Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Nutritional Therapy Strategies Targeting Tumor Energy Metabolism

Author(s): Taojia Chen and Haining Yu*

Volume 24, Issue 12, 2023

Published on: 28 December, 2023

Page: [803 - 816] Pages: 14

DOI: 10.2174/0113892002280203231213110634

Price: $65

Abstract

Cancer is the second leading cause of mortality worldwide. The heightened nutrient uptake, particularly glucose, and elevated glycolysis observed in rapidly proliferating tumor cells highlight the potential targeting of energy metabolism pathways for the treatment of cancer. Numerous studies and clinical trials have demonstrated the efficacy of nutritional therapy in mitigating the adverse effects of chemotherapy and radiotherapy, enhancing treatment outcomes, prolonging survival, and improving the overall quality of life of patients. This review article comprehensively examines nutritional therapy strategies that specifically address tumor energy metabolism. Moreover, it explores the intricate interplay between energy metabolism and the gut microbiota in the context of nutritional therapy. The findings aim to provide valuable insights for future clinical research endeavors in this field.

Graphical Abstract

[1]
Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The everincreasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[2]
Guerra, F.; Arbini, A. A.; Moro, L. Mitochondria and cancer chemoresistance. Iochim. Biophys. Acta BBA - Bioenerg., 2017, 1858, 686-699.
[http://dx.doi.org/10.1016/j.bbabio.2017.01.012] [PMID: 28161329]
[3]
Gundamaraju, R.; Lu, W.; Manikam, R. Revisiting mitochondria scored cancer progression and metastasis. Cancers, 2021, 13(3), 432.
[http://dx.doi.org/10.3390/cancers13030432] [PMID: 33498743]
[4]
Egan, G.; Khan, D.H.; Lee, J.B.; Mirali, S.; Zhang, L.; Schimmer, A.D. Mitochondrial and metabolic pathways regulate nuclear gene expression to control differentiation, stem cell function, and immune response in leukemia. Cancer Discov., 2021, 11(5), 1052-1066.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1227] [PMID: 33504581]
[5]
Wang, J.; Ye, C.; Chen, C.; Xiong, H.; Xie, B.; Zhou, J.; Chen, Y.; Zheng, S.; Wang, L. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: A systematic review and metaanalysis. Oncotarget, 2017, 8(10), 16875-16886.
[http://dx.doi.org/10.18632/oncotarget.15171] [PMID: 28187435]
[6]
Zeng, K.; Ju, G.; Wang, H.; Huang, J. GLUT1/3/4 as novel biomarkers for the prognosis of human breast cancer. Transl. Cancer Res., 2020, 9(4), 2363-2377.
[http://dx.doi.org/10.21037/tcr.2020.03.50] [PMID: 35117597]
[7]
Liu, B.; Song, M.; Qin, H.; Zhang, B.; Liu, Y.; Sun, Y.; Ma, Y.; Shi, T. Phosphoribosyl pyrophosphate amidotransferase promotes the progression of thyroid cancer via regulating pyruvate kinase M2. OncoTargets Ther., 2020, 13, 7629-7639.
[http://dx.doi.org/10.2147/OTT.S253137] [PMID: 32801776]
[8]
Wan, L.; Xia, T.; Du, Y.; Liu, J.; Xie, Y.; Zhang, Y.; Guan, F.; Wu, J.; Wang, X.; Shi, C. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: A role for exosomes in metabolic switch of liver nonparenchymal cells. FASEB J., 2019, 33(7), 8530-8542.
[http://dx.doi.org/10.1096/fj.201802675R] [PMID: 30970216]
[9]
Zhao, X.; Zhao, L.; Yang, H.; Li, J.; Min, X.; Yang, F.; Liu, J.; Huang, G. Pyruvate kinase M2 interacts with nuclear sterol regulatory element–binding protein 1a and thereby activates lipogenesis and cell proliferation in hepatocellular carcinoma. J. Biol. Chem., 2018, 293(17), 6623-6634.
[http://dx.doi.org/10.1074/jbc.RA117.000100] [PMID: 29514980]
[10]
Darvishi, M.; Tosan, F.; Nakhaei, P.; Manjili, D.A.; Kharkouei, S.A.; Alizadeh, A.; Ilkhani, S.; Khalafi, F.; Zadeh, F.A.; Shafagh, S.G. Recent progress in cancer immunotherapy: Overview of current status and challenges. Pathol. Res. Pract., 2023, 241, 154241.
[http://dx.doi.org/10.1016/j.prp.2022.154241] [PMID: 36543080]
[11]
Bromma, K.; Chithrani, D.B. Advances in gold nanoparticle-based combined cancer therapy. Nanomaterials, 2020, 10(9), 1671.
[http://dx.doi.org/10.3390/nano10091671] [PMID: 32858957]
[12]
Rodriguez-Arrastia, M.; Martinez-Ortigosa, A.; Rueda-Ruzafa, L.; Folch Ayora, A.; Ropero-Padilla, C. Probiotic supplements on oncology patients’ treatment-related side effects: A systematic review of randomized controlled trials. Int. J. Environ. Res. Public Health, 2021, 18(8), 4265.
[http://dx.doi.org/10.3390/ijerph18084265] [PMID: 33920572]
[13]
Bacon, C.G.; Giovannucci, E.; Testa, M.; Glass, T.A.; Kawachi, I. The association of treatment-related symptoms with quality‐of‐life outcomes for localized prostate carcinoma patients. Cancer, 2002, 94(3), 862-871.
[http://dx.doi.org/10.1002/cncr.10248] [PMID: 11857323]
[14]
O’Reilly, M.; Mellotte, G.; Ryan, B.; O’Connor, A. Gastrointestinal side effects of cancer treatments. Ther. Adv. Chronic Dis., 2020, 11, 2040622320970354.
[http://dx.doi.org/10.1177/2040622320970354] [PMID: 33294145]
[15]
Muscaritoli, M.; Corsaro, E.; Molfino, A. Awareness of cancer-related malnutrition and its management: Analysis of the results from a survey conducted among medical oncologists. Front. Oncol., 2021, 11, 682999.
[http://dx.doi.org/10.3389/fonc.2021.682999] [PMID: 34055649]
[16]
Valverde, A.; Uranga, E.; Agirre, G.; Murguiondo, M.; Jauregui, G.; San Francisco, J.; Delgado, I.; Barrio, A.; Moreno, L.; Telleria, H.; Basterretxea, L. Identification of malnutrition risk factors in patients with cancer in the first nursing visit. Ann. Oncol., 2019, 30, v845.
[http://dx.doi.org/10.1093/annonc/mdz276.037] [PMID: 27885969]
[17]
Aoyama, T.; Nakazono, M.; Nagasawa, S.; Segami, K. Clinical impact of perioperative oral nutritional treatment for body composition changes in gastrointestinal cancer treatment. Anticancer Res., 2021, 41(4), 1727-1732.
[http://dx.doi.org/10.21873/anticanres.14937] [PMID: 33813376]
[18]
A’zim, A.Z.A.; Zaid, Z.A.; Yusof, B.N.M.; Jabar, M.F.; Shahar, A.S.M. Effectiveness of intensive perioperative nutrition therapy among adults undergoing gastrointestinal and oncological surgery in a public hospital: Study protocol for a pragmatic randomized control trial. Trials, 2022, 23(1), 961.
[http://dx.doi.org/10.1186/s13063-022-06898-2] [PMID: 36435838]
[19]
De Waele, E.; Mattens, S.; Honoré, P.M.; Spapen, H.; De Grève, J.; Pen, J.J. Nutrition therapy in cachectic cancer patients. The tight caloric control (TiCaCo) pilot trial. Appetite, 2015, 91, 298-301.
[http://dx.doi.org/10.1016/j.appet.2015.04.049] [PMID: 25912786]
[20]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[21]
Zhou, Y.; Zhan, Y.; Jiang, W.; Liu, H.; Wei, S. Long noncoding RNAs and circular RNAs in the metabolic reprogramming of lung cancer: Functions, mechanisms, and clinical potential. Oxid. Med. Cell. Longev., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/4802338] [PMID: 35757505]
[22]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
[23]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[24]
Lu, S.; Wang, Y. Nonmetabolic functions of metabolic enzymes in cancer development. Cancer Commun., 2018, 38(1), 1-7.
[http://dx.doi.org/10.1186/s40880-018-0336-6] [PMID: 30367676]
[25]
Tan, Y.T.; Lin, J.F.; Li, T.; Li, J.J.; Xu, R.H.; Ju, H.Q. LncRNAmediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun., 2021, 41(2), 109-120.
[http://dx.doi.org/10.1002/cac2.12108] [PMID: 33119215]
[26]
Bonfanti, L.; Peretto, P.; De Marchis, S.; Fasolo, A. Carnosine related dipeptides in the mammalian brain. Prog. Neurobiol., 1999, 59(4), 333-353.
[http://dx.doi.org/10.1016/S0301-0082(99)00010-6] [PMID: 10501633]
[27]
Caruso, G.; Fresta, C.; Musso, N.; Giambirtone, M.; Grasso, M.; Spampinato, S.; Merlo, S.; Drago, F.; Lazzarino, G.; Sortino, M.; Lunte, S.; Caraci, F. Carnosine prevents Aβ-Induced oxidative stress and inflammation in microglial cells: A key role of TGF-B1. Cells, 2019, 8(1), 64.
[http://dx.doi.org/10.3390/cells8010064] [PMID: 30658430]
[28]
Bao, Y.; Ding, S.; Cheng, J.; Liu, Y.; Wang, B.; Xu, H.; Shen, Y.; Lyu, J. Carnosine inhibits the proliferation of human cervical gland carcinoma cells through inhibiting both mitochondrial bioenergetics and glycolysis pathways and retarding cell cycle progression. Integr. Cancer Ther., 2018, 17(1), 80-91.
[http://dx.doi.org/10.1177/1534735416684551] [PMID: 28008780]
[29]
Fan, H.; Wu, Y.; Yu, S.; Li, X.; Wang, A.; Wang, S.; Chen, W.; Lu, Y. Critical role of mTOR in regulating aerobic glycolysis in carcinogenesis (Review). Int. J. Oncol., 2020, 58(1), 9-19.
[http://dx.doi.org/10.3892/ijo.2020.5152] [PMID: 33367927]
[30]
Turner, M.D.; Sale, C.; Garner, A.C.; Hipkiss, A.R. Anti-cancer actions of carnosine and the restoration of normal cellular homeostasis. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(11), 119117.
[http://dx.doi.org/10.1016/j.bbamcr.2021.119117] [PMID: 34384791]
[31]
Shen, Y.; Yang, J.; Li, J.; Shi, X.; Ouyang, L.; Tian, Y.; Lu, J. Carnosine inhibits the proliferation of human gastric cancer SGC-7901 cells through both of the mitochondrial respiration and glycolysis pathways. PLoS One, 2014, 9(8), e104632.
[http://dx.doi.org/10.1371/journal.pone.0104632] [PMID: 25115854]
[32]
Oppermann, H.; Birkemeyer, C.; Meixensberger, J.; Gaunitz, F. Non‐enzymatic reaction of carnosine and glyceraldehyde‐3‐phosphate accompanies metabolic changes of the pentose phosphate pathway. Cell Prolif., 2020, 53(2), e12702.
[http://dx.doi.org/10.1111/cpr.12702] [PMID: 31628715]
[33]
Lee, J.; Park, J-R.; Lee, H.; Jang, S.; Ryu, S-M.; Kim, H.; Kim, D.; Jang, A.; Yang, S-R. L-carnosine induces apoptosis/cell cycle arrest via suppression of NF-KB/STAT1 pathway in HCT116 colorectal cancer cells. Vitro Cell. Dev. Biol. Anim., 2018, 54, 505-512.
[PMID: 29869056] [http://dx.doi.org/10.1007/s11626-018-0264-4]
[34]
Renner, C.; Seyffarth, A.; de Arriba, S.G.; Meixensberger, J.; Gebhardt, R.; Gaunitz, F. Carnosine inhibits growth of cells isolated from human glioblastoma multiforme. Int. J. Pept. Res. Ther., 2008, 14(2), 127-135.
[http://dx.doi.org/10.1007/s00726-019-02739-w] [PMID: 31073693]
[35]
Sun, X.; Zemel, M.B. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr. Metab., 2009, 6(1), 26.
[http://dx.doi.org/10.1186/1743-7075-6-26] [PMID: 19500359]
[36]
Liang, C.; Curry, B.J.; Brown, P.L.; Zemel, M.B. Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes. J. Nutr. Metab., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/239750] [PMID: 25400942]
[37]
Yang, W-H.; Su, Y-H.; Hsu, W-H.; Wang, C-C.; Arbiser, J.L.; Yang, M-H. Imipramine blue halts head and neck cancer invasion through promoting F-box and leucine-rich repeat protein 14-mediated Twist1 degradation. Oncogene, 2016, 35(18), 2287-2298.
[http://dx.doi.org/10.1038/onc.2015.291] [PMID: 26257063]
[38]
Viana, L.R.; Tobar, N.; Busanello, E.N.B.; Marques, A.C.; de Oliveira, A.G.; Lima, T.I.; Machado, G.; Castelucci, B.G.; Ramos, C.D.; Brunetto, S.Q.; Silveira, L.R.; Vercesi, A.E.; Consonni, S.R.; Gomes-Marcondes, M.C.C. Leucine-rich diet induces a shift in tumour metabolism from glycolytic towards oxidative phosphorylation, reducing glucose consumption and metastasis in Walker-256 tumour-bearing rats. Sci. Rep., 2019, 9(1), 15529.
[http://dx.doi.org/10.1038/s41598-019-52112-w] [PMID: 31664147]
[39]
Beaudry, A.G.; Law, M.L. Leucine supplementation in cancer cachexia: Mechanisms and a review of the pre-clinical literature. Nutrients, 2022, 14(14), 2824.
[http://dx.doi.org/10.3390/nu14142824] [PMID: 35889781]
[40]
Cruz, B.L.G.; da Silva, P.C.; Tomasin, R.; Oliveira, A.G.; Viana, L.R.; Salomao, E.M.; Gomes-Marcondes, M.C.C. Dietary leucine supplementation minimises tumour-induced damage in placental tissues of pregnant, tumour-bearing rats. BMC Cancer, 2016, 16(1), 58.
[http://dx.doi.org/10.1186/s12885-016-2103-x] [PMID: 26847205]
[41]
Plas, R.L.C.; Poland, M.; Faber, J.; Argilès, J.; van Dijk, M.; Laviano, A.; Meijerink, J.; Witkamp, R.F.; van Helvoort, A.; van Norren, K. A diet rich in fish oil and leucine ameliorates hypercalcemia in tumour-induced cachectic mice. Int. J. Mol. Sci., 2019, 20(20), 4978.
[http://dx.doi.org/10.3390/ijms20204978] [PMID: 31600911]
[42]
Hargreaves, I.P. Ubiquinone: Cholesterol’s reclusive cousin. Ann. Clin. Biochem., 2003, 40(3), 207-218.
[http://dx.doi.org/10.1258/000456303321610493] [PMID: 12803831]
[43]
Mantle, D.; Heaton, R.A.; Hargreaves, I.P. Coenzyme Q10 and immune function: An overview. Antioxidants, 2021, 10(5), 759.
[http://dx.doi.org/10.3390/antiox10050759] [PMID: 34064686]
[44]
Rusciani, L.; Proietti, I.; Rusciani, A.; Paradisi, A.; Sbordoni, G.; Alfano, C.; Panunzi, S.; De Gaetano, A.; Lippa, S. Low plasma coenzyme Q10 levels as an independent prognostic factor for melanoma progression. J. Am. Acad. Dermatol., 2006, 54(2), 234-241.
[http://dx.doi.org/10.1016/j.jaad.2005.08.031] [PMID: 16443053]
[45]
Rusciani, L.; Proietti, I.; Paradisi, A.; Rusciani, A.; Guerriero, G.; Mammone, A.; De Gaetano, A.; Lippa, S. Recombinant interferon α-2b and coenzyme Q10 as a postsurgical adjuvant therapy for melanoma: A 3-year trial with recombinant interferon-α and 5-year follow-up. Melanoma Res., 2007, 17(3), 177-183.
[http://dx.doi.org/10.1097/CMR.0b013e32818867a0] [PMID: 17505263]
[46]
Li, Y.; Lin, S.; Li, L.; Tang, Z.; Hu, Y.; Ban, X.; Zeng, T.; Zhou, Y.; Zhu, Y.; Gao, S.; Deng, W.; Zhang, X.; Xie, D.; Yuan, Y.; Huang, P.; Li, J.; Cai, Z.; Guan, X.Y. PDSS2 deficiency induces hepatocarcinogenesis by decreasing mitochondrial respiration and reprogramming glucose metabolism. Cancer Res., 2018, 78(16), 4471-4481.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2172] [PMID: 29967258]
[47]
Perumal, S.S.; Shanthi, P.; Sachdanandam, P. Energy-modulating vitamins – a new combinatorial therapy prevents cancer cachexia in rat mammary carcinoma. Br. J. Nutr., 2005, 93(6), 901-909.
[http://dx.doi.org/10.1079/BJN20051439] [PMID: 16022760]
[48]
Ancey, P.B.; Contat, C.; Meylan, E. Glucose transporters in cancer – from tumor cells to the tumor microenvironment. FEBS J., 2018, 285(16), 2926-2943.
[http://dx.doi.org/10.1111/febs.14577] [PMID: 29893496]
[49]
Okcu, O.; Sen, B.; Ozturk, C.; Guvendi, G.F.; Bedir, R. Glut-1 expression in breast cancer Turk. J. Pathol., 2021.
[http://dx.doi.org/10.5146/tjpath.2021.01557] [PMID: 34580846]
[50]
Li, F.; He, C.; Yao, H.; Liang, W.; Ye, X.; Ruan, J.; Lin, L.; Zou, J.; Zhou, S.; Huang, Y.; Li, Y.; Chen, S.; Huang, K.; Lian, G.; Chen, S. GLUT1 Regulates the tumor immune microenvironment and promotes tumor metastasis in pancreatic adenocarcinoma via NcRNA-mediated network. J. Cancer, 2022, 13(8), 2540-2558.
[http://dx.doi.org/10.7150/jca.72161] [PMID: 35711842]
[51]
Kamiya, S.; Nakamori, Y.; Takasawa, A.; Takasawa, K.; Kyuno, D.; Ono, Y.; Magara, K.; Osanai, M. Vitamin D metabolism in cancer: Potential feasibility of vitamin D metabolism blocking therapy. Med. Mol. Morphol., 2023, 56(2), 85-93.
[http://dx.doi.org/10.1007/s00795-023-00348-x] [PMID: 36749415]
[52]
Christakos, S.; Dhawan, P.; Liu, Y.; Peng, X.; Porta, A. New insights into the mechanisms of vitamin D action. J. Cell. Biochem., 2003, 88(4), 695-705.
[http://dx.doi.org/10.1002/jcb.10423] [PMID: 12577303]
[53]
Bergagnini-Kolev, M.C.; Hsu, S.; Aitken, M.L.; Goss, C.H.; Hoofnagle, A.N.; Zelnick, L.R.; Lum, D.; Best, C.M.; Thummel, K.E.; Kestenbaum, B.R.; de Boer, I.H.; Lin, Y.S. Metabolism and pharmacokinetics of vitamin D in patients with cystic fibrosis. J. Steroid Biochem. Mol. Biol., 2023, 232, 106332.
[http://dx.doi.org/10.1016/j.jsbmb.2023.106332] [PMID: 37217104]
[54]
Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol., 2014, 21(3), 319-329.
[http://dx.doi.org/10.1016/j.chembiol.2013.12.016] [PMID: 24529992]
[55]
Ordóñez Mena, J.M.; Brenner, H. Vitamin D and cancer: An overview on epidemiological studies. Adv. Exp. Med. Biol., 2014, 810, 17-32.
[PMID: 25207358]
[56]
Stroomberg, H.V.; Vojdeman, F.J.; Madsen, C.M.; Helgstrand, J.T.; Schwarz, P.; Heegaard, A.M.; Olsen, A.; Tjønneland, A.; Struer Lind, B.; Brasso, K.; Jørgensen, H.L.; Røder, M.A. Vitamin D levels and the risk of prostate cancer and prostate cancer mortality. Acta Oncol., 2021, 60(3), 316-322.
[http://dx.doi.org/10.1080/0284186X.2020.1837391] [PMID: 33103532]
[57]
Wu, X.; Hu, W.; Lu, L.; Zhao, Y.; Zhou, Y.; Xiao, Z.; Zhang, L.; Zhang, H.; Li, X.; Li, W.; Wang, S.; Cho, C.H.; Shen, J.; Li, M. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm. Sin. B, 2019, 9(2), 203-219.
[http://dx.doi.org/10.1016/j.apsb.2018.09.002] [PMID: 30972274]
[58]
Abu el Maaty, M.A.; Alborzinia, H.; Khan, S.J.; Büttner, M.; Wölfl, S. 1,25(OH)2D3 disrupts glucose metabolism in prostate cancer cells leading to a truncation of the TCA cycle and inhibition of TXNIP expression. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(10), 1618-1630.
[http://dx.doi.org/10.1016/j.bbamcr.2017.06.019] [PMID: 28651973]
[59]
Santos, J.M.; Khan, Z.S.; Munir, M.T.; Tarafdar, K.; Rahman, S.M.; Hussain, F. Vitamin D 3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells. J. Nutr. Biochem., 2018, 53, 111-120.
[http://dx.doi.org/10.1016/j.jnutbio.2017.10.013] [PMID: 29216499]
[60]
Lee, K.H.; Seong, H.J.; Kim, G.; Jeong, G.H.; Kim, J.Y.; Park, H.; Jung, E.; Kronbichler, A.; Eisenhut, M.; Stubbs, B.; Solmi, M.; Koyanagi, A.; Hong, S.H.; Dragioti, E.; de Rezende, L.F.M.; Jacob, L.; Keum, N.; van der Vliet, H.J.; Cho, E.; Veronese, N.; Grosso, G.; Ogino, S.; Song, M.; Radua, J.; Jung, S.J.; Thompson, T.; Jackson, S.E.; Smith, L.; Yang, L.; Oh, H.; Choi, E.K.; Shin, J.I.; Giovannucci, E.L.; Gamerith, G. Consumption of fish and ω-3 fatty acids and cancer risk: An umbrella review of meta-analyses of observational studies. Adv. Nutr., 2020, 11(5), 1134-1149.
[http://dx.doi.org/10.1093/advances/nmaa055] [PMID: 32488249]
[61]
Bradberry, J.C.; Hilleman, D.E. Overview of omega-3 fatty acid therapies. P&T, 2013, 38(11), 681-691.
[PMID: 24391388]
[62]
Elstrom, R.L.; Bauer, D.E.; Buzzai, M.; Karnauskas, R.; Harris, M.H.; Plas, D.R.; Zhuang, H.; Cinalli, R.M.; Alavi, A.; Rudin, C.M.; Thompson, C.B. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res., 2004, 64(11), 3892-3899.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2904] [PMID: 15172999]
[63]
Gottlob, K.; Majewski, N.; Kennedy, S.; Kandel, E.; Robey, R.B.; Hay, N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev., 2001, 15(11), 1406-1418.
[http://dx.doi.org/10.1101/gad.889901] [PMID: 11390360]
[64]
Kohn, A.D.; Summers, S.A.; Birnbaum, M.J.; Roth, R.A. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem., 1996, 271(49), 31372-31378.
[http://dx.doi.org/10.1074/jbc.271.49.31372] [PMID: 8940145]
[65]
Hajduch, E.; Alessi, D.R.; Hemmings, B.A.; Hundal, H.S. Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells. Diabetes, 1998, 47(7), 1006-1013.
[http://dx.doi.org/10.2337/diabetes.47.7.1006] [PMID: 9648821]
[66]
Ding, Y.; Mullapudi, B.; Torres, C.; Mascariñas, E.; Mancinelli, G.; Diaz, A.; McKinney, R.; Barron, M.; Schultz, M.; Heiferman, M.; Wojtanek, M.; Adrian, K.; DeCant, B.; Rao, S.; Ouellette, M.; Tsao, M.S.; Bentrem, D.; Grippo, P. Omega-3 fatty acids prevent early pancreatic carcinogenesis via repression of the AKT pathway. Nutrients, 2018, 10(9), 1289.
[http://dx.doi.org/10.3390/nu10091289] [PMID: 30213082]
[67]
Jiang, H.; Wang, L.; Wang, D.; Yan, N.; Li, C.; Wu, M.; Wang, F.; Mi, B.; Chen, F.; Jia, W.; Liu, X.; Lv, J.; Liu, Y.; Lin, J.; Ma, L. Omega-3 polyunsaturated fatty acid biomarkers and risk of type 2 diabetes, cardiovascular disease, cancer, and mortality. Clin. Nutr., 2022, 41(8), 1798-1807.
[http://dx.doi.org/10.1016/j.clnu.2022.06.034] [PMID: 35830775]
[68]
Woldetsadik, A.D.; Vogel, M.C.; Rabeh, W.M.; Magzoub, M. Hexokinase II–derived cell penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. FASEB J., 2017, 31(5), 2168-2184.
[http://dx.doi.org/10.1096/fj.201601173R] [PMID: 28183803]
[69]
Tsai, H.J.; Wilson, J.E. Functional organization of mammalian hexokinases: Characterization of the rat type III isozyme and its chimeric forms, constructed with the N- and C-terminal halves of the type I and type II isozymes. Arch. Biochem. Biophys., 1997, 338(2), 183-192.
[http://dx.doi.org/10.1006/abbi.1996.9850] [PMID: 9028870]
[70]
Nawaz, M.H.; Ferreira, J.C.; Nedyalkova, L.; Zhu, H.; Carrasco-López, C.; Kirmizialtin, S.; Rabeh, W.M. The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation. Biosci. Rep., 2018, 38(1), BSR20171666.
[http://dx.doi.org/10.1042/BSR20171666] [PMID: 29298880]
[71]
Constantinou, C.; Papas, A.; Constantinou, A.I. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer, 2008, 123(4), 739-752.
[http://dx.doi.org/10.1002/ijc.23689] [PMID: 18512238]
[72]
Das Gupta, S.; Sae-tan, S.; Wahler, J.; So, J. Y.; Bak, M. J.; Cheng, L. C.; Lee, M- J.; Lin, Y.; Shih, W. J.; Shull, J. D.; Safe, S.; Yang, C. S.; Suh, N. Dietary γ-tocopherol–rich mixture inhibits estrogen-induced mammary tumorigenesis by modulating estrogen metabolism, antioxidant response, and PPARγ. Cancer Prev. Res., 2015, 8, 807-816.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0154] [PMID: 26130252]
[73]
Jiang, Q.; Christen, S.; Shigenaga, K.M; Ames, B.N γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr., 2001, 74(6), 714-722.
[http://dx.doi.org/10.1093/ajcn/74.6.714] [PMID: 11722951]
[74]
Das Gupta, S.; Suh, N. Tocopherols in cancer: An update. Mol. Nutr. Food Res., 2016, 60(6), 1354-1363.
[http://dx.doi.org/10.1002/mnfr.201500847] [PMID: 26751721]
[75]
Rezaei, M.; Zeidooni, L.; Hashemitabar, M.; Razzazzadeh, S.; Mahdavinia, M.; Ghasemi, K. Gamma-tocopherol enhances apoptotic effects of lovastatin in human colorectal carcinoma cell line (HT29). Nutr. Cancer, 2014, 66(8), 1386-1393.
[http://dx.doi.org/10.1080/01635581.2014.956250] [PMID: 25296535]
[76]
Zulkapli, R.; Abdul Razak, F.; Zain, R.B. Vitamin E (α-tocopherol) exhibits antitumour activity on oral squamous carcinoma cells ORL-48. Integr. Cancer Ther., 2017, 16(3), 414-425.
[http://dx.doi.org/10.1177/1534735416675950] [PMID: 28818030]
[77]
Zhao, L.; Zhao, X.; Zhao, K.; Wei, P.; Fang, Y.; Zhang, F.; Zhang, B.; Ogata, K.; Mori, A.; Wei, T. The α-tocopherol derivative ESeroS-GS induces cell death and inhibits cell motility of breast cancer cells through the regulation of energy metabolism. Eur. J. Pharmacol., 2014, 745, 98-107.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.050] [PMID: 25446928]
[78]
Gonzalez, P.S.; O’Prey, J.; Cardaci, S.; Barthet, V.J.A.; Sakamaki, J.; Beaumatin, F.; Roseweir, A.; Gay, D.M.; Mackay, G.; Malviya, G.; Kania, E.; Ritchie, S.; Baudot, A.D.; Zunino, B.; Mrowinska, A.; Nixon, C.; Ennis, D.; Hoyle, A.; Millan, D.; McNeish, I.A.; Sansom, O.J.; Edwards, J.; Ryan, K.M. Mannose impairs tumour growth and enhances chemotherapy. Nature, 2018, 563(7733), 719-723.
[http://dx.doi.org/10.1038/s41586-018-0729-3] [PMID: 30464341]
[79]
DeRossi, C.; Bode, L.; Eklund, E.A.; Zhang, F.; Davis, J.A.; Westphal, V.; Wang, L.; Borowsky, A.D.; Freeze, H.H. Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J. Biol. Chem., 2006, 281(9), 5916-5927.
[http://dx.doi.org/10.1074/jbc.M511982200] [PMID: 16339137]
[80]
Xu, X.; Ye, L.; Li, L.; Chen, G. Glycopolymer-based hydrogels impair energy metabolism via delivering mannose and depleting glucose for tumor suppression. ACS Materials Letters, 2023, 5(4), 1145-1152.
[http://dx.doi.org/10.1021/acsmaterialslett.3c00063]
[81]
Ma, X.; Yang, S.; Zhang, T.; Wang, S.; Yang, Q.; Xiao, Y.; Shi, X.; Xue, P.; Kang, Y.; Liu, G.; Sun, Z.J.; Xu, Z. Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharm. Sin. B, 2022, 12(1), 451-466.
[http://dx.doi.org/10.1016/j.apsb.2021.05.016] [PMID: 35127398]
[82]
Nan, F.; Sun, Y.; Liang, H.; Zhou, J.; Ma, X.; Zhang, D. Mannose: A sweet option in the treatment of cancer and inflammation. Front. Pharmacol., 2022, 13, 877543.
[http://dx.doi.org/10.3389/fphar.2022.877543] [PMID: 35645798]
[83]
Liu, F.; Xu, X.; Li, C.; Li, C.; Li, Y.; Yin, S.; Yu, S.; Chen, X.Q. Mannose synergizes with chemoradiotherapy to cure cancer via metabolically targeting HIF-1 in a novel triple-negative glioblastoma mouse model. Clin. Transl. Med., 2020, 10(7), e226.
[http://dx.doi.org/10.1002/ctm2.226] [PMID: 33252849]
[84]
Sheeley, M.P.; Andolino, C.; Kiesel, V.A.; Teegarden, D. Vitamin D regulation of energy metabolism in cancer. Br. J. Pharmacol., 2022, 179(12), 2890-2905.
[http://dx.doi.org/10.1111/bph.15424] [PMID: 33651382]
[85]
Zuo, S.; Wu, L.; Wang, Y.; Yuan, X. Long non-coding RNA MEG3 activated by vitamin D suppresses glycolysis in colorectal cancer via promoting c-Myc degradation. Front. Oncol., 2020, 10, 274.
[http://dx.doi.org/10.3389/fonc.2020.00274] [PMID: 32219064]
[86]
Huang, C.Y.; Weng, Y.T.; Li, P.C.; Hsieh, N.T.; Li, C.I.; Liu, H.S.; Lee, M.F. Calcitriol suppresses Warburg effect and cell growth in human colorectal cancer cells. Life, 2021, 11(9), 963.
[http://dx.doi.org/10.3390/life11090963] [PMID: 34575112]
[87]
Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun., 2020, 11(1), 102.
[http://dx.doi.org/10.1038/s41467-019-13668-3] [PMID: 31900386]
[88]
Anderson, N.M.; Mucka, P.; Kern, J.G.; Feng, H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell, 2018, 9(2), 216-237.
[http://dx.doi.org/10.1007/s13238-017-0451-1] [PMID: 28748451]
[89]
Scagliola, A.; Mainini, F.; Cardaci, S. The tricarboxylic acid cycle at the crossroad between cancer and immunity. Antioxid. Redox Signal., 2020, 32(12), 834-852.
[http://dx.doi.org/10.1089/ars.2019.7974] [PMID: 31847530]
[90]
Sradhanjali, S.; Reddy, M.M. Inhibition of pyruvate dehydrogenase kinase as a therapeutic strategy against cancer. Curr. Top. Med. Chem., 2018, 18(6), 444-453.
[http://dx.doi.org/10.2174/1568026618666180523105756] [PMID: 29788890]
[91]
Juang, H.H. Modulation of mitochondrial aconitase on the bioenergy of human prostate carcinoma cells. Mol. Genet. Metab., 2004, 81(3), 244-252.
[http://dx.doi.org/10.1016/j.ymgme.2003.12.009] [PMID: 14972331]
[92]
Smolle, M.; Prior, A.E.; Brown, A.E.; Cooper, A.; Byron, O.; Lindsay, J.G. A new level of architectural complexity in the human pyruvate dehydrogenase complex. J. Biol. Chem., 2006, 281(28), 19772-19780.
[http://dx.doi.org/10.1074/jbc.M601140200] [PMID: 16679318]
[93]
Kwak, C.H.; Jin, L.; Han, J.H.; Han, C.W.; Kim, E.; Cho, M.; Chung, T.W.; Bae, S.J.; Jang, S.B.; Ha, K.T. Ilimaquinone induces the apoptotic cell death of cancer cells by reducing pyruvate dehydrogenase kinase 1 activity. Int. J. Mol. Sci., 2020, 21(17), 6021.
[http://dx.doi.org/10.3390/ijms21176021] [PMID: 32825675]
[94]
Lonsdale, D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid. Based Complement. Alternat. Med., 2006, 3(1), 49-59.
[http://dx.doi.org/10.1093/ecam/nek009] [PMID: 16550223]
[95]
Lu’o’ng, K.V.Q. Nguễn, L.T.H. The role of thiamine in cancer: Possible genetic and cellular signaling mechanisms. Cancer Genomics Proteomics, 2013, 10(4), 169-185.
[PMID: 23893925]
[96]
Gomes, F.; Bergeron, G.; Bourassa, M.W.; Fischer, P.R. Thiamine deficiency unrelated to alcohol consumption in high-income countries: A literature review. Ann. N. Y. Acad. Sci., 2021, 1498(1), 46-56.
[http://dx.doi.org/10.1111/nyas.14569] [PMID: 33576090]
[97]
Hanberry, B.S.; Berger, R.; Zastre, J.A. High-dose vitamin B1 reduces proliferation in cancer cell lines analogous to dichloroacetate. Cancer Chemother. Pharmacol., 2014, 73(3), 585-594.
[http://dx.doi.org/10.1007/s00280-014-2386-z] [PMID: 24452394]
[98]
Liu, X.; Montissol, S.; Uber, A.; Ganley, S.; Grossestreuer, A.; Berg, K.; Heydrick, S.; Donnino, M. The effects of thiamine on breast cancer cells. Molecules, 2018, 23(6), 1464.
[http://dx.doi.org/10.3390/molecules23061464] [PMID: 29914147]
[99]
Jonus, H.C.; Byrnes, C.C.; Kim, J.; Valle, M.L.; Bartlett, M.G.; Said, H.M.; Zastre, J.A. Thiamine mimetics sulbutiamine and benfotiamine as a nutraceutical approach to anticancer therapy. Biomed. Pharmacother., 2020, 121, 109648.
[http://dx.doi.org/10.1016/j.biopha.2019.109648] [PMID: 31810115]
[100]
Vinceti, M.; Rovesti, S.; Bergomi, M.; Vivoli, G. The epidemiology of selenium and human cancer. Tumori, 2000, 86(2), 105-118.
[http://dx.doi.org/10.1177/030089160008600201] [PMID: 10855846]
[101]
Pazirandeh, A.; Nejad, M.A.; Vossogh, P. Determination of selenium in blood serum of children with acute leukemia and effect of chemotherapy on serum selenium level. J. Trace Elem. Med. Biol., 1999, 13(4), 242-246.
[http://dx.doi.org/10.1016/S0946-672X(99)80043-1] [PMID: 10707348]
[102]
Asfour, I.A.; El-kholy, N.M.; Ayoub, M.S.; Ahmed, M.B.; Bakarman, A.A. Selenium and glutathione peroxidase status in adult Egyptian patients with acute myeloid leukemia. Biol. Trace Elem. Res., 2009, 132(1-3), 85-92.
[http://dx.doi.org/10.1007/s12011-009-8401-2] [PMID: 19458925]
[103]
Stevens, J.; Waters, R.; Sieniawska, C.; Kassam, S.; Montoto, S.; Fitzgibbon, J.; Rohatiner, A.; Lister, A.; Joel, S. Serum selenium concentration at diagnosis and outcome in patients with haematological malignancies. Br. J. Haematol., 2011, 154(4), 448-456.
[http://dx.doi.org/10.1111/j.1365-2141.2011.08744.x] [PMID: 21770918]
[104]
Short, S.P.; Pilat, J.M.; Williams, C.S. Roles for selenium and selenoprotein P in the development, progression, and prevention of intestinal disease. Free Radic. Biol. Med., 2018, 127, 26-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.066] [PMID: 29778465]
[105]
Rocha, K.C.; Vieira, M.L.S.; Beltrame, R.L.; Cartum, J.; Alves, S.I.P.M.N.; Azzalis, L.A.; Junqueira, V.B.C.; Pereira, E.C.; Fonseca, F.L.A. Impact of selenium supplementation in neutropenia and immunoglobulin production in childhood cancer patients. J. Med. Food, 2016, 19(6), 560-568.
[http://dx.doi.org/10.1089/jmf.2015.0145] [PMID: 27266340]
[106]
Xu, X.; Hou, Y.; Lin, S.; Wang, K.; Ren, Y.; Zheng, T.; Zhang, X.; Li, M.; Fan, L. Sodium selenite inhibits proliferation of lung cancer cells by inhibiting NF-κB nuclear translocation and down-regulating PDK1 expression which is a key enzyme in energy metabolism expression. J. Trace Elem. Med. Biol., 2023, 78, 127147.
[http://dx.doi.org/10.1016/j.jtemb.2023.127147] [PMID: 36963369]
[107]
Armstrong, J.S.; Whiteman, M.; Rose, P.; Jones, D.P. The Coenzyme Q10 analog decylubiquinone inhibits the redox-activated mitochondrial permeability transition: role of mitochondrial [correction mitochondrial] complex III. J. Biol. Chem., 2003, 278(49), 49079-49084.
[http://dx.doi.org/10.1074/jbc.M307841200] [PMID: 12949071]
[108]
Somers-Edgar, T.J.; Rosengren, R.J. Coenzyme Q0 induces apoptosis and modulates the cell cycle in estrogen receptor negative breast cancer cells. Anticancer Drugs, 2009, 20(1), 33-40.
[http://dx.doi.org/10.1097/CAD.0b013e328314b5c5] [PMID: 18830129]
[109]
Chung, C.H.; Yeh, S.C.; Chen, C.J.; Lee, K.T. Coenzyme Q0 from antrodia cinnamomea in submerged cultures induces reactive oxygen species-mediated apoptosis in a549 human lung cancer cells. Evid.-. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/246748] [PMID: 25431605]
[110]
Wang, H.M.; Yang, H.L.; Thiyagarajan, V.; Huang, T.H.; Huang, P.J.; Chen, S.C.; Liu, J.Y.; Hsu, L.S.; Chang, H.W.; Hseu, Y.C. Coenzyme Q0 enhances ultraviolet B-induced apoptosis in human estrogen receptor-positive breast (MCF-7) cancer cells. Integr. Cancer Ther., 2017, 16(3), 385-396.
[http://dx.doi.org/10.1177/1534735416673907] [PMID: 27821721]
[111]
Yang, H.L.; Korivi, M.; Lin, M.W.; Chen, S.C.; Chou, C.W.; Hseu, Y.C. Anti-angiogenic properties of coenzyme Q0 through downregulation of MMP-9/NF-κB and upregulation of HO-1 signaling in TNF-α-activated human endothelial cells. Biochem. Pharmacol., 2015, 98(1), 144-156.
[http://dx.doi.org/10.1016/j.bcp.2015.09.003] [PMID: 26348871]
[112]
Yang, H.L.; Lin, P.Y.; Vadivalagan, C.; Lin, Y.A.; Lin, K.Y.; Hseu, Y.C. Coenzyme Q0 defeats NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects by inhibiting HIF-1α expression in human triple-negative breast cancer cells. Arch. Toxicol., 2023, 97(4), 1047-1068.
[http://dx.doi.org/10.1007/s00204-023-03456-w] [PMID: 36847822]
[113]
Roginsky, V.A.; Bruchelt, G.; Bartuli, O. Ubiquinone-0 (2,3 -dimethoxy-5 -methyl-1,4-benzoquinone) as effective catalyzer of ascorbate and epinephrine oxidation and damager of neuroblastoma cells. Biochem. Pharmacol., 1998, 55(1), 85-91.
[http://dx.doi.org/10.1016/S0006-2952(97)00434-6] [PMID: 9413934]
[114]
Ciccarone, F.; Vegliante, R.; Di Leo, L.; Ciriolo, M.R. The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer. Semin. Cancer Biol., 2017, 47, 50-56.
[http://dx.doi.org/10.1016/j.semcancer.2017.06.008] [PMID: 28645607]
[115]
Gaude, E.; Frezza, C. Defects in mitochondrial metabolism and cancer. Cancer Metab., 2014, 2(1), 10.
[http://dx.doi.org/10.1186/2049-3002-2-10] [PMID: 25057353]
[116]
You, X.; Tian, J.; Zhang, H.; Guo, Y.; Yang, J.; Zhu, C.; Song, M.; Wang, P.; Liu, Z.; Cancilla, J.; Lu, W.; Glorieux, C.; Wen, S.; Du, H.; Huang, P.; Hu, Y. Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling. Mol. Metab., 2021, 48, 101203.
[http://dx.doi.org/10.1016/j.molmet.2021.101203] [PMID: 33676027]
[117]
John, E.; Laskow, T.C.; Buchser, W.J.; Pitt, B.R.; Basse, P.H.; Butterfield, L.H.; Kalinski, P.; Lotze, M.T. Zinc in innate and adaptive tumor immunity. J. Transl. Med., 2010, 8(1), 118.
[http://dx.doi.org/10.1186/1479-5876-8-118] [PMID: 21087493]
[118]
Dani, V.; Goel, A.; Vaiphei, K.; Dhawan, D.K. Chemopreventive potential of zinc in experimentally induced colon carcinogenesis. Toxicol. Lett., 2007, 171(1-2), 10-18.
[http://dx.doi.org/10.1016/j.toxlet.2007.02.002] [PMID: 17590543]
[119]
Lin, Y.S.; Lin, L.C.; Lin, S.W. Effects of zinc supplementation on the survival of patients who received concomitant chemotherapy and radiotherapy for advanced nasopharyngeal carcinoma: Follow up of a double-blind randomized study with subgroup analysis. Laryngoscope, 2009, 119(7), 1348-1352.
[http://dx.doi.org/10.1002/lary.20524] [PMID: 19402154]
[120]
Costello, L.C.; Franklin, R.B. Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate, 1998, 35(4), 285-296.
[http://dx.doi.org/10.1002/(SICI)1097-0045(19980601)35:4<285:AID-PROS8>3.0.CO;2-F] [PMID: 9609552]
[121]
Feng, P.; Li, T.L.; Guan, Z.X.; Franklin, R.B.; Costello, L.C. Effect of zinc on prostatic tumorigenicity in nude mice. Ann. N. Y. Acad. Sci., 2003, 1010(1), 316-320.
[http://dx.doi.org/10.1196/annals.1299.056] [PMID: 15033742]
[122]
Li, X.; Xu, H.; Li, C.; Qiao, G.; Farooqi, A.A.; Gedanken, A.; Liu, X.; Lin, X. Zinc-doped copper oxide nanocomposites inhibit the growth of pancreatic cancer by inducing autophagy through AMPK/MTOR pathway. Front. Pharmacol., 2019, 10, 319.
[http://dx.doi.org/10.3389/fphar.2019.00319] [PMID: 31001120]
[123]
Xu, J.Y.; Liu, M.T.; Tao, T.; Zhu, X.; Fei, F.Q. The role of gut microbiota in tumorigenesis and treatment. Biomed. Pharmacother., 2021, 138, 111444.
[http://dx.doi.org/10.1016/j.biopha.2021.111444] [PMID: 33662679]
[124]
Jackson, M.A.; Verdi, S.; Maxan, M.E.; Shin, C.M.; Zierer, J.; Bowyer, R.C.E.; Martin, T.; Williams, F.M.K.; Menni, C.; Bell, J.T.; Spector, T.D.; Steves, C.J. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun., 2018, 9(1), 2655.
[http://dx.doi.org/10.1038/s41467-018-05184-7] [PMID: 29985401]
[125]
Papon, N.; Brown, G.D.; Gow, N.A.R. Mycobiota dysbiosis: A new nexus in intestinal tumorigenesis. EMBO J., 2021, 40(11), e108175.
[http://dx.doi.org/10.15252/embj.2021108175] [PMID: 33821503]
[126]
Valdes, A. M.; Walter, J.; Segal, E.; Spector, T. D. Role of the gut microbiota in nutrition and health., BJM, 2018, k2179.
[http://dx.doi.org/10.1136/bmj.k2179] [PMID: 29899036]
[127]
Nejman, D.; Livyatan, I.; Fuks, G.; Gavert, N.; Zwang, Y.; Geller, L.T.; Rotter-Maskowitz, A.; Weiser, R.; Mallel, G.; Gigi, E.; Meltser, A.; Douglas, G.M.; Kamer, I.; Gopalakrishnan, V.; Dadosh, T.; Levin-Zaidman, S.; Avnet, S.; Atlan, T.; Cooper, Z.A.; Arora, R.; Cogdill, A.P.; Khan, M.A.W.; Ologun, G.; Bussi, Y.; Weinberger, A.; Lotan-Pompan, M.; Golani, O.; Perry, G.; Rokah, M.; Bahar-Shany, K.; Rozeman, E.A.; Blank, C.U.; Ronai, A.; Shaoul, R.; Amit, A.; Dorfman, T.; Kremer, R.; Cohen, Z.R.; Harnof, S.; Siegal, T.; Yehuda-Shnaidman, E.; Gal-Yam, E.N.; Shapira, H.; Baldini, N.; Langille, M.G.I.; Ben-Nun, A.; Kaufman, B.; Nissan, A.; Golan, T.; Dadiani, M.; Levanon, K.; Bar, J.; Yust-Katz, S.; Barshack, I.; Peeper, D.S.; Raz, D.J.; Segal, E.; Wargo, J.A.; Sandbank, J.; Shental, N.; Straussman, R. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science, 2020, 368(6494), 973-980.
[http://dx.doi.org/10.1126/science.aay9189] [PMID: 32467386]
[128]
Jian, X.; Zhu, Y.; Ouyang, J.; Wang, Y.; Lei, Q.; Xia, J.; Guan, Y.; Zhang, J.; Guo, J.; He, Y.; Wang, J.; Li, J.; Lin, J.; Su, M.; Li, G.; Wu, M.; Qiu, L.; Xiang, J.; Xie, L.; Jia, W.; Zhou, W. Alterations of gut microbiome accelerate multiple myeloma progression by increasing the relative abundances of nitrogen-recycling bacteria. Microbiome, 2020, 8(1), 74.
[http://dx.doi.org/10.1186/s40168-020-00854-5] [PMID: 32466801]
[129]
Yang, X.; Guo, Y.; Chen, C.; Shao, B.; Zhao, L.; Zhou, Q.; Liu, J.; Wang, G.; Yuan, W.; Sun, Z. Interaction between intestinal microbiota and tumour immunity in the tumour microenvironment. Immunology, 2021, 164(3), 476-493.
[http://dx.doi.org/10.1111/imm.13397] [PMID: 34322877]
[130]
Richard, M.L.; Sokol, H. The gut mycobiota: Insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(6), 331-345.
[http://dx.doi.org/10.1038/s41575-019-0121-2] [PMID: 30824884]
[131]
Xu, X.; Ocansey, D.K.W.; Hang, S.; Wang, B.; Amoah, S.; Yi, C.; Zhang, X.; Liu, L.; Mao, F. The gut metagenomics and metabolomics signature in patients with inflammatory bowel disease. Gut Pathog., 2022, 14(1), 26.
[http://dx.doi.org/10.1186/s13099-022-00499-9] [PMID: 35729658]
[132]
Benito, I.; Encío, I.J.; Milagro, F.I.; Alfaro, M.; Martínez-Peñuela, A.; Barajas, M.; Marzo, F. Microencapsulated bifidobacterium bifidum and lactobacillus gasseri in combination with quercetin inhibit colorectal cancer development in ApcMin/+ mice. Int. J. Mol. Sci., 2021, 22(9), 4906.
[http://dx.doi.org/10.3390/ijms22094906] [PMID: 34063173]
[133]
Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Anim. Sci. Biotechnol., 2021, 12(1), 51.
[http://dx.doi.org/10.1186/s40104-021-00576-0] [PMID: 33866972]
[134]
Tsigalou, C.; Konstantinidis, T.; Stavropoulou, E.; Bezirtzoglou, E.E.; Tsakris, A. Potential elimination of human gut resistome by exploiting the benefits of functional foods. Front. Microbiol., 2020, 11, 50.
[http://dx.doi.org/10.3389/fmicb.2020.00050] [PMID: 32117102]
[135]
Ma, J.; Piao, X.; Mahfuz, S.; Long, S.; Wang, J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Anim. Nutr., 2022, 9, 159-174.
[http://dx.doi.org/10.1016/j.aninu.2021.09.012] [PMID: 35573092]
[136]
Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev., 2001, 81(3), 1031-1064.
[http://dx.doi.org/10.1152/physrev.2001.81.3.1031] [PMID: 11427691]
[137]
Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet, 2008, 371(9612), 569-578.
[http://dx.doi.org/10.1016/S0140-6736(08)60269-X] [PMID: 18280327]
[138]
Larsen, N.; Vogensen, F.K.; van den Berg, F.W.J.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 2010, 5(2), e9085.
[http://dx.doi.org/10.1371/journal.pone.0009085] [PMID: 20140211]
[139]
Hijová, E.; Bertková, I.; Štofilová, J. Dietary fibre as prebiotics in nutrition. Cent. Eur. J. Public Health, 2019, 27(3), 251-255.
[http://dx.doi.org/10.21101/cejph.a5313] [PMID: 31580563]
[140]
Stephen, A.M.; Champ, M.M.J.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev., 2017, 30(2), 149-190.
[http://dx.doi.org/10.1017/S095442241700004X] [PMID: 28676135]
[141]
Lin, S. Chapter two - dietary fiber in bakery products: Source, processing, and function In: Advances in Food and Nutrition Research; Zhou, W.; Gao, J., Eds.; Functional bakery products: novel ingredients and processing technology for personalized nutrition; Academic press, 2022; 99, pp. 37-100.
[http://dx.doi.org/10.1016/bs.afnr.2021.12.001] [PMID: 35595397]
[142]
Reddy, B.S. Dietary fiber and colon cancer: Animal model studies. Prev. Med., 1987, 16(4), 559-565.
[http://dx.doi.org/10.1016/0091-7435(87)90072-7] [PMID: 2819851]
[143]
Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet, 2019, 393(10170), 434-445.
[http://dx.doi.org/10.1016/S0140-6736(18)31809-9] [PMID: 30638909]
[144]
Ocvirk, S.; Wilson, A.S.; Appolonia, C.N.; Thomas, T.K.; O’Keefe, S.J.D. Fiber, fat, and colorectal cancer: New insight into modifiable dietary risk factors. Curr. Gastroenterol. Rep., 2019, 21(11), 62.
[http://dx.doi.org/10.1007/s11894-019-0725-2] [PMID: 31792624]
[145]
Cronin, P.; Joyce, S.A.; O’Toole, P.W.; O’Connor, E.M. Dietary fibre modulates the gut microbiota. Nutrients, 2021, 13(5), 1655.
[http://dx.doi.org/10.3390/nu13051655] [PMID: 34068353]
[146]
Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, 8(2), 172-184.
[http://dx.doi.org/10.1080/19490976.2017.1290756] [PMID: 28165863]
[147]
Wang, Y.; Ames, N.P.; Tun, H.M.; Tosh, S.M.; Jones, P.J.; Khafipour, E. High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front. Microbiol., 2016, 7, 129.
[http://dx.doi.org/10.3389/fmicb.2016.00129] [PMID: 26904005]
[148]
Kumar, J.; Rani, K.; Datt, C. Molecular link between dietary fibre, gut microbiota and health. Mol. Biol. Rep., 2020, 47(8), 6229-6237.
[http://dx.doi.org/10.1007/s11033-020-05611-3] [PMID: 32623619]
[149]
Zhang, L.; Zhang, Z.; Xu, L.; Zhang, X. Maintaining the balance of intestinal flora through the diet: Effective prevention of illness. Foods, 2021, 10(10), 2312.
[http://dx.doi.org/10.3390/foods10102312] [PMID: 34681359]
[150]
Xu, S.; Liu, C.X.; Xu, W.; Huang, L.; Zhao, J.Y.; Zhao, S.M. Butyrate induces apoptosis by activating PDC and inhibiting complex I through SIRT3 inactivation. Signal Transduct. Target. Ther., 2017, 2(1), 16035.
[http://dx.doi.org/10.1038/sigtrans.2016.35] [PMID: 29263907]
[151]
Nobel, Y.R.; Snider, E.J.; Compres, G.; Freedberg, D.E.; Khiabanian, H.; Lightdale, C.J.; Toussaint, N.C.; Abrams, J.A. Increasing dietary fiber intake is associated with a distinct esophageal microbiome. Clin. Transl. Gastroenterol., 2018, 9(10), e199.
[http://dx.doi.org/10.1038/s41424-018-0067-7] [PMID: 30356041]
[152]
Sun, L.; Zhang, Z.; Xu, J.; Xu, G.; Liu, X. Dietary fiber intake reduces risk for Barrett’s esophagus and esophageal cancer. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2749-2757.
[http://dx.doi.org/10.1080/10408398.2015.1067596] [PMID: 26462851]
[153]
Legesse Bedada, T.; Feto, T.K.; Awoke, K.S.; Garedew, A.D.; Yifat, F.T.; Birri, D.J. Probiotics for cancer alternative prevention and treatment. Biomed. Pharmacother., 2020, 129, 110409.
[http://dx.doi.org/10.1016/j.biopha.2020.110409] [PMID: 32563987]
[154]
Bahuguna, A.; Dubey, S.K. Overview of the mechanistic potential of probiotics and prebiotics in cancer chemoprevention. Mol. Nutr. Food Res., 2023, 67(19), 2300221.
[http://dx.doi.org/10.1002/mnfr.202300221] [PMID: 37552810]
[155]
Maroof, H.; Hassan, Z.M.; Mobarez, A.M.; Mohamadabadi, M.A. Lactobacillus acidophilus could modulate the immune response against breast cancer in murine model. J. Clin. Immunol., 2012, 32(6), 1353-1359.
[http://dx.doi.org/10.1007/s10875-012-9708-x] [PMID: 22711009]
[156]
Liu, Z.; Qin, H.; Yang, Z.; Xia, Y.; Liu, W.; Yang, J.; Jiang, Y.; Zhang, H.; Yang, Z.; Wang, Y.; Zheng, Q. Randomised clinical trial: The effects of perioperative probiotic treatment on barrier function and post‐operative infectious complications in colorectal cancer surgery – a double‐blind study. Aliment. Pharmacol. Ther., 2011, 33(1), 50-63.
[http://dx.doi.org/10.1111/j.1365-2036.2010.04492.x] [PMID: 21083585]
[157]
Hibberd, A.A.; Lyra, A.; Ouwehand, A.C.; Rolny, P.; Lindegren, H.; Cedgård, L.; Wettergren, Y. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol., 2017, 4(1), e000145.
[http://dx.doi.org/10.1136/bmjgast-2017-000145] [PMID: 28944067]
[158]
Lin, B.; Zhao, F.; Liu, Y.; Wu, X.; Feng, J.; Jin, X.; Yan, W.; Guo, X.; Shi, S.; Li, Z.; Liu, L.; Chen, H.; Wang, H.; Wang, S.; Lu, Y.; Wei, Y. Randomized clinical trial: Probiotics alleviated oral-gut microbiota dysbiosis and thyroid hormone withdrawal-related complications in thyroid cancer patients before radioiodine therapy following thyroidectomy. Front. Endocrinol., 2022, 13, 834674.
[http://dx.doi.org/10.3389/fendo.2022.834674] [PMID: 35350100]
[159]
Kanarek, N.; Petrova, B.; Sabatini, D.M. Dietary modifications for enhanced cancer therapy. Nature, 2020, 579(7800), 507-517.
[http://dx.doi.org/10.1038/s41586-020-2124-0] [PMID: 32214253]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy