Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Inhibitory Effects of Tricyclic Antidepressants on Human Liver Microsomal Morphine Glucuronidation: Application of IVIVE to Predict Potential Drug-Drug Interactions in Humans

Author(s): Verawan Uchaipichat*

Volume 24, Issue 12, 2023

Published on: 05 January, 2024

Page: [835 - 843] Pages: 9

DOI: 10.2174/0113892002270594231212090958

Price: $65

Abstract

Background: Tricyclic antidepressants (TCAs) are commonly co-administered with morphine as an adjuvant analgesic. Nevertheless, there remains a lack of information concerning metabolic drug-drug interactions (DDIs) resulting from TCA inhibition on morphine glucuronidation.

Objective: This study aimed to (i) examine the inhibitory effects of TCAs (viz., amitriptyline, clomipramine, imipramine, and nortriptyline) on human liver microsomal morphine 3- and 6-glucuronidation and (ii) evaluate the potential of DDI in humans by employing in vitro-in vivo extrapolation (IVIVE) approaches.

Method: The inhibition parameters for TCA inhibition on morphine glucuronidation were derived from the in vitro system containing 2% BSA. The Ki values were employed to predict the DDI magnitude in vivo by using static and dynamic mechanistic PBPK approaches

Results: TCAs moderately inhibited human liver microsomal morphine glucuronidation, with clomipramine exhibiting the most potent inhibition potency. Amitriptyline, clomipramine, imipramine, and nortriptyline competitively inhibited morphine 3- and 6-glucuronide formation with the respective Ki values of 91 ± 7.5 and 82 ± 11 μM, 23 ± 1.3 and 14 ± 0.7 μM, 103 ± 5 and 90 ± 7 μM, and 115 ± 5 and 110 ± 3 μM. Employing the static mechanistic IVIVE, a prediction showed an estimated 20% elevation in the morphine AUC when co-administered with either clomipramine or imipramine, whereas the predicted increase was <5% for amitriptyline or nortriptyline. PBPK modelling predicted an increase of less than 10% in the morphine AUC due to the inhibition of clomipramine and imipramine in both virtual healthy and cirrhotic populations.

Conclusion: The results suggest that the likelihood of potential clinical DDIs arising from tricyclic antidepressant inhibition on morphine glucuronidation is low.

Graphical Abstract

[1]
Hasselström, J.; Säwe, J. Morphine pharmacokinetics and metabolism in humans. Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin. Pharmacokinet., 1993, 24(4), 344-354.
[PMID: 8491060]
[2]
Miners, J.O.; Mackenzie, P.I.; Knights, K.M. The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro–in vivo extrapolation of drug clearance and drug-drug interaction potential. Drug Metab. Rev., 2010, 42(1), 196-208.
[http://dx.doi.org/10.3109/03602530903210716] [PMID: 19795925]
[3]
Miners, J.O.; Rowland, A.; Novak, J.J.; Lapham, K.; Goosen, T.C. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol. Ther., 2021, 218, 107689.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107689] [PMID: 32980440]
[4]
Rowland, A.; Miners, J.O.; Mackenzie, P.I. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol., 2013, 45(6), 1121-1132.
[http://dx.doi.org/10.1016/j.biocel.2013.02.019] [PMID: 23500526]
[5]
Court, M.H.; Krishnaswamy, S.; Hao, Q.; Duan, S.X.; Patten, C.J.; von Moltke, L.L.; Greenblatt, D.J. Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: Specificity and influence of the UGT2B7*2 polymorphism. Drug Metab. Dispos., 2003, 31(9), 1125-1133.
[http://dx.doi.org/10.1124/dmd.31.9.1125] [PMID: 12920168]
[6]
Ohno, S.; Kawana, K.; Nakajin, S. Contribution of UDP-glucuronosyltransferase 1A1 and 1A8 to morphine-6-glucuronidation and its kinetic properties. Drug Metab. Dispos., 2008, 36(4), 688-694.
[http://dx.doi.org/10.1124/dmd.107.019281] [PMID: 18187562]
[7]
Stone, A.N.; Mackenzie, P.I.; Galetin, A.; Houston, J.B.; Miners, J.O. Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human udp-glucuronosyltransferases: Evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab. Dispos., 2003, 31(9), 1086-1089.
[http://dx.doi.org/10.1124/dmd.31.9.1086] [PMID: 12920162]
[8]
Burton, A.W.; Cleeland, C.S. Cancer pain: Progress since the WHO guidelines. Pain Pract., 2001, 1(3), 236-242.
[http://dx.doi.org/10.1111/j.1533-2500.2001.01025.x] [PMID: 17134407]
[9]
Hara, Y.; Nakajima, M.; Miyamoto, K.; Yokoi, T. Morphine glucuronosyltransferase activity in human liver microsomes is inhibited by a variety of drugs that are co-administered with morphine. Drug Metab. Pharmacokinet., 2007, 22(2), 103-112.
[http://dx.doi.org/10.2133/dmpk.22.103] [PMID: 17495417]
[10]
Wahlström, A.; Lenhammar, L.; Ask, B.; Rane, A. Tricyclic antidepressants inhibit opioid receptor binding in human brain and hepatic morphine glucuronidation. Pharmacol. Toxicol., 1994, 75(1), 23-27.
[http://dx.doi.org/10.1111/j.1600-0773.1994.tb00319.x] [PMID: 7971731]
[11]
Tzvetkov, M.V.; dos Santos Pereira, J.N.; Meineke, I.; Saadatmand, A.R.; Stingl, J.C.; Brockmöller, J. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem. Pharmacol., 2013, 86(5), 666-678.
[http://dx.doi.org/10.1016/j.bcp.2013.06.019] [PMID: 23835420]
[12]
Ventafridda, V.; Blanchi, M.; Ripamonti, C.; Sacerdote, P.; De Conno, F.; Zecca, E.; Panerai, A.E. Studies on the effects of antidepressant drugs on the antinociceptive action of morphine and on plasma morphine in rat and man. Pain, 1990, 43(2), 155-162.
[http://dx.doi.org/10.1016/0304-3959(90)91068-T] [PMID: 2087328]
[13]
In vitro drug interaction studies - cytochrome P450 enzyme - and transporter-mediated drug interactions: guidance for industry. In: Health Policy and Services Research; Silver Spring, MD : Center for Drug Evaluation and Research, 2020.
[14]
Raungrut, P.; Uchaipichat, V.; Elliot, D.J.; Janchawee, B.; Somogyi, A.A.; Miners, J.O. In vitro-in vivo extrapolation predicts drug-drug interactions arising from inhibition of codeine glucuronidation by dextropropoxyphene, fluconazole, ketoconazole, and methadone in humans. J. Pharmacol. Exp. Ther., 2010, 334(2), 609-618.
[http://dx.doi.org/10.1124/jpet.110.167916] [PMID: 20484152]
[15]
Uchaipichat, V. In vitro inhibitory effects of major bioactive constituents of Andrographis paniculata, Curcuma longa and Silybum marianum on human liver microsomal morphine glucuronidation: A prediction of potential herb-drug interactions arising from andrographolide, curcumin and silybin inhibition in humans. Drug Metab. Pharmacokinet., 2018, 33(1), 67-76.
[http://dx.doi.org/10.1016/j.dmpk.2017.10.005] [PMID: 29241692]
[16]
Uchaipichat, V.; Winner, L.K.; Mackenzie, P.I.; Elliot, D.J.; Williams, J.A.; Miners, J.O. Quantitative prediction of in vivo inhibitory interactions involving glucuronidated drugs from in vitro data: the effect of fluconazole on zidovudine glucuronidation. Br. J. Clin. Pharmacol., 2006, 61(4), 427-439.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02588.x] [PMID: 16542204]
[17]
Uchaipichat, V.; Raungrut, P.; Chau, N.; Janchawee, B.; Evans, A.M.; Miners, J.O. Effects of ketamine on human UDP-glucuronosyltransferases in vitro predict potential drug-drug interactions arising from ketamine inhibition of codeine and morphine glucuronidation. Drug Metab. Dispos., 2011, 39(8), 1324-1328.
[http://dx.doi.org/10.1124/dmd.111.039727] [PMID: 21551257]
[18]
Uchaipichat, V.; Rowland, A.; Miners, J.O. Inhibitory effects of non-steroidal anti-inflammatory drugs on human liver microsomal morphine glucuronidation: Implications for drug-drug interaction liability. Drug Metab. Pharmacokinet., 2022, 42, 100442.
[http://dx.doi.org/10.1016/j.dmpk.2021.100442] [PMID: 34991001]
[19]
Emoto, C.; Fukuda, T.; Johnson, T.N.; Neuhoff, S.; Sadhasivam, S.; Vinks, A.A. Characterization of contributing factors to variability in morphine clearance through PBPK modeling implemented with OCT1 transporter. CPT Pharmacometrics Syst. Pharmacol., 2017, 6(2), 110-119.
[http://dx.doi.org/10.1002/psp4.12144] [PMID: 27935268]
[20]
Prasad, B.; Bhatt, D.K.; Johnson, K.; Chapa, R.; Chu, X.; Salphati, L.; Xiao, G.; Lee, C.; Hop, C.E.C.A.; Mathias, A.; Lai, Y.; Liao, M.; Humphreys, W.G.; Kumer, S.C.; Unadkat, J.D. Abundance of Phase 1 and 2 drug-metabolizing enzymes in alcoholic and hepatitis c cirrhotic livers: A quantitative targeted proteomics study. Drug Metab. Dispos., 2018, 46(7), 943-952.
[http://dx.doi.org/10.1124/dmd.118.080523] [PMID: 29695616]
[21]
Chau, N.; Elliot, D.J.; Lewis, B.C.; Burns, K.; Johnston, M.R.; Mackenzie, P.I.; Miners, J.O. Morphine glucuronidation and glucosidation represent complementary metabolic pathways that are both catalyzed by UDP-glucuronosyltransferase 2B7: Kinetic, inhibition, and molecular modeling studies. J. Pharmacol. Exp. Ther., 2014, 349(1), 126-137.
[http://dx.doi.org/10.1124/jpet.113.212258] [PMID: 24459244]
[22]
Ito, K.; Iwatsubo, T.; Kanamitsu, S.; Nakajima, Y.; Sugiyama, Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu. Rev. Pharmacol. Toxicol., 1998, 38(1), 461-499.
[http://dx.doi.org/10.1146/annurev.pharmtox.38.1.461] [PMID: 9597163]
[23]
Rollins, D.E.; Alván, G.; Bertilsson, L.; Gillette, J.R.; Mellström, B.; Sjöqvist, F.; Träskman, L. Interindividual differences in amitriptyline demethylation. Clin. Pharmacol. Ther., 1980, 28(1), 121-129.
[http://dx.doi.org/10.1038/clpt.1980.140] [PMID: 7389249]
[24]
Balant-Gorgia, A.E.; Gex-Fabry, M.; Balant, L.P. Clinical pharmacokinetics of clomipramine. Clin. Pharmacokinet., 1991, 20(6), 447-462.
[http://dx.doi.org/10.2165/00003088-199120060-00002] [PMID: 2044329]
[25]
Nguyen, H.Q.; Callegari, E.; Obach, R.S. The use of in vitro data and physiologically-based pharmacokinetic modeling to predict drug metabolite exposure: Desipramine exposure in cytochrome p4502d6 extensive and poor metabolizers following administration of imipramine. Drug Metab. Dispos., 2016, 44(10), 1569-1578.
[http://dx.doi.org/10.1124/dmd.116.071639] [PMID: 27440861]
[26]
Corte, L.D.; Valoti, M.; Palmi, M.; Giovannini, M.G.; Sgaragli, G.P. Pharmacokinetics of chlorimipramine, chlorpromazine and their N-dealkylated metabolites in plasma of healthy volunteers after a single oral dose of the parent compounds. J. Pharm. Pharmacol., 2011, 45(9), 825-829.
[http://dx.doi.org/10.1111/j.2042-7158.1993.tb05694.x] [PMID: 7903373]
[27]
Evans, L.E.J.; Bett, J.H.N.; Cox, J.R.; Dubois, J.P.; Van Hees, T. The bioavailability of oral and parenteral chlorimipramine (anafranil). Prog. Neuropsychopharmacol., 1980, 4(3), 293-302.
[http://dx.doi.org/10.1016/0364-7722(80)90050-8] [PMID: 7433566]
[28]
Müller, F.O.; Schall, R.; Mogilnicka, E.M.; Groenewoud, G.; Hundt, H.K.L.; Luus, H.G.; Middle, M.V.; Swart, K.J.; De Vaal, A.C. Relative bioavailability of four clomipramine hydrochloride tablet products. Biopharm. Drug Dispos., 1996, 17(1), 81-90.
[http://dx.doi.org/10.1002/(SICI)1099-081X(199601)17:1<81:AID-BDD939>3.0.CO;2-5] [PMID: 8991493]
[29]
Gupta, S.K.; Shah, J.; Guinta, D.; Hwang, S. Multiple-dose pharmacokinetics and pharmacodynamics of OROS and immediate release amitriptyline hydrochloride formulations. J. Clin. Pharmacol., 1998, 38(1), 60-67.
[http://dx.doi.org/10.1002/j.1552-4604.1998.tb04378.x] [PMID: 9597561]
[30]
Vandel, S.; Bertschy, G.; Perault, M.C.; Sandoz, M.; Bouquet, S.; Chakroun, R.; Guibert, S.; Vandel, B. Minor and clinically non-significant interaction between toloxatone and amitriptyline. Eur. J. Clin. Pharmacol., 1993, 44(1), 97-99.
[http://dx.doi.org/10.1007/BF00315289] [PMID: 8436164]
[31]
Warrington, S.J.; Turner, P.; Skrumsager, B.K. Cardiovascular (ECG and systolic time intervals) and anticholinergic effects of repeated doses of femoxetine‐a comparison with amitriptyline and placebo in healthy men. Br. J. Clin. Pharmacol., 1989, 27(3), 343-351.
[http://dx.doi.org/10.1111/j.1365-2125.1989.tb05375.x] [PMID: 2719894]
[32]
Burch, J.E.; Shaw, D.M.; Michalakeas, A.; Karajgi, B.; Roberts, S.G.; Raddats, M.A. Time course of plasma drug levels during once-daily oral administration of clomipramine. Psychopharmacology, 1982, 77(4), 344-347.
[http://dx.doi.org/10.1007/BF00432768] [PMID: 6813895]
[33]
de Cuyper, H.J.A.; van Praag, H.M.; Mulder-Hajonides, W.R.E.M.; Westenberg, H.G.M.; de Zeeuw, R.A. Pharmacokinetics of clomipramine in depressive patients. Psychiatry Res., 1981, 4(2), 147-156.
[http://dx.doi.org/10.1016/0165-1781(81)90018-4] [PMID: 6939006]
[34]
Träskman, L.; Åsberg, M.; Bertiisson, L.; Cronholm, B.; Mellström, B.; Neckers, L.M.; Sjöqvist, F.; Thorén, P.; Tybring, G. Plasma levels of chlorimipramine and its demethyl metabolite during treatment of depression. Clin. Pharmacol. Ther., 1979, 26(5), 600-610.
[http://dx.doi.org/10.1002/cpt1979265600] [PMID: 498703]
[35]
Brøsen, K.; Gram, L.F.; Klysner, R.; Bech, P. Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. Eur. J. Clin. Pharmacol., 1986, 30(1), 43-49.
[http://dx.doi.org/10.1007/BF00614194] [PMID: 3709631]
[36]
Gram, L.F.; Bjerre, M.; Kragh-Sørensen, P.; Kvinesdal, B.; Molin, J.; Pedersen, O.L.; Reisby, N. Imipramine metabolites in blood of patients during therapy and after overdose. Clin. Pharmacol. Ther., 1983, 33(3), 335-342.
[http://dx.doi.org/10.1038/clpt.1983.42] [PMID: 6825388]
[37]
Burrows, G.; Davies, B.; Scoggins, B. Plasma concentration of nortriptyline and clinical response in depressive illness. Lancet, 1972, 300(7778), 619-623.
[http://dx.doi.org/10.1016/S0140-6736(72)93015-2] [PMID: 4116775]
[38]
Kragh-Sørensen, P.; Åsberg, M.; Eggert-Hansen, C. Plasmanortriptyline levels in endogenous depression. Lancet, 1973, 301(7795), 113-115.
[http://dx.doi.org/10.1016/S0140-6736(73)90192-X] [PMID: 4118463]
[39]
Montgomery, S.; Braithwaite, R.; Dawling, S.; McAuley, R. High plasma nortriptyline levels in the treatment of depression. I. Clin. Pharmacol. Ther., 1978, 23(3), 309-314.
[http://dx.doi.org/10.1002/cpt1978233309] [PMID: 627137]
[40]
Haupt, L.J.; Kazmi, F.; Ogilvie, B.W.; Buckley, D.B.; Smith, B.D.; Leatherman, S.; Paris, B.; Parkinson, O.; Parkinson, A. The reliability of estimating Ki Values for direct, reversible inhibition of cytochrome P450 enzymes from corresponding IC50 values: A retrospective analysis of 343 experiments. Drug Metab. Dispos., 2015, 43(11), 1744-1750.
[http://dx.doi.org/10.1124/dmd.115.066597] [PMID: 26354951]
[41]
Green, M.D.; Bishop, W.P.; Tephly, T.R. Expressed human UGT1.4 protein catalyzes the formation of quaternary ammoniumlinked glucuronides. Drug Metab. Dispos., 1995, 23(3), 299-302.
[PMID: 7628292]
[42]
Green, M.D.; King, C.D.; Mojarrabi, B.; Mackenzie, P.I.; Tephly, T.R. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab. Dispos., 1998, 26(6), 507-512.
[PMID: 9616184]
[43]
Kato, Y.; Izukawa, T.; Oda, S.; Fukami, T.; Finel, M.; Yokoi, T.; Nakajima, M. Human UDP-glucuronosyltransferase (UGT) 2B10 in drug N-glucuronidation: substrate screening and comparison with UGT1A3 and UGT1A4. Drug Metab. Dispos., 2013, 41(7), 1389-1397.
[http://dx.doi.org/10.1124/dmd.113.051565] [PMID: 23611809]
[44]
Zhou, D.; Guo, J.; Linnenbach, A.J.; Booth-Genthe, C.L.; Grimm, S.W. Role of human UGT2B10 in N-glucuronidation of tricyclic antidepressants, amitriptyline, imipramine, clomipramine, and trimipramine. Drug Metab. Dispos., 2010, 38(5), 863-870.
[http://dx.doi.org/10.1124/dmd.109.030981] [PMID: 20133892]
[45]
Uchaipichat, V.; Galetin, A.; Houston, J.B.; Mackenzie, P.I.; Williams, J.A.; Miners, J.O. Kinetic modeling of the interactions between 4-methylumbelliferone, 1-naphthol, and zidovudine glucuronidation by udp-glucuronosyltransferase 2B7 (UGT2B7) provides evidence for multiple substrate binding and effector sites. Mol. Pharmacol., 2008, 74(4), 1152-1162.
[http://dx.doi.org/10.1124/mol.108.048645] [PMID: 18647858]
[46]
Miners, J.O.; Polasek, T.M.; Hulin, J.A.; Rowland, A.; Meech, R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol. Ther., 2023, 248, 108459.
[http://dx.doi.org/10.1016/j.pharmthera.2023.108459] [PMID: 37263383]
[47]
Rowland, A.; Gaganis, P.; Elliot, D.J.; Mackenzie, P.I.; Knights, K.M.; Miners, J.O. Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: Implications for in vitro-in vivo extrapolation. J. Pharmacol. Exp. Ther., 2007, 321(1), 137-147.
[http://dx.doi.org/10.1124/jpet.106.118216] [PMID: 17237258]
[48]
Rowland, A.; Elliot, D.J.; Williams, J.A.; Mackenzie, P.I.; Dickinson, R.G.; Miners, J.O. In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab. Dispos., 2006, 34(6), 1055-1062.
[http://dx.doi.org/10.1124/dmd.106.009340] [PMID: 16565174]
[49]
Furlanut, M.; Benetello, P.; Spina, E. Pharmacokinetic optimisation of tricyclic antidepressant therapy. Clin. Pharmacokinet., 1993, 24(4), 301-318.
[http://dx.doi.org/10.2165/00003088-199324040-00004] [PMID: 8491058]
[50]
McLure, J.A.; Birkett, D.J.; Elliot, D.J.; Williams, J.A.; Rowland, A.; Miners, J.O. Application of the fluorescent probe 1-anilinonaphthalene-8-sulfonate to the measurement of the nonspecific binding of drugs to human liver microsomes. Drug Metab. Dispos., 2011, 39(9), 1711-1717.
[http://dx.doi.org/10.1124/dmd.111.039354] [PMID: 21610127]
[51]
McLure, J.A.; Miners, J.O.; Birkett, D.J. Nonspecific binding of drugs to human liver microsomes. Br. J. Clin. Pharmacol., 2000, 49(5), 453-461.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00193.x] [PMID: 10792203]
[52]
Obach, R.S. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab. Dispos., 1999, 27(11), 1350-1359.
[PMID: 10534321]
[53]
Burns, K.; Nair, P.C.; Rowland, A.; Mackenzie, P.I.; Knights, K.M.; Miners, J.O. The nonspecific binding of tyrosine kinase inhibitors to human liver microsomes. Drug Metab. Dispos., 2015, 43(12), 1934-1937.
[http://dx.doi.org/10.1124/dmd.115.065292] [PMID: 26443648]
[54]
Gardner, I.; Xu, M.; Han, C.; Wang, Y.; Jiao, X.; Jamei, M.; Khalidi, H.; Kilford, P.; Neuhoff, S.; Southall, R.; Turner, D.B.; Musther, H.; Jones, B.; Taylor, S. Non-specific binding of compounds in in vitro metabolism assays: A comparison of microsomal and hepatocyte binding in different species and an assessment of the accuracy of prediction models. Xenobiotica, 2022, 52(8), 943-956.
[http://dx.doi.org/10.1080/00498254.2022.2132426] [PMID: 36222269]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy