis, P.; Naccarati, A.; Palli, D.; Boeing, H.; Overvad, K.; Dorronsoro, M.; Jakszyn, P.; Cross, A.J.; Quirós, J.R.; Stepien, M.; Kong, S.Y.; Duarte-Salles, T.; Riboli, E.; Hesketh, J.E. Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort. Int. J. Cancer, 2015, 136(5), 1149-1161.
[http://dx.doi.org/10.1002/ijc.29071] [PMID: 25042282]
[24]
Li, Q.; Chen, G.; Wang, W.; Zhang, W.; Ding, Y.; Zhao, T.; Li, F.; Mao, G.; Feng, W.; Wang, Q.; Yang, L.; Wu, X. A novel Se-polysaccharide from Se-enriched G. frondosa protects against immunosuppression and low Se status in Se-deficient mice. Int. J. Biol. Macromol., 2018, 117, 878-889.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.180] [PMID: 29807076]
[25]
Korbut, E.; Ptak-Belowska, A.; Brzozowski, T. Inhibitory effect of selenomethionine on carcinogenesis in the model of human colorectal cancer in vitro and its link to the Wnt/β-catenin pathway. Acta Biochim. Pol., 2018, 65(3), 359-366.
[http://dx.doi.org/10.18388/abp.2018_2628] [PMID: 30016378]
[26]
Xing, C.; Sun, S.; Yue, Z.Q.; Bai, F. Role of lncRNA LUCAT1 in cancer. Biomed. Pharmacother., 2021, 134, 111158.
[http://dx.doi.org/10.1016/j.biopha.2020.111158] [PMID: 33360049]
[27]
Liu, Z.; Gao, H.; Peng, Q.; Yang, Y. Long noncoding RNA LUCAT1 promotes multiple myeloma cell growth by regulating the TGF-β signaling pathway. Technol. Cancer Res. Treat., 2020, 19, 1533033820945770.
[http://dx.doi.org/10.1177/1533033820945770] [PMID: 32812490]
[28]
Liyanarachchi, S.; Li, W.; Yan, P.; Bundschuh, R.; Brock, P.; Senter, L.; Ringel, M.D.; de la Chapelle, A.; He, H. Genome-wide expression screening discloses long noncoding RNAs involved in thyroid carcinogenesis. J. Clin. Endocrinol. Metab., 2016, 101(11), 4005-4013.
[http://dx.doi.org/10.1210/jc.2016-1991] [PMID: 27459529]
[29]
Li, R.; Cui, X.; Sun, W.; Yang, Z.; Shen, X.; Zhu, C. ASF1B, as an independent prognostic biomarker, correlates with immune infiltrates in hepatocellular carcinoma. Comb. Chem. High Throughput Screen., 2023, 26(7), 1311-1323.
[http://dx.doi.org/10.2174/1386207325666220820112111] [PMID: 35993469]
[30]
Zheng, Z.; Yan, G.; Xi, N.; Xu, X.; Zeng, Q.; Wu, Y.; Zheng, Y.; Zhang, G.; Wang, X. Triptolide induces apoptosis and autophagy in cutaneous squamous cell carcinoma via Akt/mTOR pathway. Anticancer. Agents Med. Chem., 2023, 23(13), 1596-1604.
[http://dx.doi.org/10.2174/1871520623666230413130417] [PMID: 37056067]
[31]
Zhang, Y.; Zhang, H.; Yang, Z.; Zhang, X.; Miao, Q.; Li, M.; Zhai, T.; Zheng, B.; Wen, J. miR-155 down-regulation protects the heart from hypoxic damage by activating fructose metabolism in cardiac fibroblasts. J. Adv. Res., 2022, 39, 103-117.
[http://dx.doi.org/10.1016/j.jare.2021.10.007] [PMID: 35777901]
[32]
Ruan, S.; Gu, L.; Wang, Y.; Huang, X.; Cao, H. Diosgenin glucoside inhibits the progression of osteosarcoma MG-63 by regulating the PI3K/AKT/mTOR pathway. Anticancer. Agents Med. Chem., 2023, 23(14), 1670-1677.
[http://dx.doi.org/10.2174/1871520623666230420081738] [PMID: 37078348]
[33]
Ren, S.; Chen, M.; Chen, Y.; Ding, K. NRSN2 is a prognostic biomarker in gastric cancer and facilitates the growth and migration of gastric cancer cells. Protein Pept. Lett., 2023, 30(5), 427-438.
[http://dx.doi.org/10.2174/0929866530666230314160234] [PMID: 36918782]
[34]
Yang, Z.; Qu, C.B.; Zhang, Y.; Zhang, W.F.; Wang, D.D.; Gao, C.C.; Ma, L.; Chen, J.S.; Liu, K.L.; Zheng, B.; Zhang, X.H.; Zhang, M.L.; Wang, X.L.; Wen, J.K.; Li, W. Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 2019, 38(14), 2516-2532.
[http://dx.doi.org/10.1038/s41388-018-0602-8] [PMID: 30531834]
[35]
Yu, K.; Jiang, A.; Zhao, C.; Zhang, D. Dual specificity phosphatase 3 (DUSP3) knockdown alleviates acute myocardial infarction damage via inhibiting apoptosis and inflammation. Curr. Neurovasc. Res., 2023, 20(1), 14-22.
[http://dx.doi.org/10.2174/1567202620666230502115433] [PMID: 37272465]
[36]
Saleem, M.; Schini-Kerth, V.B.; Hussain, K.; Khalid, S.H.; Asif, M.; Alhosin, M.; Akhtar, M.F.; Ahmad, B.; Raza, A. Mahrukh, Molecular mechanisms responsible for in vitro cytotoxic attributes of conyza bonariensis extract against lymphoblastic leukaemia jurkat cells. Anticancer. Agents Med. Chem., 2022, 22(9), 1793-1801.
[http://dx.doi.org/10.2174/1871520621666210906092314] [PMID: 34488604]
[37]
Rattanapan, Y.; Korkiatsakul, V.; Kongruang, A.; Siriboonpiputtana, T.; Rerkamnuaychoke, B.; Chareonsirisuthigul, T. High expression of miR-483-5p predicts chemotherapy resistance in epithelial ovarian cancer. MicroRNA, 2021, 10(1), 51-57.
[http://dx.doi.org/10.2174/2211536610666210412155206] [PMID: 33845755]
[38]
Yang, G.; Zheng, B.; Qin, Y.; Zhou, J.; Yang, Z.; Zhang, X.; Zhao, H.; Yang, H.; Wen, J. Salvia miltiorrhiza -derived miRNAs suppress vascular remodeling through regulating OTUD7B/KLF4/NMHC IIA axis. Theranostics, 2020, 10(17), 7787-7811.
[http://dx.doi.org/10.7150/thno.46911] [PMID: 32685020]
[39]
Khosravi, M.; Kakavandi, N.; Rezaee, S.; Shabani, M.; Najafi, M. A peptide construct mediates focal adhesion pathway through the activation of integrin receptor. Curr. Pharm. Des., 2020, 26(15), 1749-1755.
[http://dx.doi.org/10.2174/1381612826666200311125325] [PMID: 32160840]
[40]
Hrossova, D.; Sikorsky, T.; Potesil, D.; Bartosovic, M.; Pasulka, J.; Zdrahal, Z.; Stefl, R.; Vanacova, S. RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3′-end extended forms of snRNAs. Nucleic Acids Res., 2015, 43(8), 4236-4248.
[http://dx.doi.org/10.1093/nar/gkv240] [PMID: 25852104]
[41]
Bi, Y.; Jin, S.; Tang, G.; Pan, D.; Song, X.; Zhu, X.; Tan, S. Prognostic significance of ZP3 in hepatocellular carcinoma. Comb. Chem. High Throughput Screen., 2023, 26(9), 1729-1736.
[http://dx.doi.org/10.2174/1386207325666221010112601] [PMID: 36221877]
[42]
Zhao, A.N.; Yang, Z.; Wang, D.D.; Shi, B.; Zhang, H.; Bai, Y.; Yan, B.W.; Zhang, Y.; Wen, J.K.; Wang, X.L.; Qu, C.B. Disturbing NLRP3 acetylation and inflammasome assembly inhibits androgen receptor‐promoted inflammatory responses and prostate cancer progression. FASEB J., 2022, 36(11), e22602.
[http://dx.doi.org/10.1096/fj.202200673RRR] [PMID: 36250925]
[43]
Zhang, A.D.; Su, X.H.; Wang, Y.F.; Shi, G.F.; Han, C.; Zhang, N. Predicting the effects of radiotherapy based on diffusion kurtosis imaging in a xenograft mouse model of esophageal carcinoma. Exp. Ther. Med., 2021, 21(4), 327.
[http://dx.doi.org/10.3892/etm.2021.9758] [PMID: 33732300]
[44]
Zhu, M.; Zhang, R.N.; Zhang, H.; Qu, C.; Zhang, X.; Ren, L.X.; Yang, Z.; Gu, J.F. PCGF6/MAX/KDM5D facilitates MAZ/CDK4 axis expression and pRCC progression by hypomethylation of the DNA promoter. Epigenetics Chromatin, 2023, 16(1), 9.
[http://dx.doi.org/10.1186/s13072-023-00483-w] [PMID: 36890610]
[45]
Hudson, R.; Yao, H.P.; Suthe, S.R.; Patel, D.; Wang, M.H. Antibody-drug conjugate PCMC1D3-Duocarmycin SA as a novel therapeutic entity for targeted treatment of cancers aberrantly expressing MET receptor tyrosine kinase. Curr. Cancer Drug Targets, 2022, 22(4), 312-327.
[http://dx.doi.org/10.2174/1568009621666211222154129] [PMID: 34951367]
[46]
Liu, Y.; Shi, M.; He, X.; Cao, Y.; Liu, P.; Li, F.; Zou, S.; Wen, C.; Zhan, Q.; Xu, Z.; Wang, J.; Sun, B.; Shen, B. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J. Hematol. Oncol., 2022, 15(1), 52.
[http://dx.doi.org/10.1186/s13045-022-01272-w] [PMID: 35526050]
[47]
Luo, Y.; Zheng, S.; Wu, Q.; Wu, J.; Zhou, R.; Wang, C.; Wu, Z.; Rong, X.; Huang, N.; Sun, L.; Bin, J.; Liao, Y.; Shi, M.; Liao, W. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy, 2021, 17(12), 4083-4101.
[http://dx.doi.org/10.1080/15548627.2021.1901204] [PMID: 33764843]
[48]
Sun, Y.; Yang, Z.; Zheng, B.; Zhang, X.; Zhang, M.; Zhao, X.; Zhao, H.; Suzuki, T.; Wen, J. A novel regulatory mechanism of smooth muscle α-actin expression by NRG-1/circACTA2/miR-548f-5p axis. Circ. Res., 2017, 121(6), 628-635.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311441] [PMID: 28698179]
[49]
Chen, J.; Yu, Y.; Li, H.; Hu, Q.; Chen, X.; He, Y.; Xue, C.; Ren, F.; Ren, Z.; Li, J.; Liu, L.; Duan, Z.; Cui, G.; Sun, R. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol. Cancer, 2019, 18(1), 33.
[http://dx.doi.org/10.1186/s12943-019-0947-9] [PMID: 30825877]
[50]
Zhang, H.; Wei, P.; Lv, W.; Han, X.; Yang, J.; Qin, S. Long noncoding RNA lnc-DILC stabilizes PTEN and suppresses clear cell renal cell carcinoma progression. Cell Biosci., 2019, 9(1), 81.
[http://dx.doi.org/10.1186/s13578-019-0345-4] [PMID: 31592114]
[51]
Dong, Y.; Aronsson, M.; Gustafsson, J.A.; Okret, S. The mechanism of cAMP-induced glucocorticoid receptor expression. Correlation to cellular glucocorticoid response. J. Biol. Chem., 1989, 264(23), 13679-13683.
[http://dx.doi.org/10.1016/S0021-9258(18)80050-3] [PMID: 2547771]
[52]
Ying, X.; Chen, X.; Cheng, S.; Zhao, Z.; Guo, X.; Chen, H.; Hong, J.; Peng, L.; Xu, H. SeMet inhibits IL-1β-induced rheumatoid fibroblast-like synoviocytes proliferation and the production of inflammatory mediators. Biol. Trace Elem. Res., 2013, 153(1-3), 437-445.
[http://dx.doi.org/10.1007/s12011-013-9696-6] [PMID: 23681674]
[53]
Schmitt, A.; Brändle, A.L.; Herzog, P.; Röchner, F.; Fragasso, A.; Munz, B. Effects of the anti-oxidant PDTC in combination with a single bout of treadmill running on murine skeletal muscle. Redox Rep., 2020, 25(1), 70-79.
[http://dx.doi.org/10.1080/13510002.2020.1807088] [PMID: 32808587]
[54]
Lei, G.L.; Niu, Y.; Cheng, S.J.; Li, Y.Y.; Bai, Z.F.; Yu, L.X.; Hong, Z.X.; Liu, H.; Liu, H.H.; Yan, J.; Gao, Y.; Zhang, S.G.; Chen, Z.; Li, R.S.; Yang, P.H. Upregulation of long noncoding RNA W42 promotes tumor development by binding with DBN1 in hepatocellular carcinoma. World J. Gastroenterol., 2021, 27(20), 2586-2602.
[http://dx.doi.org/10.3748/wjg.v27.i20.2586] [PMID: 34092977]
[55]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[56]
Wang, W.; Lou, W.; Ding, B.; Yang, B.; Lu, H.; Kong, Q.; Fan, W. A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer. Aging, 2019, 11(9), 2610-2627.
[http://dx.doi.org/10.18632/aging.101933] [PMID: 31061236]
[57]
Luo, H.; Xu, C.; Le, W.; Ge, B.; Wang, T. lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA‐150. J. Cell. Biochem., 2019, 120(8), 13487-13493.
[http://dx.doi.org/10.1002/jcb.28622] [PMID: 30916832]
[58]
Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[59]
Liu, P.; Wei, J.; Mao, F.; Xin, Z.; Duan, H.; Du, Y.; Wang, X.; Li, Z.; Qian, J.; Yao, J. Establishment of a prognostic model for hepatocellular carcinoma based on endoplasmic reticulum stress-related gene analysis. Front. Oncol., 2021, 11, 641487.
[http://dx.doi.org/10.3389/fonc.2021.641487] [PMID: 34094926]
[60]
Li, Q.; Yan, W.; Cheng, S.; Guo, S.; Wang, W.; Zhang, Z.; Wang, L.; Zhang, J.; Wang, W. Introduction of G1 phase arrest in Human Hepatocellular carcinoma cells (HHCC) by APMCF1 gene transfection through the down-regulation of TIMP3 and up-regulation of the CDK inhibitors p21. Mol. Biol. Rep., 2006, 33(4), 257-263.
[http://dx.doi.org/10.1007/s11033-006-9007-9] [PMID: 17080297]
[61]
Cirrottola, F.; Scrutinio, D. Role of professional nurses in the management of patients with chronic heart failure in cardiac rehabilitation. Monaldi Arch. Chest Dis., 2003, 60(2), 161-165.
[PMID: 12918170]
[62]
Song, Q.; Chen, Q.; Wang, Q.; Yang, L.; Lv, D.; Jin, G.; Liu, J.; Li, B.; Fei, X. ATF-3/miR-590/GOLPH3 signaling pathway regulates proliferation of breast cancer. BMC Cancer, 2018, 18(1), 255.
[http://dx.doi.org/10.1186/s12885-018-4031-4] [PMID: 29534690]
[63]
Guenther, C. β2-Integrins – Regulatory and executive bridges in the signaling network controlling leukocyte trafficking and migration. Front. Immunol., 2022, 13, 809590.
[http://dx.doi.org/10.3389/fimmu.2022.809590] [PMID: 35529883]
[64]
Song, J.; Lin, Z.; Liu, Q.; Huang, S.; Han, L.; Fang, Y.; Zhong, P.; Dou, R.; Xiang, Z.; Zheng, J.; Zhang, X.; Wang, S.; Xiong, B. MiR‐192‐5p/RB1/NF‐κBp65 signaling axis promotes IL‐10 secretion during gastric cancer EMT to induce Treg cell differentiation in the tumour microenvironment. Clin. Transl. Med., 2022, 12(8), e992.
[http://dx.doi.org/10.1002/ctm2.992] [PMID: 35969010]
[65]
Lees, D.M.; Reynolds, L.E.; Pedrosa, A.R.; Roy-Luzarraga, M.; Hodivala-Dilke, K.M. Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression. Angiogenesis, 2021, 24(3), 471-482.
[http://dx.doi.org/10.1007/s10456-021-09776-8] [PMID: 33730293]
[66]
Patil, S.; Rojulpote, C.; Amanullah, A. Primary aldosteronism and ischemic heart disease. Front. Cardiovasc. Med., 2022, 9, 882330.
[http://dx.doi.org/10.3389/fcvm.2022.882330] [PMID: 35677685]
[67]
Zhang, A.; Wang, X.; Fan, C.; Mao, X. The role of Ki67 in evaluating neoadjuvant endocrine therapy of hormone receptor-positive breast cancer. Front. Endocrinol., 2021, 12, 687244.
[http://dx.doi.org/10.3389/fendo.2021.687244] [PMID: 34803903]
[68]
Ohayon, D.; De Chiara, A.; Chapuis, N.; Candalh, C.; Mocek, J.; Ribeil, J.A.; Haddaoui, L.; Ifrah, N.; Hermine, O.; Bouillaud, F.; Frachet, P.; Bouscary, D.; Witko-Sarsat, V. Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia. Sci. Rep., 2016, 6(1), 35561.
[http://dx.doi.org/10.1038/srep35561] [PMID: 27759041]
[69]
Kock am Brink, M.; Dunst, L.S.; Behrens, H.M.; Krüger, S.; Becker, T.; Röcken, C. Intratumoral heterogeneity affects tumor regression and Ki67 proliferation index in perioperatively treated gastric carcinoma. Br. J. Cancer, 2023, 128(2), 375-386.
[http://dx.doi.org/10.1038/s41416-022-02047-3] [PMID: 36347963]
[70]
Zeng, H.; Briske-Anderson, M.; Idso, J.P.; Hunt, C.D. The selenium metabolite methylselenol inhibits the migration and invasion potential of HT1080 tumor cells. J. Nutr., 2006, 136(6), 1528-1532.
[http://dx.doi.org/10.1093/jn/136.6.1528] [PMID: 16702316]
[71]
Kim, A.; Jung, J.Y.; Son, M.; Lee, S.H.; Lim, J.S.; Chung, A.S. Long exposure of non-cytotoxic concentrations of methylselenol suppresses the invasive potential of B16F10 melanoma. Oncol. Rep., 2008, 20(3), 557-565.
[PMID: 18695906]
[72]
Zheng, J.H.; Viacava Follis, A.; Kriwacki, R.W.; Moldoveanu, T. Discoveries and controversies in BCL ‐2 protein‐mediated apoptosis. FEBS J., 2016, 283(14), 2690-2700.
[http://dx.doi.org/10.1111/febs.13527] [PMID: 26411300]
[73]
Redman, C.; Scott, J.A.; Baines, A.T.; Basye, J.L.; Clark, L.C.; Calley, C.; Roe, D.; Payne, C.M.; Nelson, M.A. Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett., 1998, 125(1-2), 103-110.
[http://dx.doi.org/10.1016/S0304-3835(97)00497-7] [PMID: 9566703]
[74]
Yang, Y.; Huang, F.; Ren, Y.; Xing, L.; Wu, Y.; Li, Z.; Pan, H.; Xu, C. The anticancer effects of sodium selenite and selenomethionine on human colorectal carcinoma cell lines in nude mice. Oncol. Res., 2009, 18(1), 1-8.
[http://dx.doi.org/10.3727/096504009789745647] [PMID: 19911698]
[75]
Dai, X.; Thongchot, S.; Dokduang, H.; Loilome, W.; Khuntikeo, N.; Titapun, A.; Ungarreevittaya, P.; Yongvanit, P.; Techasen, A.; Namwat, N. Potential of selenium compounds as new anticancer agents for cholangiocarcinoma. Anticancer Res., 2016, 36(11), 5981-5988.
[http://dx.doi.org/10.21873/anticanres.11186] [PMID: 27793924]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy