Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Mini-Review Article

Robotic Pills as Innovative Personalized Medicine Tools: A Mini Review

Author(s): Komal Rane, Garima Kukreja, Siddhi Deshmukh, Urmisha Kakad, Pranali Jadhav and Vinita Patole*

Volume 18, Issue 1, 2024

Published on: 15 December, 2023

Page: [2 - 11] Pages: 10

DOI: 10.2174/0126673878265457231205114925

Price: $65

conference banner
Abstract

The most common route for drug administration is the oral route due to the various advantages offered by this route, such as ease of administration, controlled and sustained drug delivery, convenience, and non-invasiveness. In spite of this, oral drug absorption faces challenges due to various issues related to its stability, permeability and solubility in the GI tract. Biologic drugs generally face problems when administered by oral route as they are readily degradable and thus required to be injected. To overcome these issues in oral absorption, different approaches like novel drug delivery systems and newer pharmaceutical technologies have been adopted. With a combined knowledge of drug delivery and pharmaceutical technology, robotic pills can be designed and used successfully to enhance the adhesion and permeation of drugs through the mucus membrane of the GI tract to achieve drug delivery at the target site. The potential application of robotic pills in diagnosis and drug dispensing is also discussed. The review highlights recent developments in robotic pill drug-device technology and discusses its potential applications to solve the problems and challenges in oral drug delivery.

Graphical Abstract

[1]
Streubel A, Siepmann J, Bodmeier R. Gastroretentive drug delivery systems. Expert Opin Drug Deliv 2006; 3(2): 217-33.
[http://dx.doi.org/10.1517/17425247.3.2.217] [PMID: 16506949]
[2]
Macierzanka A, Mackie AR, Krupa L. Permeability of the small intestinal mucus for physiologically relevant studies: Impact of mucus location and ex vivo treatment. Sci Rep 2019; 9(1): 17516.
[http://dx.doi.org/10.1038/s41598-019-53933-5] [PMID: 31772308]
[3]
Tyagi P, Pechenov S, Subramony JA. Oral peptide delivery: Translational challenges due to physiological effects. 2018; 287: 167-76.
[4]
Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol 2020; 11: 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[5]
Philip AK, Philip B. Colon targeted drug delivery systems: A review on primary and novel approaches 2010; 2: 70-8.
[http://dx.doi.org/10.5001/omj.2010.24]
[6]
Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics 2018; 18: 19-40.
[7]
Mauritz MA, Morrisby RS, Hutton RS, Legge CH, Kaminski CF. Imaging pharmaceutical tablets with optical coherence tomography. 2010; 99(1): 385-91.
[http://dx.doi.org/10.1002/jps.21844]
[8]
Quan G, Niu B, Singh V, Zhou Y, Wu CY, Pan X, et al. Super saturable solid self-micro emulsifying drug delivery system: Precipitation inhibition and bioavailability enhancement 2017; 12: 8801-11.
[9]
Kumar A, Nautiyal U, Kaur C. Targeted drug delivery system: Current and novel approach. www.ijpmr.org
[10]
Macadam A. The effect of gastro-intestinal mucus on drug absorption 1993; 11: 201-20.
[http://dx.doi.org/10.1016/0169-409X(93)90010-2]
[11]
Xu Y, Shrestha N, Préat V, Beloqui A. Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems 2020; 322: 486-508.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.006]
[12]
Caffarel-Salvador E, Abramson A, Langer R, Traverso G. Oral delivery of biologics using drug-device combinations 2017; 36: 8-13.
[http://dx.doi.org/10.1016/j.coph.2017.07.003]
[13]
Zema L, Loreti G, Melocchi A, Maroni A, Palugan L, Gazzaniga A. Gastroresistant capsular device prepared by injection molding 2013; 440(2): 264-72.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.071]
[14]
Zahn JD, Talbot NH, Liepmann D, Pisano AP. Microfabricated polysilicon microneedles for minimally invasive biomedical devices 2000; 2
[15]
Mandsberg NK, Christfort JF, Kamguyan K, Boisen A, Srivastava SK. Orally ingestible medical devices for gut engineering 2020; 165: 142-54.
[http://dx.doi.org/10.1016/j.addr.2020.05.004]
[16]
Valdivia PC, Robertson AR, De Boer NKH, Marlicz W, Koulaouzidis A. An overview of robotic capsules for drug delivery to the gastrointestinal tract 2021; 10
[17]
Dhalla AK, Al-Shamsie Z, Beraki S, Dasari A, Fung LC, Fusaro L, et al. A robotic pill for oral delivery of biotherapeutics: Safety, tolerability, and performance in healthy subjects 2022; 12(1): 294-305.
[http://dx.doi.org/10.1007/s13346-021-00938-1]
[18]
Abramson A, Frederiksen MR, Vegge A, Jensen B, Poulsen M, Mouridsen B, et al. Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors 2022; 40(1): 103-9.
[http://dx.doi.org/10.1038/s41587-021-01024-0]
[19]
Cummins G. Smart pills for gastrointestinal diagnostics and therapy 2021; 177
[http://dx.doi.org/10.1016/j.addr.2021.113931]
[20]
Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B, et al. Current sampling methods for gut microbiota: A call for more precise devices 2020; 10
[http://dx.doi.org/10.3389/fcimb.2020.00151]
[21]
Jovel J, Dieleman LA, Kao D, Mason AL, Wine E. The human gut microbiome in health and disease. In: Metagenomics: Perspectives, Methods, and Applications. 2017; pp. 197-213.
[22]
Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7(1): 135.
[http://dx.doi.org/10.1038/s41392-022-00974-4] [PMID: 35461318]
[23]
Soto F, Purcell E, Ozen MO, Sinawang PD, Wang J, Akin D, et al. Robotic pill for biomarker and fluid sampling in the gastrointestinal tract 2022; (6): 220-30.
[24]
Engineering IEEE. Engineering in medicine and biology society, institute of electrical and electronics engineers. 40th Annual international conference of the IEEE engineering in medicine and biology society: Learning from the past, looking to the future. Hawaii Convention Center, Honolulu, Hawaii. 2018; pp. 17-21.
[25]
Le Z, Yu J, Quek YJ, Bai B, Li X, Shou Y, et al. Design principles of microneedles for drug delivery and sampling applications 2022.
[26]
Finocchiaro M, Giosuè C, Drago G, Cibella F, Menciassi A, Sprovieri M, et al. Design of a magnetic actuation system for a microbiota-collection ingestible capsule. IEEE International Conference on Robotics and Automation. 6905-11.
[http://dx.doi.org/10.1109/ICRA48506.2021.9561142]
[27]
Moglia A, Menciassi A, Schurr MO, Dario P. Wireless capsule endoscopy: From diagnostic devices to multipurpose robotic systems 2007; 9(2): 235-43.
[28]
Jaison A, Simon A, Christin A, John N, Varghese N. v MY. Robotic pill dispenser. IOSR J Pharm Biol Sci 2014; 9(4): 51-4.
[http://dx.doi.org/10.9790/3008-09455154]
[29]
Farid SF. Conceptual framework of the impact of health technology on healthcare system 2019; 10
[http://dx.doi.org/10.3389/fphar.2019.00933]
[30]
Tsai PH, Chen TY, Yu CR, Shih CS, Liu JWS. Smart medication dispenser: Design, architecture and implementation. IEEE Syst J 2011; 5(1): 99-110.
[http://dx.doi.org/10.1109/JSYST.2010.2070970]
[31]
Aldeer M, Javanmard M, Martin R. A review of medication adherence monitoring technologies. Applied System Innovation 2018; 1(2): 14.
[http://dx.doi.org/10.3390/asi1020014]
[32]
Mason M, Cho Y, Rayo J, Gong Y, Harris M, Jiang Y. Technologies for medication adherence monitoring and technology assessment criteria: Narrative review. JMIR Mhealth Uhealth 2022; 10(3): e35157.
[http://dx.doi.org/10.2196/35157] [PMID: 35266873]
[33]
Karagiannis D, Mitsis K, Nikita KS. Development of a low-power IoMT portable pillbox for medication adherence improvement and remote treatment adjustment. Sensors 2022; 22(15): 5818.
[http://dx.doi.org/10.3390/s22155818] [PMID: 35957374]
[34]
Soto F, Purcell E, Ozen MO, et al. Robotic pill for biomarker and fluid sampling in the gastrointestinal tract. Adv Intell Syst 2022; 4(6): 2200030.
[http://dx.doi.org/10.1002/aisy.202200030]
[35]
Cummins G. Smart pills for gastrointestinal diagnostics and therapy. Adv Drug Deliv Rev 2021; 177: 113931.
[http://dx.doi.org/10.1016/j.addr.2021.113931] [PMID: 34416311]
[36]
Rehan M, Al-Bahadly I, Thomas DG, Avci E. Development of a robotic capsule for in vivo sampling of gut microbiota. IEEE Robot Autom Lett 2022; 7(4): 9517-24.
[http://dx.doi.org/10.1109/LRA.2022.3191177]
[37]
Denecke K, Baudoin CR. A review of artificial intelligence and robotics in transformed health ecosystems. Front Med 2022; 9: 795957.
[http://dx.doi.org/10.3389/fmed.2022.795957] [PMID: 35872767]
[38]
ElGibreen H, Al Ali G, AlMegren R, AlEid R, AlQahtani S. Telepresence robot system for people with speech or mobility disabilities. Sensors 2022; 22(22): 8746.
[http://dx.doi.org/10.3390/s22228746] [PMID: 36433341]
[39]
Calatrava-Nicolás FM, Gutiérrez-Maestro E, Bautista-Salinas D, et al. Robotic-based well-being monitoring and coaching system for the elderly in their daily activities. Sensors 2021; 21(20): 6865.
[http://dx.doi.org/10.3390/s21206865] [PMID: 34696078]
[40]
Gutkin E, Shalomov A, Hussain SA, et al. Pillcam ESO ® is more accurate than clinical scoring systems in risk stratifying emergency room patients with acute upper gastrointestinal bleeding. Therap Adv Gastroenterol 2013; 6(3): 193-8.
[http://dx.doi.org/10.1177/1756283X13481020] [PMID: 23634183]
[41]
Omori T, Hara T, Sakasai S, et al. Does the PillCam SB3 capsule endoscopy system improve image reading efficiency irrespective of experience? A pilot study. Endosc Int Open 2018; 6(6): E669-75.
[http://dx.doi.org/10.1055/a-0599-5852] [PMID: 29868632]
[42]
Carvalho PB, Rosa B, Castro FD, Moreira MJ, Cotter J. PillCam COLON 2 © in Crohn’s disease: A new concept of pan-enteric mucosal healing assessment. World J Gastroenterol 2015; 21(23): 7233-41.
[http://dx.doi.org/10.3748/wjg.v21.i23.7233] [PMID: 26109810]
[43]
Bruaene CV, De Looze D, Hindryckx P. Small bowel capsule endoscopy: Where are we after almost 15 years of use? World J Gastrointest Endosc 2015; 7(1): 13-36.
[http://dx.doi.org/10.4253/wjge.v7.i1.13] [PMID: 25610531]
[44]
Oh DJ, Kim KS, Lim YJ. A new active locomotion capsule endoscopy under magnetic control and automated reading program. Clin Endosc 2020; 53(4): 395-401.
[http://dx.doi.org/10.5946/ce.2020.127] [PMID: 32746536]
[45]
Becker D, Zhang J, Heimbach T, et al. Novel orally swallowable IntelliCap(®) device to quantify regional drug absorption in human GI tract using diltiazem as model drug. AAPS PharmSciTech 2014; 15(6): 1490-7.
[http://dx.doi.org/10.1208/s12249-014-0172-1] [PMID: 25023947]
[46]
Cortegoso Valdivia P, Robertson AR, De Boer NKH, Marlicz W, Koulaouzidis A. An overview of robotic capsules for drug delivery to the gastrointestinal tract. J Clin Med 2021; 10(24): 5791.
[http://dx.doi.org/10.3390/jcm10245791] [PMID: 34945087]
[47]
Lawenko RMA, Lee YY. Evaluation of gastroesophageal reflux disease using the bravo capsule pH system. J Neurogastroenterol Motil 2015; 22(1): 25-30.
[http://dx.doi.org/10.5056/jnm15151] [PMID: 26717929]
[48]
Enns C, Galorport C, Ou G, Enns R. Assessment of capsule endoscopy utilizing capsocam plus in patients with suspected small bowel disease including pilot study with remote access patients during pandemic. J Can Assoc Gastroenterol 2021; 4(6): 269-73.
[http://dx.doi.org/10.1093/jcag/gwaa042] [PMID: 34988365]
[49]
Miyazu T, Osawa S, Tamura S, et al. Modified method of patency judgement using patency capsule prior to capsule endoscopy in clinical practice. Sci Rep 2022; 12(1): 14335.
[http://dx.doi.org/10.1038/s41598-022-18569-y] [PMID: 35995963]
[50]
Xu Y, Zhang W, Ye S, et al. The evaluation of the OMOM capsule endoscopy with similar pictures elimination mode. Clin Res Hepatol Gastroenterol 2014; 38(6): 757-62.
[http://dx.doi.org/10.1016/j.clinre.2014.05.009] [PMID: 25282556]
[51]
Shamsudhin N, Zverev VI, Keller H, et al. Magnetically guided capsule endoscopy. Med Phys 2017; 44(8): e91-e111.
[http://dx.doi.org/10.1002/mp.12299] [PMID: 28437000]
[52]
Angle TC, Gillette RL. Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers. Can J Vet Res 2011; 75(2): 157-9.
[PMID: 21731189]
[53]
Kalantar-zadeh K, Ha N, Ou JZ, Berean KJ. Ingestible sensors. ACS Sens 2017; 2(4): 468-83.
[http://dx.doi.org/10.1021/acssensors.7b00045] [PMID: 28723186]
[54]
Sehyuk Yim, Gultepe E, Gracias DH, Sitti M. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Biomed Eng 2014; 61(2): 513-21.
[http://dx.doi.org/10.1109/TBME.2013.2283369] [PMID: 24108454]
[55]
Kyoungchul K, Jinhoon C, Doyoung J, Dong-il C. A rotational micro biopsy device for the capsule endoscope. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. 1839-43.
[56]
Singeap AM, Stanciu C, Trifan A. Capsule endoscopy: The road ahead. World J Gastroenterol 2016; 22(1): 369-78.
[http://dx.doi.org/10.3748/wjg.v22.i1.369] [PMID: 26755883]
[57]
Jarow JP, Baxley JH. Medical devices: US medical device regulation. Urol Oncol 2015; 33(3): 128-32.
[http://dx.doi.org/10.1016/j.urolonc.2014.10.004] [PMID: 25458071]
[58]
French-Mowat E, Burnett J. How are medical devices regulated in the European Union? J R Soc Med 2012; 105 (Suppl. 1): S22-8.
[59]
Tcheng JE, Nguyen MV, Brann HW, et al. The medical device unique device identifier as the single source of truth in healthcare enterprises – roadmap for implementation of the clinically integrated supply chain. Med Devices 2021; 14: 459-67.
[http://dx.doi.org/10.2147/MDER.S344132] [PMID: 34992475]
[60]
Institute of medicine (US) committee on accelerating rare diseases research and orphan product development: Rare diseases and orphan products: Accelerating research and development. Field mj, Boat tf, Eds. Medical Devices: Research and Development for Rare Diseases. Washington (DC): : National Academies Press (US) 2010; 7.
[61]
Kheir O, Smedts S, Jacoby A, Verwulgen S. Efficient quality management in medtech start-ups (Based on ISO 13485). Med Devices 2021; 14: 313-9.
[http://dx.doi.org/10.2147/MDER.S320583] [PMID: 34703329]
[62]
Cohen G, Gerke S, Kramer DB. Ethical and legal implications of remote monitoring of medical devices. Milbank Q 2020; 98(4): 1257-89.
[http://dx.doi.org/10.1111/1468-0009.12481] [PMID: 33078879]
[63]
Baisakhiya S, Ganeasn R, Das SK. IEC 60601-1-2,2001: New EMC requirements for medical equipment 8th International Conference on Electromagnetic Interference and Compatibility. Chennai, India 2003; pp. 409-14.
[http://dx.doi.org/10.1109/ICEMIC.2003.238092]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy