Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Tebentafusp as a Promising Drug for the Treatment of Uveal Melanoma

Author(s): Khalid Al Balushi, Abdulrahman Al Hadhrami, Hamdan Al Balushi, Abdullah Al Lawati and Srijit Das*

Volume 25, Issue 3, 2024

Published on: 19 December, 2023

Page: [149 - 157] Pages: 9

DOI: 10.2174/0113894501280380231214105255

Price: $65

Abstract

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults and commonly occurs in the Caucasian population. The malignancy involves the uvea of the eye, which includes the iris, ciliary body, and choroid. The etiology of UM is still not well understood, but age is a risk factor. Symptoms include blurred vision, redness of the eye, floaters, dark spots, a change in the size of the pupil, and loss of vision. The location, shape, and size of the tumor are important for therapeutic purposes. Treating metastasis is always a challenge in UM cases. In cases of lung metastasis, the survival rate decreases. Treatment includes surgery, laser therapy, immunotherapy, hormone therapy, and chemotherapy. Recently, in 2022, the United States Food and Drug Administration (FDA) approved the drug tebentafusp. Tebentafusp was developed to target the most common HLA complex in humans. The present review discusses the indications for the use of a new drug tebentafusp, its mechanism of action, dose, pharmacokinetics, results of clinical trials conducted, and adverse effects like cytokine release syndrome. Hence, tebentafusp is the first T cell receptor (TCR) therapeutic drug that could be considered for the treatment of UM.

Next »
Graphical Abstract

[1]
Krantz BA, Dave N, Komatsubara KM, Marr BP, Carvajal RD. Uveal melanoma: Epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol 2017; 11: 279-89.
[http://dx.doi.org/10.2147/OPTH.S89591] [PMID: 28203054]
[2]
Mahendraraj K, Lau C, Lee I, Chamberlain R. Trends in incidence, survival, and management of uveal melanoma: A population-based study of 7,516 patients from the Surveillance, Epidemiology, and End Results database (1973–2012). Clin Ophthalmol 2016; 10: 2113-9.
[http://dx.doi.org/10.2147/OPTH.S113623] [PMID: 27822007]
[3]
Rodríguez A, Dueñas-Gonzalez A, Delgado-Pelayo S. Clinical presentation and management of uveal melanoma. Mol Clin Oncol 2016; 5(6): 675-7.
[http://dx.doi.org/10.3892/mco.2016.1037] [PMID: 28101347]
[4]
Harbour JW, Onken MD, Roberson EDO, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010; 330(6009): 1410-3.
[http://dx.doi.org/10.1126/science.1194472] [PMID: 21051595]
[5]
Shields CL, Kaliki S, Livesey M, et al. Association of ocular and oculodermal melanocytosis with the rate of uveal melanoma metastasis: analysis of 7872 consecutive eyes. JAMA Ophthalmol 2013; 131(8): 993-1003.
[http://dx.doi.org/10.1001/jamaophthalmol.2013.129] [PMID: 23681424]
[6]
Weis E, Shah CP, Lajous M, Shields JA, Shields CL. The association of cutaneous and iris nevi with uveal melanoma: A meta-analysis. Ophthalmology 2009; 116(3): 536-543.e2.
[http://dx.doi.org/10.1016/j.ophtha.2008.10.008] [PMID: 19167086]
[7]
Gallagher RP, Elwood JM, Rootman J, et al. Risk factors for ocular melanoma: Western Canada Melanoma Study. J Natl Cancer Inst 1985; 74(4): 775-8.
[PMID: 3857374]
[8]
Laíns I, Bartosch C, Mondim V, et al. Second primary neoplasms in patients with Uveal Melanoma: A SEER database analysis. Am J Ophthalmol 2016; 165: 54-64.
[http://dx.doi.org/10.1016/j.ajo.2016.02.022] [PMID: 26940164]
[9]
Tucker MA, Shields JA, Hartge P, Augsburger J, Hoover RN, Fraumeni JF Jr. Sunlight exposure as risk factor for intraocular malignant melanoma. N Engl J Med 1985; 313(13): 789-92.
[http://dx.doi.org/10.1056/NEJM198509263131305] [PMID: 4033707]
[10]
Shah CP, Weis E, Lajous M, Shields JA, Shields CL. Intermittent and chronic ultraviolet light exposure and uveal melanoma: A meta-analysis. Ophthalmology 2005; 112(9): 1599-607.
[http://dx.doi.org/10.1016/j.ophtha.2005.04.020] [PMID: 16051363]
[11]
de Lange MJ, Razzaq L, Versluis M, et al. Distribution of GNAQ and GNA11 mutation signatures in uveal melanoma points to a light dependent mutation mechanism. PLoS One 2015; 10(9): e0138002.
[http://dx.doi.org/10.1371/journal.pone.0138002] [PMID: 26368812]
[12]
Singh A, Borden E. Metastatic uveal melanoma. Ophthalmol Clin North Am 2005; 18(1): 143-150, ix.
[http://dx.doi.org/10.1016/j.ohc.2004.07.003] [PMID: 15763199]
[13]
Seibel I, Cordini D, Rehak M, et al. Local recurrence after primary proton beam therapy in uveal melanoma: Risk factors, retreatment approaches, and outcome. Am J Ophthalmol 2015; 160(4): 628-36.
[http://dx.doi.org/10.1016/j.ajo.2015.06.017] [PMID: 26133249]
[14]
Bensoussan E, Thariat J, Maschi C, et al. Outcomes after proton beam therapy for large choroidal melanomas in 492 patients. Am J Ophthalmol 2016; 165: 78-87.
[http://dx.doi.org/10.1016/j.ajo.2016.02.027] [PMID: 26940166]
[15]
Mishra KK, Quivey JM, Daftari IK, et al. Long-term results of the UCSF-LBNL randomized trial: Charged particle with helium ion versus Iodine-125 plaque therapy for choroidal and ciliary body melanoma. Int J Radiat Oncol Biol Phys 2015; 92(2): 376-83.
[http://dx.doi.org/10.1016/j.ijrobp.2015.01.029] [PMID: 25841624]
[16]
Hawkins BS. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma: V. Twelve-year mortality rates and prognostic factors: COMS report No. 28. Arch Ophthalmol 2006; 124(12): 1684-93.
[http://dx.doi.org/10.1001/archopht.124.12.1684] [PMID: 17159027]
[17]
Badiyan SN, Rao RC, Apicelli AJ, et al. Outcomes of iodine-125 plaque brachytherapy for uveal melanoma with intraoperative ultrasonography and supplemental transpupillary thermotherapy. Int J Radiat Oncol Biol Phys 2014; 88(4): 801-5.
[http://dx.doi.org/10.1016/j.ijrobp.2013.12.014] [PMID: 24462385]
[18]
Harbour JW, Meredith TA, Thompson PA, Gordon ME. Transpupillary thermotherapy versus plaque radiotherapy for suspected choroidal melanomas. Ophthalmology 2003; 110(11): 2207-14.
[http://dx.doi.org/10.1016/S0161-6420(03)00858-3] [PMID: 14597531]
[19]
Saakian SV, Val’skiĭ VV, Semenova EA, Amirian AG. Transpupillary thermotherapy in the treatment of recurrent and residual choroidal melanomas: Preliminary results. Vestn Oftalmol 2009; 125(6): 11-5.
[PMID: 20143533]
[20]
Mavligit GM, Charnsangavej C, Carrasco CH, Patt YZ, Benjamin RS, Wallace S. Regression of ocular melanoma metastatic to the liver after hepatic arterial chemoembolization with cisplatin and polyvinyl sponge. JAMA 1988; 260(7): 974-6.
[http://dx.doi.org/10.1001/jama.1988.03410070102037] [PMID: 3398202]
[21]
Nathan FE, Berd D, Sato T, et al. BOLD+interferon in the treatment of metastatic uveal melanoma: first report of active systemic therapy. J Exp Clin Cancer Res 1997; 16(2): 201-8.
[PMID: 9261748]
[22]
Pyrhönen S, Hahka-Kemppinen M, Muhonen T. A promising interferon plus four-drug chemotherapy regimen for metastatic melanoma. J Clin Oncol 1992; 10(12): 1919-26.
[http://dx.doi.org/10.1200/JCO.1992.10.12.1919] [PMID: 1280673]
[23]
Raivio I. Uveal melanoma in Finland. An epidemiological, clinical, histological and prognostic study. Acta Ophthalmol Suppl 1977; (133): 1-64.
[PMID: 196476]
[24]
Shammas HF, Watzke RC. Bilateral choroidal melanomas. Case report and incidence. Arch Ophthalmol 1977; 95(4): 617-23.
[http://dx.doi.org/10.1001/archopht.1977.04450040083012] [PMID: 849184]
[25]
Birdsell JM, Gunther BK, Boyd TA, Grace M, Jerry LM. Ocular melanoma: A population-based study. Can J Ophthalmol 1980; 15(1): 9-12.
[PMID: 7378893]
[26]
Jensen OA. Malignant Melanomas of the Uvea in Denmark 1943-1952. A Clinical, Histopathological, and Prognostic Study. Acta Ophthalmol 1963; 43 (Suppl. 75): 75-, 1-220.
[PMID: 14050563]
[27]
Abrahamsson M. Malignant melanoma of the choroid and the ciliary body 1956-1975 in Halland and Gothenburg. Incidence, histopathology and prognosis. Acta Ophthalmol 1983; 61(4): 600-10.
[http://dx.doi.org/10.1111/j.1755-3768.1983.tb04350.x] [PMID: 6637421]
[28]
Mork T. Malignant neoplasms of the eye in Norway. Incidence, treatment and prognosis. Acta Ophthalmol 1961; 39(5): 824-31.
[http://dx.doi.org/10.1111/j.1755-3768.1961.tb07747.x] [PMID: 14476168]
[29]
Park SJ, Oh CM, Kim BW, Woo SJ, Cho H, Park KH. Nationwide incidence of ocular melanoma in South Korea by using the national cancer registry database (1999–2011). Invest Ophthalmol Vis Sci 2015; 56(8): 4719-24.
[http://dx.doi.org/10.1167/iovs.15-16532] [PMID: 26207308]
[30]
Singh AD, Turell ME, Topham AK. Uveal melanoma: Trends in incidence, treatment, and survival. Ophthalmology 2011; 118(9): 1881-5.
[http://dx.doi.org/10.1016/j.ophtha.2011.01.040] [PMID: 21704381]
[31]
Virgili G, Gatta G, Ciccolallo L, et al. Incidence of uveal melanoma in Europe. Ophthalmology 2007; 114(12): 2309-2315.e2.
[http://dx.doi.org/10.1016/j.ophtha.2007.01.032] [PMID: 17498805]
[32]
McLaughlin CC, Wu XC, Jemal A, Martin HJ, Roche LM, Chen VW. Incidence of noncutaneous melanomas in the U.S. Cancer 2005; 103(5): 1000-7.
[http://dx.doi.org/10.1002/cncr.20866] [PMID: 15651058]
[33]
Bedikian AY, Legha SS, Mavligit G, et al. Treatment of uveal melanoma metastatic to the liver: A review of the M. D. Anderson Cancer Center experience and prognostic factors. Cancer 1995; 76(9): 1665-70.
[34]
Ryan LM, Ryan LM, Borden EC. Metastatic ocular and cutaneous melanoma: A comparison of patient characteristics and prognosis. Arch Ophthalmol 1996; 114(1): 107-8.
[http://dx.doi.org/10.1001/archopht.1996.01100130103030] [PMID: 8540843]
[35]
Katato K. Survival and response to treatment in patients (PTS) with metastatic melanoma from intraocular primaries (MMIP) on SWOG studies. Proc Am Soc Clin Oncol 1995; 14: 410.
[36]
Rietschel P, Panageas KS, Hanlon C, Patel A, Abramson DH, Chapman PB. Variates of survival in metastatic uveal melanoma. J Clin Oncol 2005; 23(31): 8076-80.
[http://dx.doi.org/10.1200/JCO.2005.02.6534] [PMID: 16258106]
[37]
Bedikian AY. Metastatic uveal melanoma therapy: Current options. Int Ophthalmol Clin 2006; 46(1): 151-66.
[http://dx.doi.org/10.1097/01.iio.0000195852.08453.de] [PMID: 16365561]
[38]
Li G, Yang Y, Zhang Y, et al. A reactive oxygen species-tyrosinase cascade-activated prodrug for selectively suppressing melanoma. CCS Chemistry 2022; 4(5): 1654-70.
[http://dx.doi.org/10.31635/ccschem.021.202101032]
[39]
Ruan Y, Huang P, Yan J, Li G, Huang J. Dual diomarkers triggered prodrugs for precise treatment of melanoma: Design, synthesis and activities. Chem Res Chin Univ 2022; 38(4): 949-56.
[http://dx.doi.org/10.1007/s40242-022-2121-y]
[40]
Sun M, Wang C, Lv M, Fan Z, Du J. Intracellular self-assembly of peptides to induce apoptosis against drug-resistant melanoma. J Am Chem Soc 2022; 144(16): 7337-45.
[http://dx.doi.org/10.1021/jacs.2c00697] [PMID: 35357824]
[41]
Souri Z, Wierenga APA, van Weeghel C, et al. Loss of BAP1 is associated with upregulation of the NFkB pathway and increased HLA class I expression in uveal melanoma. Cancers 2019; 11: 1102.
[http://dx.doi.org/10.3390/cancers11081102]
[42]
Souri Z, Wierenga APA, Mulder A, Jochemsen AG, Jager MJ. Expression in Uveal melanoma: An indicator of malignancy and a modifiable immunological target. Cancers 2019; 11: 1132.
[http://dx.doi.org/10.3390/cancers11081132]
[43]
Blom DJR, Schurmans LRHM, De Waard-Siebinga I, De Wolff-Rouendaal D, Keunen JEE, Jager MJ. HLA expression in a primary uveal melanoma, its cell line, and four of its metastases. Br J Ophthalmol 1997; 81(11): 989-93.
[http://dx.doi.org/10.1136/bjo.81.11.989] [PMID: 9505825]
[44]
Tran J, Murray T, Uno T, Valore N, Ksander B. Expression of HLA class I on ocular melanoma during progression from primary to metastatic disease. Invest Ophthalmol Vis Sci 1996; 37: 960-0.
[45]
Nathan P, Hassel JC, Rutkowski P, et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med 2021; 385(13): 1196-206.
[http://dx.doi.org/10.1056/NEJMoa2103485] [PMID: 34551229]
[46]
FDA approves tebentafusp-tebn for unresectable or metastatic uveal melanoma. 2022. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tebentafusp-tebn-unresectable-or-metastatic-uveal-melanoma (Accessed on: July 21, 2023).
[47]
Dhillon S. Tebentafusp: First Approval. Drugs 2022; 82(6): 703-10.
[http://dx.doi.org/10.1007/s40265-022-01704-4] [PMID: 35364798]
[48]
Safety and Efficacy of IMCgp100 versus investigator choice in Advanced Uveal Melanoma. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03070392 (Accessed on 19.12.23).
[49]
Neuro-immunooncology news. Available from: https://immuno-oncologynews.com/imcgp100/ (Accessed on 19.12.2023).
[50]
A Phase 1, Open label, Dose Finding Study to Assess the Safety and Tolerability of IMCgp100, a Monoclonal T Cell Receptor anti-CD3 scFv Fusion Protein in Patients With Advanced Malignant Melanoma. Available from: https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/phase-i-study-of-imcgp100-in-advanced-malignant-melanoma-v10/ (Accessed on 19.12.23).
[51]
Damato BE, Dukes J, Goodall H, Carvajal RD. Tebentafusp: T cell redirection for the treatment of metastatic Uveal melanoma. Cancers 2019; 11(7): 971.
[http://dx.doi.org/10.3390/cancers11070971]
[52]
Carvajal RD, Butler MO, Shoushtari AN, et al. Clinical and molecular response to tebentafusp in previously treated patients with metastatic uveal melanoma: A phase 2 trial. Nat Med 2022; 28(11): 2364-73.
[http://dx.doi.org/10.1038/s41591-022-02015-7]
[54]
Middleton MR, McAlpine C, Woodcock VK, et al. Tebentafusp, a TCR/Anti-CD3 bispecific fusion protein targeting gp100, potently activated antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res 2020; 26(22): 5869-78.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1247] [PMID: 32816891]
[55]
Aleksic M, Liddy N, Molloy PE, et al. Different affinity windows for virus and cancer-specific T -cell receptors: Implications for therapeutic strategies. Eur J Immunol 2012; 42(12): 3174-9.
[http://dx.doi.org/10.1002/eji.201242606] [PMID: 22949370]
[56]
Purbhoo MA, Sutton DH, Brewer JE, et al. Quantifying and imaging NY-ESO-1/LAGE-1-derived epitopes on tumor cells using high affinity T cell receptors. J Immunol 2006; 176(12): 7308-16.
[http://dx.doi.org/10.4049/jimmunol.176.12.7308] [PMID: 16751374]
[57]
Li Y, Moysey R, Molloy PE, et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol 2005; 23(3): 349-54.
[http://dx.doi.org/10.1038/nbt1070]
[58]
Boudousquie C, Bossi G, Hurst JM, Rygiel KA, Jakobsen BK, Hassan NJ. Polyfunctional response by Imm TAC ( IMC gp100) redirected CD 8 + and CD 4 + T cells. Immunology 2017; 152(3): 425-38.
[http://dx.doi.org/10.1111/imm.12779] [PMID: 28640942]
[59]
Hwa G, Carlson DD, Starr R, Bcop J. Tebentafusp-tebn: A novel bispecific T-cell engager for metastatic uveal melanoma. J Adv Pract Oncol 2022; 13: 717-23.
[http://dx.doi.org/10.6004/jadpro.2022.13.7.8]
[60]
Wagner SN, Wagner C, Schultewolter T, Goos M. Analysis of Pmel17/gp100 expression in primary human tissue specimens: Implications for melanoma immuno- and gene-therapy. Cancer Immunol Immunother 1997; 44(4): 239-47.
[http://dx.doi.org/10.1007/s002620050379] [PMID: 9222283]
[61]
Nathan P, Ascierto PA, Haanen J, et al. Safety and efficacy of nivolumab in patients with rare melanoma subtypes who progressed on or after ipilimumab treatment: A single-arm, open-label, phase II study (CheckMate 172). Eur J Cancer 2019; 119: 168-78.
[http://dx.doi.org/10.1016/j.ejca.2019.07.010] [PMID: 31445199]
[62]
Ellis JM, Henson V, Slack R, Ng J, Hartzman RJ, Katovich Hurley C. Frequencies of HLA-A2 alleles in five U.S. population groups. Hum Immunol 2000; 61(3): 334-40.
[http://dx.doi.org/10.1016/S0198-8859(99)00155-X] [PMID: 10689125]
[63]
Martinez-Perez D, Viñal D, Solares I, Espinosa E, Feliu J. Gp-100 as a novel therapeutic target in uveal melanoma. Cancers 2021; 13(23): 5968.
[http://dx.doi.org/10.3390/cancers13235968]
[64]
Wessely A, Steeb T, Erdmann M, et al. The role of immune checkpoint blockade in uveal melanoma. Int J Mol Sci 2020; 21(3): 879.
[http://dx.doi.org/10.3390/ijms21030879] [PMID: 32013269]
[65]
Middleton MR, Steven NM, Evans TJ, et al. Safety, pharmacokinetics and efficacy of IMCgp100, a first-in-class soluble TCR-antiCD3 bispecific T cell redirector with solid tumour activity: Results from the FIH study in melanoma. J Clin Oncol 2016; 34(15_suppl): 3016-6.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.3016]
[66]
Carvajal RD, Nathan P, Sacco JJ, et al. Phase I study of safety, tolerability, and efficacy of tebentafusp using a step-up dosing regimen and expansion in patients with metastatic uveal melanoma. J Clin Oncol 2022; 40(17): 1939-48.
[http://dx.doi.org/10.1200/JCO.21.01805] [PMID: 35254876]
[67]
Butler MO, Stanhope S, Naidoo R, et al. Abstract 517: Tebentafusp induces transient systemic inflammation and modifies the micro-environment to sensitize uveal melanoma tumors to cytotoxic CD8 cells. Cancer Res 2021; 81(13_Supplement): 517-7.
[http://dx.doi.org/10.1158/1538-7445.AM2021-517]
[68]
A study of the intra-patient escalation dosing regimen with IMCgp100 in patients with advanced uveal melanoma. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02570308 (Accessed on: July 21, 2023).
[69]
Carvajal R, Sato T, Shoushtari A, et al. Safety, efficacy and biology of the gp100 TCR-based bispecific T cell redirector, IMCgp100 in advanced uveal melanoma in two Phase 1 trials. J Immunother Cancer 2017; 5(Suppl 2): 86.
[http://dx.doi.org/10.1186/s40425-017-0289-3]
[70]
Middleton MR, Corrie P, Sznol M, et al. Abstract CT106: A phase I/IIa study of IMCgp100: Partial and complete durable responses with a novel first-in-class immunotherapy for advanced melanoma. Cancer Res 2015; 75(15_Supplement): CT106-6.
[http://dx.doi.org/10.1158/1538-7445.AM2015-CT106]
[71]
Strobel SB, Machiraju D, Hassel JC. TCR-directed therapy in the treatment of metastatic uveal melanoma. Cancers 2022; 14(5): 1215.
[http://dx.doi.org/10.3390/cancers14051215] [PMID: 35267523]
[72]
Lorenzo D, Piulats JM, Ochoa M, et al. Clinical predictors of survival in metastatic uveal melanoma. Jpn J Ophthalmol 2019; 63(2): 197-209.
[http://dx.doi.org/10.1007/s10384-019-00656-9] [PMID: 30796549]
[73]
Tomsitz D, Ruf T, Heppt M. et al. Tebentafusp in Patients with Metastatic Uveal Melanoma: A Real-Life Retrospective Multicenter Study. Cancers (Basel) 2013; 15(13): 3430.
[http://dx.doi.org/10.3390/cancers15133430] [PMID: 37444540]
[74]
Hassel JC, Berking C, Forschner A, et al. Practical guidelines for the management of adverse events of the T cell engager bispecific tebentafusp. Eur J Cancer 2023; 191: 112986.
[http://dx.doi.org/10.1016/j.ejca.2023.112986] [PMID: 37595494]
[75]
Chen LN, Carvajal RD. Tebentafusp for the treatment of HLA-A*02:01–positive adult patients with unresectable or metastatic uveal melanoma. Expert Rev Anticancer Ther 2022; 22(10): 1017-27.
[http://dx.doi.org/10.1080/14737140.2022.2124971] [PMID: 36102132]
[76]
Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188-95.
[http://dx.doi.org/10.1182/blood-2014-05-552729] [PMID: 24876563]
[77]
Breslin S. Cytokine-release syndrome: Overview and nursing implications. Clin J Oncol Nurs 2007; 11(0): 37-41.
[http://dx.doi.org/10.1188/07.CJON.S1.37-42] [PMID: 17471824]
[78]
Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 2019; 25(4): 625-38.
[http://dx.doi.org/10.1016/j.bbmt.2018.12.758] [PMID: 30592986]
[79]
Simbaqueba CC, Aponte MP, Kim P, et al. Cardiovascular complications of chimeric antigen receptor T-Cell therapy: The cytokine release syndrome and associated arrhythmias. Journal of Immunotherapy and Precision Oncology 2020; 3(3): 113-20.
[http://dx.doi.org/10.36401/JIPO-20-10] [PMID: 35663258]
[80]
Xiao X, Huang S, Chen S, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J Exp Clin Cancer Res 2021; 40(1): 367.
[http://dx.doi.org/10.1186/s13046-021-02148-6] [PMID: 34794490]
[81]
Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016; 6(6): 664-79.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0040] [PMID: 27076371]
[82]
Cobb DA, Lee DW. Cytokine release syndrome biology and management. Cancer J 2021; 27(2): 119-25.
[http://dx.doi.org/10.1097/PPO.0000000000000515] [PMID: 33750071]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy