Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Influence of Dispersion Interactions in the Diels-Alder Reaction of Cyclopentadiene, Anthracene and Tetracene with C60: A DFT Examination

Author(s): Alexey N. Masliy* and Andrey M. Kuznetsov

Volume 27, Issue 21, 2023

Published on: 11 December, 2023

Page: [1909 - 1915] Pages: 7

DOI: 10.2174/0113852728278635231127111522

Price: $65

Abstract

The activation and thermodynamic parameters of the Diels-Alder reaction of cyclopentadiene, anthracene and tetracene with C60 fullerene are estimated at the DFT level using PBE0, B3LYP and CAM-B3LYP functionals and the effect of accounting for dispersion interactions in various semi-empirical Grimme models on these parameters. Structural characteristics of the reagents, products, pre-reaction van der Waals complex, and transition state are obtained. Taking into account dispersion corrections have practically no effect on the geometric characteristics of structures with the covalent type of the bond, as well as on the structure of the transition state. Still, it has a noticeable effect only on the structure of the pre-reaction complex, in which the interparticle interaction has a van der Waals character. At the same time, taking into account dispersion corrections plays a significant role in assessing the thermodynamic and activation parameters of the reaction. An analysis of the performed calculations showed that the combination of PBE0/def2-TZVP with the D4 model for dispersion interactions could be recommended for the Diels-Alder reaction considered above.

« Previous
Graphical Abstract

[1]
Guldi DM, Martin N, Eds. Fullerenes: from synthesis to optoelectronic properties. Springer Science & Business Media 2002. Springer Science & Business Media 2022; Vol. 4
[http://dx.doi.org/10.1007/978-94-015-9902-3]
[2]
Puente DL, Langa F, Nierengarten J-F, Eds. Fullerenes: principles and applications. Royal Society of Chemistry 2011.
[http://dx.doi.org/10.1039/9781849732956]
[3]
Hirsch A, Brettreich M. Fullerenes: chemistry and reactions. John Wiley & Sons 2006.
[http://dx.doi.org/10.1021/ja059725z]
[4]
Grimme S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem 2006; 27(15): 1787-99.
[http://dx.doi.org/10.1002/jcc.20495] [PMID: 16955487]
[5]
Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010; 132(15): 154104.
[http://dx.doi.org/10.1063/1.3382344] [PMID: 20423165]
[6]
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011; 32(7): 1456-65.
[http://dx.doi.org/10.1002/jcc.21759] [PMID: 21370243]
[7]
Caldeweyher E, Ehlert S, Hansen A, et al. A generally applicable atomic-charge dependent London dispersion correction. J Chem Phys 2019; 150(15): 154122.
[http://dx.doi.org/10.1063/1.5090222] [PMID: 31005066]
[8]
Fernández I, Solà M, Bickelhaupt FM. Why do cycloaddition reactions involving C60 prefer [6,6] over [5,6] bonds? Chemistry 2013; 19(23): 7416-22.
[http://dx.doi.org/10.1002/chem.201300648] [PMID: 23576307]
[9]
Osuna S, Morera J, Cases M, Morokuma K, Solà M. Diels-Alder reaction between cyclopentadiene and C60: an analysis of the performance of the ONIOM method for the study of chemical reactivity in fullerenes and nanotubes. J Phys Chem A 2009; 113(35): 9721-6.
[http://dx.doi.org/10.1021/jp904294y] [PMID: 19663407]
[10]
Osuna S, Swart M, Solà M. Dispersion corrections essential for the study of chemical reactivity in fullerenes. J Phys Chem A 2011; 115(15): 3491-6.
[http://dx.doi.org/10.1021/jp1091575] [PMID: 21438570]
[11]
Yang T, Fukuda R, Cammi R, Ehara M. Diels-alder cycloaddition of cyclopentadiene and C60 at the extreme high pressure. J Phys Chem A 2017; 121(22): 4363-71.
[http://dx.doi.org/10.1021/acs.jpca.7b02805] [PMID: 28510432]
[12]
Besalú-Sala P, Solà M, Luis JM, Torrent-Sucarrat M. Fast and simple evaluation of the catalysis and selectivity induced by external electric fields. ACS Catal 2021; 11(23): 14467-79.
[http://dx.doi.org/10.1021/acscatal.1c04247]
[13]
Pareras G, Simon S, Poater A, Solà M. Successive diels-alder cycloadditions of cyclopentadiene to [10]CPP-C 60: A computational study. J Org Chem 2022; 87(8): 5149-57.
[http://dx.doi.org/10.1021/acs.joc.1c03116] [PMID: 35319187]
[14]
Masliy AN, Kuznetsov AM. Kvantovo-khimicheskoye isssledovaniye roli van-der-vaal'sovykh vzaimodeystviy v raschete aktivatsionnykh parametrov reaktsii dil'sa-al'dera tsiklopentadiyena s fullerenom C60. Zhurnal fizicheskoy khimi 2015; 82(2): 262-7.
[http://dx.doi.org/10.7868/S0044453715020156]
[15]
Neese F. The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2012; 2(1): 73-8.
[http://dx.doi.org/10.1002/wcms.81]
[16]
Neese F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip Rev Comput Mol Sci 2022; 12(5): e1606.
[http://dx.doi.org/10.1002/wcms.1606]
[17]
Giovane LM, Barco JW, Yadav T, et al. Kinetic stability of the fullerene C60-cyclopentadiene Diels-Alder adduct. J Phys Chem 1993; 97(33): 8560-1.
[http://dx.doi.org/10.1021/j100135a004]
[18]
Pang LSK, Wilson MA. Reactions of fullerenes C60 and C70 with cyclopentadiene. J Phys Chem 1993; 97(26): 6761-3.
[http://dx.doi.org/10.1021/j100128a001]
[19]
Sarova GH, Berberan-Santos MN. Kinetics of the Diels-Alder reaction between C60 and acenes. Chem Phys Lett 2004; 397(4-6): 402-7.
[http://dx.doi.org/10.1016/j.cplett.2004.09.005]
[20]
Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98(7): 5648-52.
[http://dx.doi.org/10.1063/1.464913]
[21]
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys Rev B Condens Matter 1988; 37(2): 785-9.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[22]
Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 1999; 110(13): 6158-70.
[http://dx.doi.org/10.1063/1.478522]
[23]
Yanai T, Tew DP, Handy NC. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 2004; 393(1-3): 51-7.
[http://dx.doi.org/10.1016/j.cplett.2004.06.011]
[24]
Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Phys 2005; 7(18): 3297-305.
[http://dx.doi.org/10.1039/b508541a] [PMID: 16240044]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy