Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

ClpP Peptidase as a Plausible Target for the Discovery of Novel Antibiotics

Author(s): Smriti Bhardwaj and Kuldeep K. Roy*

Volume 25, Issue 2, 2024

Published on: 27 December, 2023

Page: [108 - 120] Pages: 13

DOI: 10.2174/0113894501274958231220053714

Price: $65

Abstract

Antimicrobial resistance (AMR) to currently available antibiotics/drugs is a global threat. It is desirable to develop new drugs that work through a novel target(s) to avoid drug resistance. This review discusses the potential of the caseinolytic protease P (ClpP) peptidase complex as a novel target for finding novel antibiotics, emphasising the ClpP’s structure and function. ClpP contributes to the survival of bacteria via its ability to destroy misfolded or aggregated proteins. In consequence, its inhibition may lead to microbial death. Drugs inhibiting ClpP activity are currently being tested, but no drug against this target has been approved yet. It was demonstrated that Nblocked dipeptides are essential for activating ClpP’s proteolytic activity. Hence, compounds mimicking these dipeptides could act as inhibitors of the formation of an active ClpP complex. Drugs, including Bortezomib, Cisplatin, Cefmetazole, and Ixazomib, inhibit ClpP activation. However, they were not approved as drugs against the target because of their high toxicity, likely due to the presence of strong electrophiles in their warheads. The modifications of these warheads could be a good strategy to reduce the toxicity of these molecules. For instance, a boronate warhead was replaced by a chloromethyl ketone, and this new molecule was shown to exhibit selectivity for prokaryotic ClpP. A better understanding of the structure and function of the ClpP complex would benefit the search for compounds mimicking N-blocked dipeptides that would inhibit ClpP complex activity and cause bacterial death.

Next »
Graphical Abstract

[1]
Rodolfo P. Antimicrobial resistance: Time to repurpose the global fund. The Lancet 2022; 399(10322)
[2]
Kim OH, Shim TS, Jo KW. Drug-level change and optimal dose adjustment of tacrolimus with the use of rifabutin for treating mycobacterial disease in solid organ transplant recipients. Transpl Infect Dis 2022; 24(4): e13893.
[http://dx.doi.org/10.1111/tid.13893] [PMID: 35822673]
[3]
Kurbatfinski N, Kramer CN, Goodman SD, Bakaletz LO. ESKAPEE pathogens newly released from biofilm residence by a targeted monoclonal are sensitized to killing by traditional antibiotics. Front Microbiol 2023; 14: 1202215.
[http://dx.doi.org/10.3389/fmicb.2023.1202215] [PMID: 37564292]
[4]
Ruekit S, Srijan A, Serichantalergs O, et al. Molecular characterization of multidrug-resistant ESKAPEE pathogens from clinical samples in Chonburi, Thailand (2017–2018). BMC Infect Dis 2022; 22(1): 695.
[http://dx.doi.org/10.1186/s12879-022-07678-8] [PMID: 35978294]
[5]
Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019. a systematic analysis 2022; 399(10325): 629-55.
[6]
Kritsotakis EI, Lagoutari D, Michailellis E, Georgakakis I, Gikas A. Burden of multidrug and extensively drug-resistant ESKAPEE pathogens in a secondary hospital care setting in Greece. Epidemiol Infect 2022; 150: e170.
[http://dx.doi.org/10.1017/S0950268822001492] [PMID: 36148865]
[7]
Mestrovic T, Aguilar GR, Swetschinski LR, et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019. A cross-country systematic analysis 2022; 7(11): 897-913.
[8]
Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022; 399(10325): 629-55.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[9]
Manesh A, Varghese GMJTLM. Rising antimicrobial resistance: An evolving epidemic in a pandemic 2021; 2(9): 419-20.
[http://dx.doi.org/10.1016/S2666-5247(21)00173-7]
[10]
Satti I, Wittenberg RE, Li S, et al. Inflammation and immune activation are associated with risk of Mycobacterium tuberculosis infection in BCG-vaccinated infants. Nat Commun 2022; 13(1): 6594.
[http://dx.doi.org/10.1038/s41467-022-34061-7] [PMID: 36329009]
[11]
Bagcchi SJTLM. WHO's Global Tuberculosis Report 2023; 4(1): 20.
[12]
Shleider Carnero Canales C, Marquez Cazorla J, Furtado Torres AH, et al. Advances in diagnostics and drug discovery against resistant and latent tuberculosis infection. Pharmaceutics 2023; 15(10): 2409.
[http://dx.doi.org/10.3390/pharmaceutics15102409]
[13]
Nadimpalli ML, Chan CW, Doron S. Antibiotic resistance: A call to action to prevent the next epidemic of inequality. Nat Med 2021; 27(2): 187-8.
[http://dx.doi.org/10.1038/s41591-020-01201-9] [PMID: 33462445]
[14]
Ryu S, Cowling BJ, Wu P, Olesen S, Fraser C, Sun DS, et al. Case-based surveillance of antimicrobial resistance with full susceptibility profiles. JAC Antimicrob Resist 2019; 1(3): 070.
[http://dx.doi.org/10.1093/jacamr/dlz070]
[15]
Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in eskape pathogens. BioMed Res Int 2016; 2016: 1-8.
[http://dx.doi.org/10.1155/2016/2475067] [PMID: 27274985]
[16]
Mulani MS, Kamble EE, Kumkar SN, Tawre MS. Pardesi KRJFim. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review 2019; 10: 539.
[17]
Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol 2022; 20(11): 685-701.
[http://dx.doi.org/10.1038/s41579-022-00731-y] [PMID: 35478222]
[18]
The Lancet Infectious Diseases. Antimicrobial resistance through the looking-GLASS. Lancet Infect Dis 2023; 23(2): 131.
[http://dx.doi.org/10.1016/S1473-3099(23)00012-9] [PMID: 36707218]
[19]
Holmes AH, Moore LSP, Sundsfjord A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016; 387(10014): 176-87.
[http://dx.doi.org/10.1016/S0140-6736(15)00473-0] [PMID: 26603922]
[20]
Kiggundu R, Lusaya E, Seni J, et al. Identifying and addressing challenges to antimicrobial use surveillance in the human health sector in low- and middle-income countries: experiences and lessons learned from Tanzania and Uganda. Antimicrob Resist Infect Control 2023; 12(1): 9.
[http://dx.doi.org/10.1186/s13756-023-01213-3] [PMID: 36759872]
[21]
Omollo C, Singh V, Kigondu E, et al. Developing synergistic drug combinations to restore antibiotic sensitivity in drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65(5): e02554-20.
[http://dx.doi.org/10.1128/AAC.02554-20] [PMID: 33619062]
[22]
Khara P, Biswas S, Biswas I. Induction of clpP expression by cell-wall targeting antibiotics in Streptococcus mutans. Microbiology 2020; 166(7): 641-53.
[http://dx.doi.org/10.1099/mic.0.000920] [PMID: 32416745]
[23]
Frees D, Qazi SNA, Hill PJ, Ingmer H. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 2003; 48(6): 1565-78.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03524.x] [PMID: 12791139]
[24]
Li CE, Liao CT, Lo HH, Hsiao YM. Functional characterization and transcriptional analysis of clpp of xanthomonas campestris pv. campestris. Curr Microbiol 2020; 77(10): 2876-85.
[http://dx.doi.org/10.1007/s00284-020-02093-1] [PMID: 32623486]
[25]
Motiwala T, Mthethwa Q, Achilonu I, Khoza T. ESKAPE pathogens. Antibiotics 2022; 11(9): 1218.
[http://dx.doi.org/10.3390/antibiotics11091218] [PMID: 36139999]
[26]
Moreno-Cinos C, Goossens K, Salado IG, et al. ClpP protease, a promising antimicrobial target. Int J Mol Sci 2019; 20(9): 2232.
[http://dx.doi.org/10.3390/ijms20092232] [PMID: 31067645]
[27]
Bhandari V, Wong KS, Zhou JL, Mabanglo MF, Batey RA, Houry WA. The role of ClpP protease in bacterial pathogenesis and human diseases. ACS Chem Biol 2018; 13(6): 1413-25.
[http://dx.doi.org/10.1021/acschembio.8b00124] [PMID: 29775273]
[28]
Figaj D, Ambroziak P, Przepiora T, Skorko-Glonek J. The role of proteases in the virulence of plant pathogenic bacteria. Int J Mol Sci 2019; 20(3): 672.
[http://dx.doi.org/10.3390/ijms20030672] [PMID: 30720762]
[29]
Gur E, Biran D, Ron EZ. Regulated proteolysis in Gram-negative bacteria — how and when? Nat Rev Microbiol 2011; 9(12): 839-48.
[http://dx.doi.org/10.1038/nrmicro2669] [PMID: 22020261]
[30]
Brötz-Oesterhelt H, Sass P. Bacterial caseinolytic proteases as novel targets for antibacterial treatment. Int J Med Microbiol 2014; 304(1): 23-30.
[http://dx.doi.org/10.1016/j.ijmm.2013.09.001] [PMID: 24119566]
[31]
Frees D, Brøndsted L, Ingmer H. Bacterial proteases and virulence. Subcell Biochem 2013; 66: 161-92.
[http://dx.doi.org/10.1007/978-94-007-5940-4_7] [PMID: 23479441]
[32]
Lantz MS. Are bacterial proteases important virulence factors? J Periodontal Res 1997; 32(1): 126-32.
[http://dx.doi.org/10.1111/j.1600-0765.1997.tb01393.x] [PMID: 9085222]
[33]
Sangpuii L, Dixit SK, Kumawat M, et al. Comparative roles of clpA and clpB in the survival of S. Typhimurium under stress and virulence in poultry. Sci Rep 2018; 8(1): 4481.
[http://dx.doi.org/10.1038/s41598-018-22670-6] [PMID: 29540723]
[34]
Eyermann B, Meixner M, Brötz-Oesterhelt H, Antes I, Sieber SA. Acyldepsipeptide probes facilitate specific detection of caseinolytic protease P independent of its oligomeric and activity state. ChemBioChem 2020; 21(1-2): 235-40.
[http://dx.doi.org/10.1002/cbic.201900477] [PMID: 31487112]
[35]
Ye F, Li J, Yang CG. The development of small-molecule modulators for ClpP protease activity. Mol Biosyst 2017; 13(1): 23-31.
[http://dx.doi.org/10.1039/C6MB00644B] [PMID: 27831584]
[36]
Pan S, Malik IT, Thomy D, Henrichfreise B, Sass P. The functional ClpXP protease of Chlamydia trachomatis requires distinct clpP genes from separate genetic loci. Sci Rep 2019; 9(1): 14129.
[http://dx.doi.org/10.1038/s41598-019-50505-5] [PMID: 31575885]
[37]
Culp E, Wright GD. Bacterial proteases, untapped antimicrobial drug targets. J Antibiot 2017; 70(4): 366-77.
[http://dx.doi.org/10.1038/ja.2016.138] [PMID: 27899793]
[38]
Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55(1): 165-99.
[http://dx.doi.org/10.1146/annurev.micro.55.1.165] [PMID: 11544353]
[39]
Muhammad MH, Idris AL, Fan X, et al. Beyond risk: Bacterial biofilms and their regulating approaches. Front Microbiol 2020; 11: 928.
[http://dx.doi.org/10.3389/fmicb.2020.00928] [PMID: 32508772]
[40]
Rutherford ST, Bassler BL. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012; 2(11): a012427.
[http://dx.doi.org/10.1101/cshperspect.a012427] [PMID: 23125205]
[41]
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: An emergent form of bacterial life. Nat Rev Microbiol 2016; 14(9): 563-75.
[http://dx.doi.org/10.1038/nrmicro.2016.94] [PMID: 27510863]
[42]
Del Pozo JL. Biofilm-related disease. Expert Rev Anti Infect Ther 2018; 16(1): 51-65.
[http://dx.doi.org/10.1080/14787210.2018.1417036] [PMID: 29235402]
[43]
Toledo Borges AB, Roque-Borda CA, Pavan FR. Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria 2022; 14(3): 642.
[44]
Venkatesan N, Perumal G, Doble M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol 2015; 10(11): 1743-50.
[http://dx.doi.org/10.2217/fmb.15.69] [PMID: 26517598]
[45]
Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 2003; 188(5): 706-18.
[http://dx.doi.org/10.1086/377239] [PMID: 12934187]
[46]
Lee KJ, Jung YC, Park SJ, Lee KH. Role of heat shock proteases in quorum-sensing-mediated regulation of biofilm formation by vibrio species. MBio 2018; 9(1): e02086-17.
[http://dx.doi.org/10.1128/mBio.02086-17] [PMID: 29295912]
[47]
Feng Y, Wang H, Lu HE, Yi LIU, Hong LI. Effects of ClpP protease on biofilm formation of Enterococcus faecalis. J Appl Oral Sci 2021; 29: e20200733.
[http://dx.doi.org/10.1590/1678-7757-2020-0733] [PMID: 33656065]
[48]
Xie F, Zhang Y, Li G, Zhou L, Liu S, Wang C. The ClpP protease is required for the stress tolerance and biofilm formation in Actinobacillus pleuropneumoniae. PLoS One 2013; 8(1): e53600.
[http://dx.doi.org/10.1371/journal.pone.0053600] [PMID: 23326465]
[49]
Wang C, Li M, Dong D, et al. Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microbes Infect 2007; 9(11): 1376-83.
[http://dx.doi.org/10.1016/j.micinf.2007.06.012] [PMID: 17890122]
[50]
Conlon BP, Nakayasu ES, Fleck LE, et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 2013; 503(7476): 365-70.
[http://dx.doi.org/10.1038/nature12790] [PMID: 24226776]
[51]
Liu Q, Wang X, Qin J, et al. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7: 181.
[http://dx.doi.org/10.3389/fcimb.2017.00181] [PMID: 28555174]
[52]
Motiwala T, Akumadu BO, Zuma S, et al. Caseinolytic proteins (Clp) in the Genus Klebsiella: Special focus on ClpK. Molecules 2021; 27(1): 200.
[http://dx.doi.org/10.3390/molecules27010200] [PMID: 35011428]
[53]
Kress W, Maglica Ž, Weber-Ban E. Clp chaperone–proteases: Structure and function. Res Microbiol 2009; 160(9): 618-28.
[http://dx.doi.org/10.1016/j.resmic.2009.08.006] [PMID: 19732826]
[54]
Nishimura K, van Wijk KJ. Organization, function and substrates of the essential Clp protease system in plastids. Biochim Biophys Acta Bioenerg 2015; 1847(9): 915-30.
[http://dx.doi.org/10.1016/j.bbabio.2014.11.012] [PMID: 25482260]
[55]
Maurizi MR, Xia D. Protein binding and disruption by Clp/Hsp100 chaperones. Structure 2004; 12(2): 175-83.
[http://dx.doi.org/10.1016/j.str.2004.01.021] [PMID: 14962378]
[56]
Gribun A, Kimber MS, Ching R, Sprangers R, Fiebig KM, Houry WA. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. J Biol Chem 2005; 280(16): 16185-96.
[http://dx.doi.org/10.1074/jbc.M414124200] [PMID: 15701650]
[57]
Wang J, Hartling JA, Flanagan JM. The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 1997; 91(4): 447-56.
[http://dx.doi.org/10.1016/S0092-8674(00)80431-6] [PMID: 9390554]
[58]
Maurizi MR, Clark WP, Katayama Y, et al. Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 1990; 265(21): 12536-45.
[http://dx.doi.org/10.1016/S0021-9258(19)38378-4] [PMID: 2197275]
[59]
Bewley MC, Graziano V, Griffin K, Flanagan JM. The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes. J Struct Biol 2006; 153(2): 113-28.
[http://dx.doi.org/10.1016/j.jsb.2005.09.011] [PMID: 16406682]
[60]
Luo B, Ma Y, Zhou Y, Zhang N, Luo Y. Human ClpP protease, a promising therapy target for diseases of mitochondrial dysfunction. Drug Discov Today 2021; 26(4): 968-81.
[http://dx.doi.org/10.1016/j.drudis.2021.01.007] [PMID: 33460621]
[61]
Wong KS, Houry WA. Chemical modulation of human mitochondrial ClpP: Potential application in cancer therapeutics. ACS Chem Biol 2019; 14(11): 2349-60.
[http://dx.doi.org/10.1021/acschembio.9b00347] [PMID: 31241890]
[62]
Zhao J, Makhija S, Zhou C, Zhang H, Wang Y, Muralidharan M, et al. Structural insights into the human PA28–20S proteasome enabled by efficient tagging and purification of endogenous proteins. Proc Natl Acad Sci 2022; 119(33): e2207200119.
[http://dx.doi.org/10.1073/pnas.2207200119]
[63]
Zhang H, Lin G. Microbial proteasomes as drug targets. PLoS Pathog 2021; 17(12): e1010058.
[http://dx.doi.org/10.1371/journal.ppat.1010058] [PMID: 34882737]
[64]
Andersson FI, Tryggvesson A, Sharon M, et al. Structure and function of a novel type of ATP-dependent Clp protease. J Biol Chem 2009; 284(20): 13519-32.
[http://dx.doi.org/10.1074/jbc.M809588200] [PMID: 19237538]
[65]
Krüger E, Kloetzel PM, Enenkel C. 20S proteasome biogenesis. Biochimie 2001; 83(3-4): 289-93.
[http://dx.doi.org/10.1016/S0300-9084(01)01241-X] [PMID: 11295488]
[66]
Stahl M, Korotkov VS, Balogh D, et al. Selective activation of human caseinolytic protease P (ClpP). Angew Chem Int Ed 2018; 57(44): 14602-7.
[http://dx.doi.org/10.1002/anie.201808189] [PMID: 30129683]
[67]
Sauer RT, Baker TA. AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 2011; 80(1): 587-612.
[http://dx.doi.org/10.1146/annurev-biochem-060408-172623] [PMID: 21469952]
[68]
Baker TA, Sauer RT. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta Mol Cell Res 2012; 1823(1): 15-28.
[http://dx.doi.org/10.1016/j.bbamcr.2011.06.007] [PMID: 21736903]
[69]
Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296: 100338.
[http://dx.doi.org/10.1016/j.jbc.2021.100338] [PMID: 33497624]
[70]
Mabanglo MF, Houry WA. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules. J Biol Chem 2022; 298(5): 101781.
[http://dx.doi.org/10.1016/j.jbc.2022.101781] [PMID: 35245501]
[71]
Nagpal J, Paxman JJ, Zammit JE, et al. Molecular and structural insights into an asymmetric proteolytic complex (ClpP1P2) from Mycobacterium smegmatis. Sci Rep 2019; 9(1): 18019.
[http://dx.doi.org/10.1038/s41598-019-53736-8] [PMID: 31792243]
[72]
Li M, Kandror O, Akopian T, et al. Structure and functional properties of the active form of the proteolytic complex, ClpP1P2, from mycobacterium tuberculosis. J Biol Chem 2016; 291(14): 7465-76.
[http://dx.doi.org/10.1074/jbc.M115.700344] [PMID: 26858247]
[73]
Griffith EC, Zhao Y, Singh AP, et al. Ureadepsipeptides as ClpP activators. ACS Infect Dis 2019; 5(11): 1915-25.
[http://dx.doi.org/10.1021/acsinfecdis.9b00245] [PMID: 31588734]
[74]
Kim YI, Levchenko I, Fraczkowska K, Woodruff RV, Sauer RT, Baker TA. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 2001; 8(3): 230-3.
[http://dx.doi.org/10.1038/84967] [PMID: 11224567]
[75]
Joshi SA, Hersch GL, Baker TA, Sauer RT. Communication between ClpX and ClpP during substrate processing and degradation. Nat Struct Mol Biol 2004; 11(5): 404-11.
[http://dx.doi.org/10.1038/nsmb752] [PMID: 15064753]
[76]
Mawla GD, Hall BM, Cárcamo-Oyarce G, et al. ClpP1P2 peptidase activity promotes biofilm formation in Pseudomonas aeruginosa. Mol Microbiol 2021; 115(6): 1094-109.
[http://dx.doi.org/10.1111/mmi.14649] [PMID: 33231899]
[77]
Houry WA. The molecular chaperones interaction networks in protein folding and degradation. Springer 2014.
[http://dx.doi.org/10.1007/978-1-4939-1130-1]
[78]
Lee BG, Park EY, Lee KE, et al. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 2010; 17(4): 471-8.
[http://dx.doi.org/10.1038/nsmb.1787] [PMID: 20305655]
[79]
Zhang J, Ye F, Lan L, Jiang H, Luo C, Yang CG. Structural switching of Staphylococcus aureus Clp protease: A key to understanding protease dynamics. J Biol Chem 2011; 286(43): 37590-601.
[http://dx.doi.org/10.1074/jbc.M111.277848] [PMID: 21900233]
[80]
Leodolter J, Warweg J, Weber-Ban E. The mycobacterium tuberculosis ClpP1P2 protease interacts asymmetrically with its atpase partners ClpX and ClpC1. PLoS One 2015; 10(5): e0125345.
[http://dx.doi.org/10.1371/journal.pone.0125345] [PMID: 25933022]
[81]
Raju RM, Unnikrishnan M, Rubin DHF, et al. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog 2012; 8(2): e1002511.
[http://dx.doi.org/10.1371/journal.ppat.1002511] [PMID: 22359499]
[82]
Akopian T, Kandror O, Raju RM. he active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring. 2012; 31(6): 1529-41.
[83]
Rawlings ND. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation. Biochimie 2016; 122: 5-30.
[http://dx.doi.org/10.1016/j.biochi.2015.10.003] [PMID: 26455268]
[84]
Schmitz KR, Carney DW, Sello JK, Sauer RT. Crystal structure of Mycobacterium tuberculosis ClpP1P2 suggests a model for peptidase activation by AAA+ partner binding and substrate delivery. 2014; 111(43): 4587-95.
[85]
Fuertes M, Castilla J, Alonso C, Pérez J. Cisplatin biochemical mechanism of action: From cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem 2003; 10(3): 257-66.
[http://dx.doi.org/10.2174/0929867033368484] [PMID: 12570712]
[86]
Paramore A, Frantz S. Bortezomib. Nat Rev Drug Discov 2003; 2(8): 611-2.
[http://dx.doi.org/10.1038/nrd1159] [PMID: 12908468]
[87]
Sassetti E, Durante Cruz C, Tammela P, et al. Identification and characterization of approved drugs and drug-like compounds as covalent escherichia coli ClpP Inhibitors. Int J Mol Sci 2019; 20(11): 2686.
[http://dx.doi.org/10.3390/ijms20112686] [PMID: 31159170]
[88]
Moreira W, Santhanakrishnan S, Dymock BW, Dick T. Bortezomib warhead-switch confers dual activity against mycobacterial caseinolytic protease and proteasome and selectivity against human proteasome. Front Microbiol 2017; 8: 746.
[http://dx.doi.org/10.3389/fmicb.2017.00746] [PMID: 28496439]
[89]
Ju Y, He L, Zhou Y, et al. Discovery of novel peptidomimetic boronate ClpP inhibitors with noncanonical enzyme mechanism as potent virulence blockers in vitro and in vivo. J Med Chem 2020; 63(6): 3104-19.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01746] [PMID: 32031798]
[90]
Nouri K, Feng Y, Schimmer AD. Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy. Cell Death Dis 2020; 11(10): 841.
[http://dx.doi.org/10.1038/s41419-020-03062-z] [PMID: 33037181]
[91]
Ollinger J, O'Malley T, Kesicki EA, Odingo J, Parish T. Validation of the essential ClpP protease in mycobacterium tuberculosis as a novel drug target. J Bacteriol 2012; 194(3): 663-8.
[http://dx.doi.org/10.1128/JB.06142-11]
[92]
Brown Gandt A, Griffith EC, Lister IM, et al. in vivo and in vitro effects of a ClpP-activating antibiotic against vancomycin-resistant enterococci. Antimicrob Agents Chemother 2018; 62(8): e00424-18.
[http://dx.doi.org/10.1128/AAC.00424-18] [PMID: 29784838]
[93]
Furukawa T, Katayama H, Oikawa A, et al. Dioctatin activates ClpP to degrade mitochondrial components and inhibits aflatoxin production. Cell Chem Biol 2020; 27(11): 1396-1409.e10.
[http://dx.doi.org/10.1016/j.chembiol.2020.08.006] [PMID: 32888498]
[94]
Zheng D, Xu Y, Yuan G, Wu X, Li Q. Bacterial ClpP protease is a potential target for methyl gallate. Front Microbiol 2021; 11: 598692.
[http://dx.doi.org/10.3389/fmicb.2020.598692] [PMID: 33613462]
[95]
Hackl MW, Lakemeyer M, Dahmen M, et al. Phenyl esters are potent inhibitors of caseinolytic protease p and reveal a stereogenic switch for deoligomerization. J Am Chem Soc 2015; 137(26): 8475-83.
[http://dx.doi.org/10.1021/jacs.5b03084] [PMID: 26083639]
[96]
Böttcher T, Sieber SA. Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 2008; 130(44): 14400-1.
[http://dx.doi.org/10.1021/ja8051365] [PMID: 18847196]
[97]
Jing S, Ren X, Wang L, et al. Nepetin reduces virulence factors expression by targeting ClpP against MRSA-induced pneumonia infection. Virulence 2022; 13(1): 578-88.
[http://dx.doi.org/10.1080/21505594.2022.2051313] [PMID: 35363605]
[98]
Compton CL, Schmitz KR, Sauer RT, Sello JK. Antibacterial activity of and resistance to small molecule inhibitors of the ClpP peptidase. ACS Chem Biol 2013; 8(12): 2669-77.
[http://dx.doi.org/10.1021/cb400577b] [PMID: 24047344]
[99]
Brötz-Oesterhelt H, Beyer D, Kroll HP, et al. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 2005; 11(10): 1082-7.
[http://dx.doi.org/10.1038/nm1306] [PMID: 16200071]
[100]
Schmitt EK, Riwanto M, Sambandamurthy V, et al. The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew Chem Int Ed 2011; 50(26): 5889-91.
[http://dx.doi.org/10.1002/anie.201101740] [PMID: 21563281]
[101]
Gao W, Kim JY, Anderson JR, et al. The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother 2015; 59(2): 880-9.
[http://dx.doi.org/10.1128/AAC.04054-14] [PMID: 25421483]
[102]
Gavrish E, Sit CS, Cao S, et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol 2014; 21(4): 509-18.
[http://dx.doi.org/10.1016/j.chembiol.2014.01.014] [PMID: 24684906]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy