Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Cordia Dichotoma: A Comprehensive Review of its Phytoconstituents and Endophytic Fungal Metabolites and their Potential Anticancer Effects

Author(s): Saurav Madhavrao Patil and Sankha Bhattacharya*

Volume 24, Issue 3, 2024

Published on: 20 December, 2023

Page: [201 - 221] Pages: 21

DOI: 10.2174/0115680266277024231113114017

Price: $65

Abstract

Cordia Dichotoma is a valuable medicinal plant belonging to the family Boraginaceae. It consists of several beneficial secondary metabolite components, including alkaloids, carbohydrates, flavonoids, glycosides, saponins, and tannins. Numerous studies have been conducted to assess the anticancer properties of Cordia Dichotoma on MCF-7, A-549, PC3, and HeLa cancer cell lines, primarily utilizing ethanolic extract, methanolic extract, and chloroform extract. The results of these studies have demonstrated significant effects. Furthermore, several studies have revealed the rich phytoconstituent content of Cordia Dichotoma with some significant components previously utilized by researchers to investigate the anticancer properties of specific compounds. This review discusses several of these components, including β-sitosterol, α-amyrin, Quercitrin, Robinin, betulin, Taxifolin, and Hesperetin. Additionally, a recent study uncovered that the anticancer effect of metabolites from endophytic fungi residing on the Cordia Dichotoma plant is attributed to a property of the plant itself. This review focuses on the current state of anticancer research related to this plant and its components.

Graphical Abstract

[1]
Pawłowska, K.A.; Kryżman, M.; Zidorn, C.; Pagitz, K.; Popowski, D.; Granica, S. HPLC-DAD-MS3 fingerprints of phenolics of selected polygonum taxa and their chemometric analysis. Phytochemistry, 2023, 208, 113605.
[http://dx.doi.org/10.1016/j.phytochem.2023.113605] [PMID: 36746370]
[2]
Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol., 2022, 77(6), 1598-1606.
[http://dx.doi.org/10.1016/j.jhep.2022.08.021] [PMID: 36208844]
[3]
So, W.K.W. Achieving equitable access to cancer screening services to reduce the cancer burden in the Asia-Pacific region: Experience from Hong Kong. The Lancet Regional Health - Western Pacific, 2022, 29, 100587.
[http://dx.doi.org/10.1016/j.lanwpc.2022.100587]
[4]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[5]
Ain, Q.; Richardson, C.; Mutebi, M.; George, A.; Kemp, Z.; Rusby, J.E. Does mainstream BRCA testing affect surgical decision-making in newly-diagnosed breast cancer patients? Breast, 2023, 67, 30-35.
[http://dx.doi.org/10.1016/j.breast.2022.12.001] [PMID: 36577271]
[6]
Aćimović, M.; Semerdijeva, I.; Zheljazkov, V.D.; Rat, M.; Stanković Jeremić, J.; Lončar, B.; Vukić, V.; Radovanović, K.; Gavarić, N.; Pezo, L. Variation in the essential oil composition and in silico analysis of anti-inflammatory potential of Balkan endemic species Achillea clypeolata Sm Biochem. Syst. Ecol., 2023, 110, 104679.
[http://dx.doi.org/10.1016/j.bse.2023.104679]
[7]
Danziger, L.; Galarza Pérez, M.; Çiçek, S.S.; Zidorn, C. Fatty acids and polyacetylenes from Chaerophyllum temulum (Apiaceae, Scandiceae). Biochem. Syst. Ecol., 2023, 110, 104688.
[http://dx.doi.org/10.1016/j.bse.2023.104688]
[8]
Torre, L.A.; Islami, F.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer in women: Burden and trends. Cancer Epidemiol. Biomarkers Prev., 2017, 26(4), 444-457.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0858] [PMID: 28223433]
[9]
Zheleva-Dimitrova, D.; Petrova, A.; Zengin, G.; Sinan, K.I.; Balabanova, V.; Joubert, O.; Zidorn, C.; Voynikov, Y.; Simeonova, R.; Gevrenova, R. Metabolite profiling and bioactivity of Cicerbita alpina (L.) Wallr. (Asteraceae, Cichorieae). Plants, 2023, 12(5), 1009.
[http://dx.doi.org/10.3390/plants12051009] [PMID: 36903870]
[10]
Senapathy, J.G.; Umadevi, P.; Kannika, P.S. The present scenario of cervical cancer control and HPV epidemiology in India: An outline. Asian Pac. J. Cancer Prev., 2011, 12(5), 1107-1115.
[PMID: 21875253]
[11]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer Statistics, 2009. CA Cancer J. Clin., 2009, 59(4), 225-249.
[http://dx.doi.org/10.3322/caac.20006] [PMID: 19474385]
[12]
Curran, W.J. New chemotherapeutic agents: Update of major chemoradiation trials in solid tumors. Oncology, 2002, 63(Suppl. 2), 29-38.
[http://dx.doi.org/10.1159/000067145] [PMID: 12466642]
[13]
Bodla, R.B.; Kumar, S.; Bajaj, S. Preclinical screening methods in cancer. Indian J. Pharmacol., 2016, 48(5), 481-486.
[http://dx.doi.org/10.4103/0253-7613.190716] [PMID: 27721530]
[14]
Haribabu, J. Synthesis of palladium (II) complexes via Michael addition: Antiproliferative effects through ROS-mediated mitochondrial apoptosis and docking with SARS-CoV-2., 2020, 23, 17109-17122.
[15]
Jayaprakasha, G.K.; Mandadi, K.K.; Poulose, S.M.; Jadegoud, Y.; Nagana Gowda, G.A.; Patil, B.S. Inhibition of colon cancer cell growth and antioxidant activity of bioactive compounds from Poncirus trifoliata (L.). Raf. Bioorg. Med. Chem., 2007, 15(14), 4923-4932.
[http://dx.doi.org/10.1016/j.bmc.2007.04.044] [PMID: 17512744]
[16]
Cock, I.E.; Luwaca, N.; Van Vuuren, S.F. The traditional use of Southern African medicinal plants to alleviate fever and their antipyretic activities. J. Ethnopharmacol., 2023, 303, 115850.
[http://dx.doi.org/10.1016/j.jep.2022.115850] [PMID: 36306931]
[17]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[18]
Greenwell, M.; Rahman, P.K. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[PMID: 26594645]
[19]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[20]
Haribabu, J.; Sabapathi, G.; Tamizh, M.M.; Balachandran, C.; Bhuvanesh, N.S.P.; Venuvanalingam, P.; Karvembu, R. Water-soluble mono- and binuclear Ru(η 6-p -cymene) complexes containing indole thiosemicarbazones: synthesis, dft modeling, biomolecular interactions, and in vitro anticancer activity through apoptosis. Organometallics, 2018, 37(8), 1242-1257.
[http://dx.doi.org/10.1021/acs.organomet.8b00004]
[21]
Desai, A.; Qazi, G.; Ganju, R.; El-Tamer, M.; Singh, J.; Saxena, A.; Bedi, Y.; Taneja, S.; Bhat, H. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[22]
Haribabu, J. Michael addition-driven synthesis of cytotoxic palladium (ii) complexes from chromone thiosemicarbazones: Investigation of anticancer activity through in vitro and in vivo studies., 2023, 47(33), 15748-15759.
[23]
Fouladbakhsh, J.M.; Balneaves, L.; Jenuwine, E. Understanding CAM natural health products: Implications of use among cancer patients and survivors. J. Adv. Pract. Oncol., 2013, 4(5), 289-306.
[http://dx.doi.org/10.6004/jadpro.2013.4.5.2] [PMID: 25032009]
[24]
Seca, A.; Pinto, D. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[25]
Thirupathi, K. A review of medicinal plants of the genus Cordia: Their chemistry and pharmacological uses., 2008, 1-10.
[26]
Ioset, J.R.; Marston, A.; Gupta, M.P.; Hostettmann, K. Antifungal and larvicidal compounds from the root bark of Cordia alliodora. J. Nat. Prod., 2000, 63(3), 424-426.
[http://dx.doi.org/10.1021/np990393j] [PMID: 10757739]
[27]
Al-Musayeib, N.; Perveen, S.; Fatima, I.; Nasir, M.; Hussain, A. Antioxidant, anti-glycation and anti-inflammatory activities of phenolic constituents from Cordia sinensis. Molecules, 2011, 16(12), 10214-10226.
[http://dx.doi.org/10.3390/molecules161210214] [PMID: 22158590]
[28]
Medeiros, R.; Passos, G.F.; Vitor, C.E.; Koepp, J.; Mazzuco, T.L.; Pianowski, L.F.; Campos, M.M.; Calixto, J.B. Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Br. J. Pharmacol., 2007, 151(5), 618-627.
[http://dx.doi.org/10.1038/sj.bjp.0707270] [PMID: 17471174]
[29]
Ioset, J.R.; Marston, A.; Gupta, M.P.; Hostettmann, K. Antifungal and larvicidal meroterpenoid naphthoquinones and a naphthoxirene from the roots of Cordia linnael. Phytochemistry, 1998, 47(5), 729-734.
[http://dx.doi.org/10.1016/S0031-9422(97)00695-X] [PMID: 9542168]
[30]
Edmondson, J.R.; Mill, R.R.; Parris, B.S. Front Matter. In: Flora of Turkey and the East Aegean Islands; Davis, P.H., Ed.; Edinburgh University Press, 1978; 6, pp. i-iv.
[31]
Kathirvelan, D. Facile and diastereoselective synthesis of 3, 2′- spiropyrrolidine-oxindoles derivatives, their molecular docking and antiproliferative activities., 2015, 25(2), 389-399.
[32]
Yoganarasimhan, S.N. Medicinal Plants of India: Tamil Nadu., 2000. Cyber Media
[33]
Hussain, N.; Kakoti, B.B.J.J.o.D.D. Kakoti, and Therapeutics Review on ethnobotany and phytopharmacology of cordia dichotoma, 2013, 3.
[34]
Basu, N.G.; Ghosal, P.K.; Thakur, S.J.C.r. Structural studies on a polysaccharide fraction from the fruits of Cordia dichotoma Forst., 1984, 131(1), 149-155.
[http://dx.doi.org/10.1016/0008-6215(84)85412-9]
[35]
Vohora, S.B. Unani Joshandah drugs for common cold, catarrh, cough and associated fevers. J. Ethnopharmacol., 1986, 16(2-3), 201-211.
[http://dx.doi.org/10.1016/0378-8741(86)90090-5] [PMID: 3747564]
[36]
Sharma, U. Anti-inflammatory activity of Cordia dichotoma forst f. seeds extracts., 2010, 2(1), 1.
[37]
Tian, S. Phytochemical composition and antioxidant capacity of Cordia dichotoma seeds. Pak J Pharm Sci., 2014, 27(5), 1123-1129.
[38]
Haribabu, J.; Alajrawy, O.I.; Jeyalakshmi, K.; Balachandran, C.; Krishnan, D.A.; Bhuvanesh, N.; Aoki, S.; Natarajan, K.; Karvembu, R. N-substitution in isatin thiosemicarbazones decides nuclearity of Cu(II) complexes – Spectroscopic, molecular docking and cytotoxic studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 246, 118963.
[http://dx.doi.org/10.1016/j.saa.2020.118963] [PMID: 33017789]
[39]
Haribabu, J. Synthesis, cytotoxicity and docking studies (with SARS-CoV-2) of water-soluble binuclear Ru-p-cymene complex holding indole thiosemicarbazone ligand., 134, 109029.2021,
[40]
Haribabu, J. Unprecedented formation of palladium (II)-pyrazole based thiourea from chromone thiosemicarbazone and [PdCl2 (PPh3) 2]: Interaction with biomolecules and apoptosis through mitochondrial signaling pathway. 2020, 205, 110988.
[41]
Nariya, P.; Shukla, V.J.; Bhalodia, N.R.; Acharya, R.N. Antimicrobial and antifungal activities of Cordia dichotoma (Forster F.) bark extracts. Ayu, 2011, 32(4), 585-589.
[http://dx.doi.org/10.4103/0974-8520.96138] [PMID: 22661859]
[42]
Hussain, N. Anti-inflammatory and antioxidant activities of Cordia dichotoma Forst., 2020, 13, 2093-2099.
[http://dx.doi.org/10.13005/bpj/2090]
[43]
Ganjare, A.B.; Nirmal, S.A.; Patil, A.N.J.F. Use of apigenin from Cordia dichotoma in the treatment of colitis., 2011, 82(7), 1052-1056.
[http://dx.doi.org/10.1016/j.fitote.2011.06.008]
[44]
Jamkhande, P.G.; Barde, S.R.; Patwekar, S.L.; Tidke, P.S. Plant profile, phytochemistry and pharmacology of Cordia dichotoma (Indian cherry): A review. Asian Pac. J. Trop. Biomed., 2013, 3(12), 1009-1012.
[http://dx.doi.org/10.1016/S2221-1691(13)60194-X] [PMID: 24093795]
[45]
Kirtikar, R.; Basu, B.D. indian medicinal plasts, 1935, 3. LALIT MOHAN BASU
[46]
Srivastava, S.; Srivastava, S.J.P. Taxifollin 3, 5-dirhamnoside from the seeds of Cordia dichotoma, 1979, 18, 205-208.
[47]
Al-Awadi, F.M.; Srikumar, T.S.; Anim, J.T.; Khan, I. Antiinflammatory effects of Cordia myxa fruit on experimentally induced colitis in rats. Nutrition, 2001, 17(5), 391-396.
[http://dx.doi.org/10.1016/S0899-9007(01)00517-2] [PMID: 11377132]
[48]
Parmar, N.S.; Parmar, S. Anti-ulcer potential of flavonoids. Indian J. Physiol. Pharmacol., 1998, 42(3), 343-351.
[PMID: 9741648]
[49]
Wassel, G. New sources of pyrrolizidine alkaloids: genus Cordia (Ehretiaceae) and Schismus (Gramineae), 1987, 55(3), 163-166.
[50]
Afzal, M. Photosynthetic pigment profile of Cordia myxa L. and its potential in folklore medicinal application, 2004, 2, 114-120.
[51]
Basu, N.G.; Ghosal, P.K.; Thakur, S.J.C.r. Some structural features of an arabinoglucan from the fruits of Cordia dichotoma Forst., 1986.
[http://dx.doi.org/10.1016/0008-6215(86)85053-4]
[52]
Tiwari, K.; Srivastava, S.D.J.P.M. Chemical investigation of the stem bark of Cordia obliqua., 1979, 36(06), 191-192.
[http://dx.doi.org/10.1055/s-0028-1097267]
[53]
Govil, J.; Singh, V.; Hashmi, S. Medicinal plants: new vistas of research., 1993.
[54]
Chauhan, J.; Srivastava, S.; Sultan, M.J.P. Hesperetin-7-rhamnoside from Cordia obliqua [roots], 1978.
[55]
Jagdish, S.; Chauhan, J.; Srivastava, S.J.P. Lupa-20, 29-ene-3-o-β-D-maltoside from the roots of Cordia Obliqua. 1978, 17, 1005-1006.
[56]
Ibrahim, A.Y.; El-Newary, S.A.; Ibrahim, G.E. Antioxidant, cytotoxicity and anti-tumor activity of Cordia dichotoma fruits accompanied with its volatile and sugar composition. Ann. Agric. Sci., 2019, 64(1), 29-37.
[http://dx.doi.org/10.1016/j.aoas.2019.05.008]
[57]
Raina, S.; Sharma, V.; Sheikh, Z.N.; Kour, N.; Singh, S.K.; Zari, A.; Zari, T.A.; Alharby, H.F.; Hakeem, K.R. Anticancer activity of Cordia dichotoma against a panel of human cancer cell lines and their phytochemical profiling via hplc and gcms. Molecules, 2022, 27(7), 2185.
[http://dx.doi.org/10.3390/molecules27072185] [PMID: 35408583]
[58]
Usmani, S. Antioxidant potential of crude extract, flavonoid-rich fractions, and a new compound from the seeds of Cordia dichotoma., 2021, 12(3), 437-444.
[59]
Rahman, M.A.; Hussain, A.J.; Pharmacology, B.J.o. Anti-cancer activity and apoptosis inducing effect of methanolic extract of Cordia dichotoma against human cancer cell line., 2015, 10(1), 27-34.
[60]
Awad, A.B. Chinnam, M.; Fink, C.S.; Bradford, P.G. β-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine, 2007, 14(11), 747-754.
[http://dx.doi.org/10.1016/j.phymed.2007.01.003] [PMID: 17350814]
[61]
Baskar, A.A.; Ignacimuthu, S.; Paulraj, G.M.; Al Numair, K.S. Chemopreventive potential of β-Sitosterol in experimental colon cancer model - an In vitro and In vivo study. BMC Complement. Altern. Med., 2010, 10(1), 24.
[http://dx.doi.org/10.1186/1472-6882-10-24] [PMID: 20525330]
[62]
Mirunalini, S. Antiproliferative effect of alpha amyrin on Hep2 cells by inducing cytotoxicity and oxidant antioxidant status modifications., 2016, 3(2), 44-47.
[http://dx.doi.org/10.15613/fijrfn/2016/v3i2/139485]
[63]
Ding, M.; Zhao, J.; Bowman, L.; Lu, Y.; Shi, X. Inhibition of AP-1 and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin. Int. J. Oncol., 2010, 36(1), 59-67.
[PMID: 19956833]
[64]
Nones, J. Hesperidin, a flavone glycoside, as mediator of neuronal survival., 2011, 36, 1776-1784.
[65]
Zheng, S.Y.; Li, Y.; Jiang, D.; Zhao, J.; Ge, J.F. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol. Med. Rep., 2012, 5(3), 822-826.
[PMID: 22200874]
[66]
Cincin, Z.B. Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer., 2014, 45(6), 445-454.
[http://dx.doi.org/10.1016/j.arcmed.2014.08.002]
[67]
Bokkenheuser, V.D.; Shackleton, C.H.; Winter, J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem. J., 1987, 248(3), 953-956.
[http://dx.doi.org/10.1042/bj2480953] [PMID: 3435494]
[68]
Zhu, L.; Xue, L. Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncol. Res., 2019, 27(6), 629-634.
[http://dx.doi.org/10.3727/096504018X15228018559434] [PMID: 29739490]
[69]
Vander Heiden, M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov., 2011, 10(9), 671-684.
[http://dx.doi.org/10.1038/nrd3504] [PMID: 21878982]
[70]
Schulze, A.; Harris, A.L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 2012, 491(7424), 364-373.
[http://dx.doi.org/10.1038/nature11706] [PMID: 23151579]
[71]
Azevedo, C.; Correia-Branco, A.; Araújo, J.R.; Guimarães, J.T.; Keating, E.; Martel, F. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr. Cancer, 2015, 67(3), 504-513.
[http://dx.doi.org/10.1080/01635581.2015.1002625] [PMID: 25719685]
[72]
Hung, H. Inhibition of estrogen receptor alpha expression and function in MCF‐7 cells by kaempferol. J. Cell. Physiol., 2004, 198(2), 197-208.
[http://dx.doi.org/10.1002/jcp.10398] [PMID: 14603522]
[73]
Huang, J.; Li, H.; Ren, G. Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). Int. J. Oncol., 2015, 47(3), 840-848.
[http://dx.doi.org/10.3892/ijo.2015.3084] [PMID: 26202679]
[74]
Lee, G.A.; Choi, K.C.; Hwang, K.A. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ. Toxicol. Pharmacol., 2017, 49, 48-57.
[http://dx.doi.org/10.1016/j.etap.2016.11.016] [PMID: 27902959]
[75]
Alakurtti, S. Pharmacological properties of the ubiquitous natural product betulin., 2006, 29(1), 1-13.
[http://dx.doi.org/10.1016/j.ejps.2006.04.006]
[76]
Bouvier, F.; Rahier, A.; Camara, B.J.P.i.l.r. Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res., 2005, 44(6), 357-429.
[http://dx.doi.org/10.1016/j.plipres.2005.09.003]
[77]
Pyo, J.S. Anti-cancer effect of betulin on a human lung cancer cell line: A pharmacoproteomic approach using 2 D SDS PAGE coupled with nano-HPLC tandem mass spectrometry. Planta Med., 2009, 75(2), 127-131. Epub 2008 Dec 12.
[http://dx.doi.org/10.1055/s-0028-1088366] [PMID: 19085751]
[78]
Laszczyk, M.; Jäger, S.; Simon-Haarhaus, B.; Scheffler, A.; Schempp, C. Physical, chemical and pharmacological characterization of a new oleogel-forming triterpene extract from the outer bark of birch (betulae cortex). Planta Med., 2006, 72(15), 1389-1395.
[http://dx.doi.org/10.1055/s-2006-951723] [PMID: 17091432]
[79]
Sherr, C.J.J.C.r. The Pezcoller lecture: Cancer cell cycles revisited. Cancer Res., 2000, 60(14), 3689-3695.
[PMID: 10919634]
[80]
Schwartz, G.K.; Shah, M.A. Targeting the cell cycle: A new approach to cancer therapy. J. Clin. Oncol., 2005, 23(36), 9408-9421.
[http://dx.doi.org/10.1200/JCO.2005.01.5594] [PMID: 16361640]
[81]
Harada, H.; Yamashita, U.; Kurihara, H.; Fukushi, E.; Kawabata, J.; Kamei, Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res., 2002, 22(5), 2587-2590.
[PMID: 12529968]
[82]
Cheng, Y.L.; Chang, W.L.; Lee, S.C.; Liu, Y.G.; Chen, C.J.; Lin, S.Z.; Tsai, N.M.; Yu, D.S.; Yen, C.Y.; Harn, H.J. Acetone extract of Angelica sinensis inhibits proliferation of human cancer cells via inducing cell cycle arrest and apoptosis. Life Sci., 2004, 75(13), 1579-1594.
[http://dx.doi.org/10.1016/j.lfs.2004.03.009] [PMID: 15261763]
[83]
Sun, J.; Hai Liu, R. Cranberry phytochemical extracts induce cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. Cancer Lett., 2006, 241(1), 124-134.
[http://dx.doi.org/10.1016/j.canlet.2005.10.027] [PMID: 16377076]
[84]
Hu, X.; Zhang, X.; Qiu, S.; Yu, D.; Lin, S. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells. Biochem. Biophys. Res. Commun., 2010, 398(1), 62-67.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.033] [PMID: 20541529]
[85]
Şoica, C.; Dehelean, C.; Danciu, C.; Wang, H.; Wenz, G.; Ambrus, R.; Bojin, F.; Anghel, M. Betulin complex in γ-cyclodextrin derivatives: properties and antineoplasic activities in in vitro and in vivo tumor models. Int. J. Mol. Sci., 2012, 13(12), 14992-15011.
[http://dx.doi.org/10.3390/ijms131114992] [PMID: 23203108]
[86]
Oh, S.H.; Choi, J.E.; Lim, S.C. Protection of betulin against cadmium-induced apoptosis in hepatoma cells. Toxicology, 2006, 220(1), 1-12.
[http://dx.doi.org/10.1016/j.tox.2005.08.025] [PMID: 16436312]
[87]
Polya, G.M.; Polya, G.M. Selective inhibition of cyclic AMP-dependent protein kinase by amphiphilic triterpenoids and related compounds. Phytochemistry, 1996, 41(1), 55-63.
[http://dx.doi.org/10.1016/0031-9422(95)00583-8] [PMID: 8588874]
[88]
Rzeski, W.; Stepulak, A. Szymański, M.; Juszczak, M.; Grabarska, A.; Sifringer, M.; Kaczor, J.; Kandefer-Szerszeń M. Betulin elicits anti-cancer effects in tumour primary cultures and cell lines in vitro. Basic Clin. Pharmacol. Toxicol., 2009, 105(6), 425-432.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00471.x] [PMID: 19821831]
[89]
Xu, H.; Luo, J.; Huang, J.; Wen, Q. Flavonoids intake and risk of type 2 diabetes mellitus. Medicine, 2018, 97(19), e0686.
[http://dx.doi.org/10.1097/MD.0000000000010686] [PMID: 29742713]
[90]
Min, H.Y.; Jang, H.J.; Park, K.H.; Hyun, S.Y.; Park, S.J.; Kim, J.H.; Son, J.; Kang, S.S.; Lee, H.Y. The natural compound gracillin exerts potent antitumor activity by targeting mitochondrial complex II. Cell Death Dis., 2019, 10(11), 810.
[http://dx.doi.org/10.1038/s41419-019-2041-z] [PMID: 31649278]
[91]
Sunil, C.; Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry, 2019, 166, 112066.
[http://dx.doi.org/10.1016/j.phytochem.2019.112066] [PMID: 31325613]
[92]
Asmi, K.S. Therapeutic aspects of taxifolin–. An update., 2017, 7(3)
[93]
Teselkin, Y.O.; Babenkova, I.V.; Kolhir, V.K.; Baginskaya, A.I.; Tjukavkina, N.A.; Kolesnik, Y.A.; Selivanova, I.A.; Eichholz, A.A. Dihydroquercetin as a means of antioxidative defence in rats with tetrachloromethane hepatitis. Phytother. Res., 2000, 14(3), 160-162.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<160:AID-PTR555>3.0.CO;2-Y] [PMID: 10815007]
[94]
Wang, Y.H.; Wang, W.Y.; Chang, C.C.; Liou, K.T.; Sung, Y.J.; Liao, J.F.; Chen, C.F.; Chang, S.; Hou, Y.C.; Chou, Y.C.; Shen, Y.C. Taxifolin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-oxidative effect and modulation of NF-kappa B activation. J. Biomed. Sci., 2006, 13(1), 127-141.
[http://dx.doi.org/10.1007/s11373-005-9031-0] [PMID: 16283433]
[95]
Cai, C.; Liu, C.; Zhao, L.; Liu, H.; Li, W.; Guan, H.; Zhao, L.; Xiao, J. Effects of Taxifolin on Osteoclastogenesis in vitro and in vivo. Front. Pharmacol., 2018, 9, 1286.
[http://dx.doi.org/10.3389/fphar.2018.01286] [PMID: 30483128]
[96]
Chen, J.; Sun, X.; Xia, T.; Mao, Q.; Zhong, L. Pretreatment with dihydroquercetin, a dietary flavonoid, protected against concanavalin A-induced immunological hepatic injury in mice and TNF-α/ActD-induced apoptosis in HepG2 cells. Food Funct., 2018, 9(4), 2341-2352.
[http://dx.doi.org/10.1039/C7FO01073G] [PMID: 29589006]
[97]
Park, S.Y.; Kim, H.Y.; Park, H.J.; Shin, H.K.; Hong, K.W.; Kim, C.D. Concurrent treatment with taxifolin and cilostazol on the lowering of β-Amyloid accumulation and neurotoxicity via the suppression of P-JAK2/P-STAT3/NF-κB/BACE1 signaling pathways. PLoS One, 2016, 11(12), e0168286.
[http://dx.doi.org/10.1371/journal.pone.0168286] [PMID: 27977755]
[98]
Rehman, K.; Chohan, T.A.; Waheed, I.; Gilani, Z.; Akash, M.S.H. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α‐amylase: Evidence from an in vivo and in silico studies. J. Cell. Biochem., 2019, 120(1), 425-438.
[http://dx.doi.org/10.1002/jcb.27398] [PMID: 30191607]
[99]
Liu, F.; Ma, Y.; Xu, Y. Taxifolin shows anticataractogenesis and attenuates diabetic retinopathy in stz-diabetic rats via suppression of aldose reductase, oxidative stress, and MAPK signaling pathway. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 599-608.
[http://dx.doi.org/10.2174/1871530319666191018122821] [PMID: 31656158]
[100]
Galato, D.; Ckless, K.; Susin, M.F.; Giacomelli, C.; Ribeiro-do-Valle, R.M.; Spinelli, A. Antioxidant capacity of phenolic and related compounds: Correlation among electrochemical, visible spectroscopy methods and structure–antioxidant activity. Redox Rep., 2001, 6(4), 243-250.
[http://dx.doi.org/10.1179/135100001101536391] [PMID: 11642715]
[101]
Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol., 2003, 41(6), 753-758.
[http://dx.doi.org/10.1016/S0278-6915(02)00329-0] [PMID: 12738180]
[102]
Wang, X.; Xia, H.; Xing, F.; Deng, G.; Shen, Q.; Zeng, S. A highly sensitive and robust UPLC–MS with electrospray ionization method for quantitation of taxifolin in rat plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(18-19), 1778-1786.
[http://dx.doi.org/10.1016/j.jchromb.2009.04.037] [PMID: 19464238]
[103]
Seredin, S. Preclinical investigation of pharmacokinetics of Dihydroquercetin., 2007.
[104]
Pozharitskaya, O.N.; Karlina, M.V.; Shikov, A.N.; Kosman, V.M.; Makarova, M.N.; Makarov, V.G. Determination and pharmacokinetic study of taxifolin in rabbit plasma by high-performance liquid chromatography. Phytomedicine, 2009, 16(2-3), 244-251.
[http://dx.doi.org/10.1016/j.phymed.2008.10.002] [PMID: 19110406]
[105]
Kolhir, V. Antioxidant activity of a dihydroquercetin isolated from Larix gmelinii (Rupr.) Rupr. wood., 1996, 10(6), 478-482.
[106]
McDonnell, D.P.; Park, S.; Goulet, M.T.; Jasper, J.; Wardell, S.E.; Chang, C.; Norris, J.D.; Guyton, J.R.; Nelson, E.R. Obesity, cholesterol metabolism, and breast cancer pathogenesis. Cancer Res., 2014, 74(18), 4976-4982.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1756] [PMID: 25060521]
[107]
Nelson, E.R.; Chang, C.; McDonnell, D.P. Cholesterol and breast cancer pathophysiology. Trends Endocrinol. Metab., 2014, 25(12), 649-655.
[http://dx.doi.org/10.1016/j.tem.2014.10.001] [PMID: 25458418]
[108]
Haque, M.W.; Bose, P.; Siddique, M.U.M.; Sunita, P.; Lapenna, A.; Pattanayak, S.P. Taxifolin binds with LXR (α & β) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/PTEN pathway. Biomed. Pharmacother., 2018, 105, 27-36.
[http://dx.doi.org/10.1016/j.biopha.2018.05.114] [PMID: 29843042]
[109]
Li, J.; Hu, L.; Zhou, T.; Gong, X.; Jiang, R.; Li, H.; Kuang, G.; Wan, J.; Li, H. Taxifolin inhibits breast cancer cells proliferation, migration and invasion by promoting mesenchymal to epithelial transition via β-catenin signaling. Life Sci., 2019, 232, 116617.
[http://dx.doi.org/10.1016/j.lfs.2019.116617] [PMID: 31260685]
[110]
Hankinson, O. The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol., 1995, 35(1), 307-340.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.001515] [PMID: 7598497]
[111]
Rodriguez, M.; Potter, D.A. CYP1A1 regulates breast cancer proliferation and survival. Mol. Cancer Res., 2013, 11(7), 780-792.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0675] [PMID: 23576571]
[112]
Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Cytochrome P450 CYP1A1: Wider roles in cancer progression and prevention. BMC Cancer, 2009, 9(1), 187.
[http://dx.doi.org/10.1186/1471-2407-9-187] [PMID: 19531241]
[113]
Feng, S.; Cao, Z.; Wang, X. Role of aryl hydrocarbon receptor in cancer. Biochim. Biophys. Acta, 2013, 1836(2), 197-210.
[PMID: 23711559]
[114]
Vinothini, G.; Nagini, S. Correlation of xenobiotic-metabolizing enzymes, oxidative stress and NFκB signaling with histological grade and menopausal status in patients with adenocarcinoma of the breast. Clin. Chim. Acta, 2010, 411(5-6), 368-374.
[http://dx.doi.org/10.1016/j.cca.2009.11.034] [PMID: 19995559]
[115]
Powell, J.B.; Goode, G.D.; Eltom, S.E. The aryl hydrocarbon receptor: A target for breast cancer therapy. J. Cancer Ther., 2013, 4(7), 1177-1186.
[http://dx.doi.org/10.4236/jct.2013.47137] [PMID: 25068070]
[116]
Haque, M.W.; Pattanayak, S.P. Taxifolin inhibits 7,12-Dimethylbenz(a)anthracene-induced breast carcinogenesis by regulating AhR/CYP1A1 signaling pathway. Pharmacogn. Mag., 2018, 13(Suppl. 4), S749-S755.
[PMID: 29491628]
[117]
Masciale, V.; Grisendi, G.; Banchelli, F.; D’Amico, R.; Maiorana, A.; Sighinolfi, P.; Pinelli, M.; Lovati, E.; Stefani, A.; Morandi, U.; Dominici, M.; Aramini, B. Correlating tumor-infiltrating lymphocytes and lung cancer stem cells: A cross-sectional study. Ann. Transl. Med., 2019, 7(22), 619.
[http://dx.doi.org/10.21037/atm.2019.11.27] [PMID: 31930020]
[118]
Shroff, G.S.; de Groot, P.M.; Papadimitrakopoulou, V.A.; Truong, M.T.; Carter, B.W. Targeted therapy and immunotherapy in the treatment of non–small cell lung cancer. Radiol. Clin. North Am., 2018, 56(3), 485-495.
[http://dx.doi.org/10.1016/j.rcl.2018.01.012] [PMID: 29622080]
[119]
Yuan, X.; Li, N.; Zhang, M.; Lu, C.; Du, Z.; Zhu, W.; Wu, D. Taxifolin attenuates IMQ-induced murine psoriasis-like dermatitis by regulating T helper cell responses via Notch1 and JAK2/STAT3 signal pathways. Biomed. Pharmacother., 2020, 123, 109747.
[http://dx.doi.org/10.1016/j.biopha.2019.109747] [PMID: 31881484]
[120]
Zhou, W.; Guo, Z.L.M.W.D.C.L.Z.L. Taxifolin inhibits the scar cell carcinoma growth by inducing apoptosis, cell cycle arrest and suppression of PI3K/AKT/mTOR pathway. J. BUON, 2019, 24(2), 853-858.
[PMID: 31128046]
[121]
Razak, S.; Afsar, T.; Ullah, A.; Almajwal, A.; Alkholief, M.; Alshamsan, A.; Jahan, S. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/ β -catenin signaling pathway. BMC Cancer, 2018, 18(1), 1043.
[http://dx.doi.org/10.1186/s12885-018-4959-4] [PMID: 30367624]
[122]
Wang, R.; Zhu, X.; Wang, Q.; Li, X.; Wang, E.; Zhao, Q.; Wang, Q.; Cao, H. The anti-tumor effect of taxifolin on lung cancer via suppressing stemness and epithelial-mesenchymal transition in vitro and oncogenesis in nude mice. Ann. Transl. Med., 2020, 8(9), 590.
[http://dx.doi.org/10.21037/atm-20-3329] [PMID: 32566617]
[123]
Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Neuhäuser-Berthold, M.; Nowicka, G.; Pentieva, K.; Sanz, Y.; Siani, A.; Sjödin, A.; Stern, M.; Tomé, D.; Vinceti, M.; Willatts, P.; Engel, K.H.; Marchelli, R.; Pöting, A.; Poulsen, M.; Schlatter, J.; Gelbmann, W.; van Loveren, H. Statement on the safety of taxifolin-rich extract from Dahurian Larch (Larix gmelinii). EFSA J., 2017, 15(11), e05059.
[PMID: 32625351]
[124]
Teselkin, Y.O. Influence of dihydroquercetin on the lipid peroxidation of mice during post‐radiation period., 1998, 12(7), 517-519.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199811)12:7<517::AID-PTR342>3.0.CO;2-D]
[125]
Kolhir, V. Use of a new antioxidant diquertin as an adjuvant in the therapy of patients with acute pneumonia., 1998, 12(8), 606-608.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199812)12:8<606::AID-PTR367>3.0.CO;2-U]
[126]
Aschoff, J.K.; Riedl, K.M.; Cooperstone, J.L.; Högel, J.; Bosy-Westphal, A.; Schwartz, S.J.; Carle, R.; Schweiggert, R.M. Urinary excretion of Citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross-over study. Mol. Nutr. Food Res., 2016, 60(12), 2602-2610.
[http://dx.doi.org/10.1002/mnfr.201600315] [PMID: 27488098]
[127]
Wang, S.; Sheng, H.; Zheng, F.; Zhang, F. Hesperetin promotes DOT1L degradation and reduces histone H3K79 methylation to inhibit gastric cancer metastasis. Phytomedicine, 2021, 84, 153499.
[http://dx.doi.org/10.1016/j.phymed.2021.153499] [PMID: 33667841]
[128]
a) Kalluri, R.; Weinberg, R.A. The basics of epithelialmesenchymal transition. J. Clin. Invest., 2009, 119(6), 1440-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818];
b) Dalpatraj, N; Naik, A; Thakur, N. Combination Treatment of a Phytochemical and a Histone Demethylase Inhibitor-A Novel Approach towards Targeting TGFβ-Induced EMT, Invasion, and Migration in Prostate Cancer. Int J Mol Sci., 2023, Jan 17;. 24(3), 1860.
[http://dx.doi.org/10.3390/ijms24031860] [PMID: 36768182] [PMCID: PMC9915876]
[129]
Sohel, M.; Sultana, H.; Sultana, T.; Al Amin, M.; Aktar, S.; Ali, M.C.; Rahim, Z.B.; Hossain, M.A.; Al Mamun, A.; Amin, M.N.; Dash, R. Chemotherapeutic potential of hesperetin for cancer treatment, with mechanistic insights: A comprehensive review. Heliyon, 2022, 8(1), e08815.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08815] [PMID: 35128104]
[130]
Dhakshinamoorthy, M.; Packiam, K.K.J.P.M. Camptothecin: An Anticancer Drug from Pestalotiopsis microspora Mh458929-An Endophytic Fungus Isolated from an Ethnopharmacologically Important Medicinal Plant Cordia dichotoma G; Forst, 2021, p. 17.
[131]
Coutinho, L.; Oliveira, H.; Pacheco, A.R.; Almeida, L.; Pimentel, F.; Santos, C.; Ferreira de Oliveira, J.M.P. Hesperetin-etoposide combinations induce cytotoxicity in U2OS cells: Implications on therapeutic developments for osteosarcoma. DNA Repair, 2017, 50, 36-42.
[http://dx.doi.org/10.1016/j.dnarep.2016.12.006] [PMID: 28063664]
[132]
Wang, Y.; Yu, H.; Zhang, J.; Gao, J.; Ge, X.; Lou, G. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest. BMC Cancer, 2015, 15(1), 682.
[http://dx.doi.org/10.1186/s12885-015-1706-y] [PMID: 26459308]
[133]
Sangpheak, W.; Kicuntod, J.; Schuster, R.; Rungrotmongkol, T.; Wolschann, P.; Kungwan, N.; Viernstein, H.; Mueller, M.; Pongsawasdi, P. Physical properties and biological activities of hesperetin and naringenin in complex with methylated β-cyclodextrin. Beilstein J. Org. Chem., 2015, 11, 2763-2773.
[http://dx.doi.org/10.3762/bjoc.11.297] [PMID: 26877798]
[134]
Guthrie, N.; Gapor, A.; Chambers, A.F.; Carroll, K.K. Palm oil tocotrienols and plant flavonoids act synergistically with each other and with Tamoxifen in inhibiting proliferation and growth of estrogen receptor-negative MDA-MB-435 and -positive MCF-7 human breast cancer cells in culture. Asia Pac. J. Clin. Nutr., 1997, 6(1), 41-45.
[PMID: 24394652]
[135]
Palit, S.; Kar, S.; Sharma, G.; Das, P.K. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J. Cell. Physiol., 2015, 230(8), 1729-1739.
[http://dx.doi.org/10.1002/jcp.24818] [PMID: 25204891]
[136]
Chandrika, B.B.; Steephan, M.; Kumar, T.R.S.; Sabu, A.; Haridas, M. Hesperetin and naringenin sensitize HER2 positive cancer cells to death by serving as HER2 tyrosine kinase inhibitors. Life Sci., 2016, 160, 47-56.
[http://dx.doi.org/10.1016/j.lfs.2016.07.007] [PMID: 27449398]
[137]
Chu, L.L.; Pandey, R.P.; Jung, N.; Jung, H.J.; Kim, E.H.; Sohng, J.K. Hydroxylation of diverse flavonoids by CYP450 BM3 variants: Biosynthesis of eriodictyol from naringenin in whole cells and its biological activities. Microb. Cell Fact., 2016, 15(1), 135.
[http://dx.doi.org/10.1186/s12934-016-0533-4] [PMID: 27495155]
[138]
Alshatwi, A.A.; Ramesh, E.; Periasamy, V.S.; Subash-Babu, P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam. Clin. Pharmacol., 2013, 27(6), 581-592.
[http://dx.doi.org/10.1111/j.1472-8206.2012.01061.x] [PMID: 22913657]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy