Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Quinolone Tethered 1,2,3-triazole Conjugates: Design, Synthesis, and Computational Docking Studies on New Heterocycles as Potent Antimicrobial Targets

Author(s): Avanthi Basireddy, Tejeswara Rao Allaka*, Avekananda Reddy Allam, Sudhakar Reddy Baddam, Sravanthi Basireddy and Pilli Veera Venkata Nanda Kishore*

Volume 27, Issue 21, 2023

Published on: 21 December, 2023

Page: [1882 - 1895] Pages: 14

DOI: 10.2174/0113852728276712231123111714

Price: $65

Abstract

The synthesis and biological properties of molecules simultaneously comprising various heterocycles, such as fused 2-quinolones and 1,2,3-triazoles, have been evaluated as a part of our ongoing research in medicinal and organic chemistry. We were successful in developing a synthetic procedure for 1,2,3-triazole substituted quinolone derivatives. Infrared, proton, and carbon nuclear magnetic resonance, mass spectroscopy and elemental analysis were used to characterise the structures of the recently synthesised triazole derivatives. From screening results, all the compounds demonstrated increased antibacterial action against both Gram-positive and Gram-negative bacteria. Moreover, 1,2,3-triazoles linked to tert-butyl benzyl (3a), trifluoromethyl benzyl (3b), 3-chlorobenzyl (3c), 4- hydroxy-3-nitrobenzyl (6b), 4-hydroxy-4-trifluoromethylbenzyl (6d), and 4-hydroxy-2,4- difluorobenzyl (6e) compounds showed promising antibacterial and antifungal activities with MICs values of 1.07-4.33 μg/mL. The prepared ligand 4-hydroxy-2,4-difluoro benzyl-1,2,3-triazole (6e) exhibited the highest docking score of -6.34 kcal/mol and showed interacting amino acid residues ArgB:1122, MetB:1121, AspB:1083, TryB:1087, AlaB:1118, AlaB:1120, GluB:1088, GlyB:1117, SerB:1084, and AlaB:1119 within the active site of 2XCT. Final scaffolds were further evaluated for their ADMET and physicochemical properties by using ADMETlab2.0 and SwissADME web servers as good oral bioavailability drugs.

Graphical Abstract

[1]
Harine, A.G.; Sumitra, M.; Chitra, V. Consummated review on prostatitis. Asian J. Pharm. Clin. Res., 2019, 12, 1.
[2]
Mitscher, L.A. Bacterial topoisomerase inhibitors: Quinolone and pyridone antibacterial agents. Chem. Rev., 2005, 105(2), 559-592.
[http://dx.doi.org/10.1021/cr030101q] [PMID: 15700957]
[3]
Allaka, T.R.; Kummari, B.; Polkam, N.; Kuntala, N.; Chepuri, K.; Anireddy, J.S. Novel heterocyclic 1,3,4-oxadiazole derivatives of fluoroquinolones as a potent antibacterial agent: Synthesis and computational molecular modeling. Mol. Divers., 2022, 26(3), 1581-1596.
[http://dx.doi.org/10.1007/s11030-021-10287-3] [PMID: 34341943]
[4]
Dang, Z.; Yang, Y.; Ji, R.; Zhang, S. Synthesis and antibacterial activity of novel fluoroquinolones containing substituted piperidines. Bioorg. Med. Chem. Lett., 2007, 17(16), 4523-4526.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.093] [PMID: 17566733]
[5]
da Silva, F.C.; de Souza, M.C.B.V.; Frugulhetti, I.I.P.; Castro, H.C.; Souza, S.L.O.; de Souza, T.M.L.; Rodrigues, D.Q.; Souza, A.M.T.; Abreu, P.A.; Passamani, F.; Rodrigues, C.R.; Ferreira, V.F. Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur. J. Med. Chem., 2009, 44(1), 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.047] [PMID: 18486994]
[6]
Wang, X.; Dai, Z.C.; Chen, Y.F.; Cao, L.L.; Yan, W.; Li, S.K.; Wang, J.X.; Zhang, Z.G.; Ye, Y.H. Synthesis of 1,2,3-triazole hydrazide derivatives exhibiting anti-phytopathogenic activity. Eur. J. Med. Chem., 2017, 126, 171-182.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.006] [PMID: 27750151]
[7]
Fallah-Tafti, A.; Akbarzadeh, T.; Saniee, P.; Siavoshi, F.; Shafiee, A.; Foroumadi, A. Synthesis and anti-Helicobacter pylori activity of (4-nitro-1-imidazolylmethyl)-1,2,4-triazoles, 1,3,4-thiadiazoles, and 1,3,4-oxadiazoles. Turk. J. Chem., 2011, 35, 307.
[http://dx.doi.org/10.3906/kim-1004-522]
[8]
Braga, S.S. Multi-target drugs active against leishmaniasis: A paradigm of drug repurposing. Eur. J. Med. Chem., 2019, 183, 111660.
[http://dx.doi.org/10.1016/j.ejmech.2019.111660] [PMID: 31514064]
[9]
Chu, X.M.; Wang, C.; Liu, W.; Liang, L.L.; Gong, K.K.; Zhao, C.Y.; Sun, K.L. Quinoline and quinolone dimers and their biological activities: An overview. Eur. J. Med. Chem., 2019, 161, 101-117.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.035] [PMID: 30343191]
[10]
Razzaghi-Asl, N.; Sepehri, S.; Ebadi, A.; Karami, P.; Nejatkhah, N.; Johari-Ahar, M. Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol. Divers., 2020, 24(2), 525-569.
[http://dx.doi.org/10.1007/s11030-019-09953-4] [PMID: 31028558]
[11]
Mishra, M.; Mishra, V.K.; Kashaw, V.; Iyer, A.K.; Kashaw, S.K. Comprehensive review on various strategies for antimalarial drug discovery. Eur. J. Med. Chem., 2017, 125, 1300-1320.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.025] [PMID: 27886547]
[12]
Chokkar, N.; Kalra, S.; Chauhan, M.; Kumar, R. A review on quinoline derived scaffolds as anti-HIV agents. Mini Rev. Med. Chem., 2019, 19(6), 510-526.
[http://dx.doi.org/10.2174/1389557518666181018163448] [PMID: 30338737]
[13]
Patpi, S.R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.; Sridhar, B.; Murthy, R. T, A.D.; Kalivendi, S.V.; Kantevari, S. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J. Med. Chem., 2012, 55(8), 3911-3922.
[http://dx.doi.org/10.1021/jm300125e] [PMID: 22449006]
[14]
Pertino, M.; Theoduloz, C.; Butassi, E.; Zacchino, S.; Schmeda-Hirschmann, G. Synthesis, antiproliferative and antifungal activities of 1,2,3-triazole-substituted carnosic Acid and carnosol derivatives. Molecules, 2015, 20(5), 8666-8686.
[http://dx.doi.org/10.3390/molecules20058666] [PMID: 26007173]
[15]
Tashkandi, N.Y.; Al-Amshany, Z.M.; Hassan, N.A. Design, synthesis, molecular docking and antimicrobial activities of novel triazole‐ferulic acid ester hybrid carbohydrates. J. Mol. Struct., 2022, 1269, 133832.
[http://dx.doi.org/10.1016/j.molstruc.2022.133832]
[16]
Zhao, X.; Lu, B.W.; Lu, J.R.; Xin, C.W.; Li, J.F.; Liu, Y. Design, synthesis and antimicrobial activities of 1,2,3-triazole derivatives. Chin. Chem. Lett., 2012, 23(8), 933-935.
[http://dx.doi.org/10.1016/j.cclet.2012.06.014]
[17]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloro-quinoline-isatin chimeras: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.032] [PMID: 23434528]
[18]
Bitla, S.; Sagurthi, S.R.; Dhanavath, R.; Puchakayala, M.R.; Birudaraju, S.; Gayatri, A.A.; Bhukya, V.K.; Atcha, K.R. Design and synthesis of triazole conjugated novel 2,5-diaryl substituted 1,3,4-oxadiazoles as potential antimicrobial and anti-fungal agents. J. Mol. Struct., 2020, 1220, 128705.
[http://dx.doi.org/10.1016/j.molstruc.2020.128705]
[19]
Kelley, J.L.; Koble, C.S.; Davis, R.G.; McLean, E.W.; Soroko, F.E.; Cooper, B.R. 1-(Fluorobenzyl)-4-amino-1H-1,2,3-triazolo[4,5-c]pyridines: Synthesis and anticonvulsant activity. J. Med. Chem., 1995, 38(20), 4131-4134.
[http://dx.doi.org/10.1021/jm00020a030] [PMID: 7562950]
[20]
Lønning, P.E.; Geisler, J.; Dowsett, M. Pharmacological and clinical profile of anastrozole. Breast Cancer Res. Treat., 1998, 49(S1)(Suppl. 1), S53-S57.
[http://dx.doi.org/10.1023/A:1006000806630] [PMID: 9797018]
[21]
Bollu, R.; Palem, J.D.; Bantu, R.; Guguloth, V.; Nagarapu, L.; Polepalli, S.; Jain, N. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur. J. Med. Chem., 2015, 89, 138-146.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.051] [PMID: 25462234]
[22]
Hou, D.R.; Alam, S.; Kuan, T.C.; Ramanathan, M.; Lin, T.P.; Hung, M.S. 1,2,3-triazole derivatives as new cannabinoid CB1 receptor antagonists. Bioorg. Med. Chem. Lett., 2009, 19(3), 1022-1025.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.029] [PMID: 19095444]
[23]
Calderone, V.; Fiamingo, F.L.; Amato, G.; Giorgi, I.; Livi, O.; Martelli, A.; Martinotti, E. 1,2,3-Triazol-carboxanilides and 1,2,3-triazol-(N-benzyl)-carboxamides as BK-potassium channel activators. XII. Eur. J. Med. Chem., 2008, 43(11), 2618-2626.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.032] [PMID: 18400336]
[24]
Bock, V.D.; Speijer, D.; Hiemstra, H.; van Maarseveen, J.H. 1,2,3-triazoles as peptide bond isosteres: Synthesis and biological evaluation of cyclotetrapeptide mimics. Org. Biomol. Chem., 2007, 5(6), 971-975.
[http://dx.doi.org/10.1039/b616751a] [PMID: 17340013]
[25]
Bitla, S.; Gayatri, A.A.; Puchakayala, M.R.; Kumar Bhukya, V.; Vannada, J.; Dhanavath, R.; Kuthati, B.; Kothula, D.; Sagurthi, S.R.; Atcha, K.R. Design and synthesis, biological evaluation of bis-(1,2,3- and 1,2,4)-triazole derivatives as potential antimicrobial and antifungal agents. Bioorg. Med. Chem. Lett., 2021, 41, 128004.
[http://dx.doi.org/10.1016/j.bmcl.2021.128004] [PMID: 33811989]
[26]
Hu, M.; Li, J.; Yao, S.Q. In situ “click” assembly of small molecule matrix metalloprotease inhibitors containing zinc-chelating groups. Org. Lett., 2008, 10(24), 5529-5531.
[http://dx.doi.org/10.1021/ol802286g] [PMID: 19053720]
[27]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[28]
Şahin, F.; Karaman, İ.; Güllüce, M.; Öğütçü, H.; Şengül, M.; Adıgüzel, A.; Öztürk, S.; Kotan, R. Evaluation of antimicrobial activities of Satureja hortensis L. J. Ethnopharmacol., 2003, 87(1), 61-65.
[http://dx.doi.org/10.1016/S0378-8741(03)00110-7] [PMID: 12787955]
[29]
Güllüce, M. Adıgüzel, A.; Öğütçü, H.; Şengül, M.; Karaman, İ Şahin, F. Antimicrobial effects of Quercus ilex L. extract. Phytother. Res., 2004, 18(3), 208-211.
[http://dx.doi.org/10.1002/ptr.1419] [PMID: 15103667]
[30]
ACD/ChemSketch, version 2020.2.1, Advanced Chemistry Development, Inc., Toronto, ON, Canada. 2021. Available from: www.acdlabs.com
[31]
Gandham, S.K.; Kudale, A.A.; Rao Allaka, T.; Jha, A. Design, synthesis of novel benzoxepine based 1,2,3-triazoles: Molecular docking and in vitro antimicrobial activity evaluation. ChemistrySelect, 2022, 7(21), e202200683.
[http://dx.doi.org/10.1002/slct.202200683]
[32]
Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; Huang, J.; Jones, E.; Jones, J.; Brown, K.K.; Lewis, C.J.; May, E.W.; Saunders, M.R.; Singh, O.; Spitzfaden, C.E.; Shen, C.; Shillings, A.; Theobald, A.J.; Wohlkonig, A.; Pearson, N.D.; Gwynn, M.N. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 2010, 466(7309), 935-940.
[http://dx.doi.org/10.1038/nature09197] [PMID: 20686482]
[33]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[34]
Jiang, J.; Hou, Y.; Duan, M.; Wang, B.; Wu, Y.; Ding, X.; Zhao, Y. Design, synthesis and antibacterial evaluation of novel oxazolidinone derivatives nitrogen-containing fused heterocyclic moiety. Bioorg. Med. Chem. Lett., 2021, 32, 127660.
[http://dx.doi.org/10.1016/j.bmcl.2020.127660] [PMID: 33144245]
[35]
Gokarn, R.A.; Supriya, G.; Biswajyothi, P.; Prajapathi, P.K. Antimicrobial study of Shadguna Rasa sindura. J. Indian Sys. Med., 2015, 3, 136.
[36]
Bakchi, B.; Krishna, A.D.; Sreecharan, E.; Ganesh, V.B.J.; Niharika, M.; Maharshi, S.; Puttagunta, S.B.; Sigalapalli, D.K.; Bhandare, R.R.; Shaik, A.B. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective. J. Mol. Struct., 2022, 1259, 132712.
[http://dx.doi.org/10.1016/j.molstruc.2022.132712]
[37]
Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model., 2014, 54(12), 3284-3301.
[http://dx.doi.org/10.1021/ci500467k] [PMID: 25382374]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy