Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Letter Article

Cholapod and Cholaphanes for Recognition of Anions

Author(s): Mamta Chahar*, Sarita Khaturia* and Anjali Bishnoi

Volume 27, Issue 21, 2023

Published on: 07 December, 2023

Page: [1833 - 1841] Pages: 9

DOI: 10.2174/0113852728272205231122055645

Price: $65

Abstract

Deoxycholic and cholic acid-based receptors 6, 13, and 16 containing imidazolium groups were synthesized, and their properties as anion receptors have been evaluated. Cholaphanes 13 and 16 exhibited moderate binding selectivity and affinity for fluoride ions, while cholapod 6 showed low binding selectivity and affinity for chloride ions due to the presence of a nitro group in the imidazolium ring. The H-bonding interactions involve C-2 protons of imidazolium ring with anion. The detection of halide ions is revealed by the binding constant through the 1H NMR titration experiment.

Next »
Graphical Abstract

[1]
Martínez-Máñez, R.; Sancenón, F. New advances in fluorogenic anion chemosensors. J. Fluoresc., 2005, 15(3), 267-285.
[http://dx.doi.org/10.1007/s10895-005-2626-z] [PMID: 15986153]
[2]
La Cognata, S.; Armentano, D.; Marchesi, N.; Grisoli, P.; Pascale, A.; Kieffer, M.; Taglietti, A.; Davis, A.P.; Amendola, V. Benzimidazolium-based organic cage with antimicrobial activity. Chemistry, 2022, 4(3), 855-864.
[http://dx.doi.org/10.3390/chemistry4030061]
[3]
Wu, X.; Gilchrist, A.M.; Gale, P.A. Prospects and challenges in anion recognition and transport. Chemistry, 2020, 6(6), 1296-1309.
[http://dx.doi.org/10.1016/j.chempr.2020.05.001]
[4]
Busschaert, N.; Bradberry, S.J.; Wenzel, M.; Haynes, C.J.E.; Hiscock, J.R.; Kirby, I.L.; Karagiannidis, L.E.; Moore, S.J.; Wells, N.J.; Herniman, J.; Langley, G.J.; Horton, P.N.; Light, M.E.; Marques, I.; Costa, P.J.; Félix, V.; Frey, J.G.; Gale, P.A. Towards predictable transmembrane transport: QSAR analysis of anion binding and transport. Chem. Sci., 2013, 4(8), 3036-3045.
[http://dx.doi.org/10.1039/c3sc51023a]
[5]
Bianchi, A. Bowman‐James, K.; Garcia‐Espana, E. Aspects of anion coordination from historical perspectives Anion Coord. Chem., , 2011, 1-73.
[6]
Gale, P.A. Special issue: 35 years of synthetic anion receptor chemistry. Coord. Chem. Rev., 2003, 240(1)
[7]
Reyes, E.; Duong, QN; Prieto, L.; García Mancheño, O; Vicario, JL Assisted and dual anion binding in amino and nucleophilic catalysis. Anion-.Binding Catalysis, 2022, 271-306.
[8]
Brown, A.; Beer, P.D. Halogen bonding anion recognition. Chem. Commun., 2016, 52(56), 8645-8658.
[http://dx.doi.org/10.1039/C6CC03638D] [PMID: 27273600]
[9]
Dorel, R.; Feringa, B.L. Stereodivergent anion binding catalysis with molecular motors. Angew. Chem. Int. Ed., 2020, 59(2), 785-789.
[http://dx.doi.org/10.1002/anie.201913054] [PMID: 31736200]
[10]
Bondy, C.R.; Loeb, S.J. Amide based receptors for anions. Coord. Chem. Rev., 2003, 240(1-2), 77-99.
[http://dx.doi.org/10.1016/S0010-8545(02)00304-1]
[11]
Gomez-Vega, J.; Soto-Cruz, J.M.; Juárez-Sánchez, O.; Santacruz-Ortega, H.; Gálvez-Ruiz, J.C.; Corona-Martínez, D.O.; Pérez-González, R.; Ochoa Lara, K. Tritopic bis-urea receptors for anion and ion-pair recognition. ACS Omega, 2022, 7(26), 22244-22255.
[http://dx.doi.org/10.1021/acsomega.2c00935] [PMID: 35811876]
[12]
Manna, U.; Portis, B.; Egboluche, T.K.; Nafis, M.; Hossain, M.A. Anion binding studies of urea and thiourea functionalized molecular clefts. Front Chem., 2021, 8, 575701.
[http://dx.doi.org/10.3389/fchem.2020.575701] [PMID: 33585396]
[13]
Kim, W.; Sahoo, S.K.; Kim, G.D.; Choi, H.J. C3v-symmetric anion receptors with guanidine recognition motifs for ratiometric sensing of fluoride. RSC Advances, 2016, 6(10), 7872-7878.
[http://dx.doi.org/10.1039/C5RA26039F]
[14]
Kim, S.K.; Lee, J.; Williams, N.J.; Lynch, V.M.; Hay, B.P.; Moyer, B.A.; Sessler, J.L. Bipyrrole-strapped calix[4]pyrroles: Strong anion receptors that extract the sulfate anion. J. Am. Chem. Soc., 2014, 136(42), 15079-15085.
[http://dx.doi.org/10.1021/ja5086996] [PMID: 25254498]
[15]
Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P.A. Applications of supramolecular anion recognition. Chem. Rev., 2015, 115(15), 8038-8155.
[http://dx.doi.org/10.1021/acs.chemrev.5b00099] [PMID: 25996028]
[16]
Davis, J.T.; Gale, P.A.; Quesada, R. Advances in anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev., 2020, 49(16), 6056-6086.
[http://dx.doi.org/10.1039/C9CS00662A] [PMID: 32692794]
[17]
Mondal, D.; Ahmad, M.; Panwaria, P.; Upadhyay, A.; Talukdar, P. Anion recognition through multivalent C–H Hydrogen bonds: Anion-induced foldamer formation and transport across phospholipid membranes. J. Org. Chem., 2022, 87(1), 10-17.
[http://dx.doi.org/10.1021/acs.joc.1c01408] [PMID: 34908424]
[18]
Docker, A.; Guthrie, C.H.; Kuhn, H.; Beer, P.D. Modulating chalcogen bonding and halogen bonding sigma‐hole donor atom potency and selectivity for halide anion recognition. Angew. Chem. Int. Ed., 2021, 60(40), 21973-21978.
[http://dx.doi.org/10.1002/anie.202108591] [PMID: 34297867]
[19]
Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Atabey, H.; Seferoğlu, Z. New naphthoquinone-imidazole hybrids: Synthesis, anion recognition properties, DFT studies and acid dissociation constants. J. Mol. Liq., 2021, 327, 114855.
[http://dx.doi.org/10.1016/j.molliq.2020.114855]
[20]
Bunchuay, T.; Boonpalit, K.; Docker, A.; Ruengsuk, A.; Tantirungrotechai, J.; Sukwattanasinitt, M.; Surawatanawong, P.; Beer, P.D. Charge neutral halogen bonding tetradentate-iodotriazole macrocycles capable of anion recognition and sensing in highly competitive aqueous media. Chem. Commun., 2021, 57(90), 11976-11979.
[http://dx.doi.org/10.1039/D1CC05037K] [PMID: 34708850]
[21]
Bunchuay, T.; Docker, A.; White, N.G.; Beer, P.D. A new halogen bonding 1,2-iodo-triazolium-triazole benzene motif for anion recognition. Polyhedron, 2021, 209, 115482.
[http://dx.doi.org/10.1016/j.poly.2021.115482]
[22]
Saleem, T.; Khan, S.; Yaqub, M.; Khalid, M.; Islam, M. Yousaf ur Rehman, M.; Rashid, M.; Shafiq, I.; Braga, A.A.C.; Syed, A.; Bahkali, A.H.; Trant, J.F.; Shafiq, Z. Novel quinoline-derived chemosensors: Synthesis, anion recognition, spectroscopic, and computational study. New J. Chem., 2022, 46(38), 18233-18243.
[http://dx.doi.org/10.1039/D2NJ02666J]
[23]
Kondo, S.; Okada, N.; Abe, S.; Tanaka, R.; Yamamura, M.; Unno, M. Anion recognition by silanetriol in acetonitrile. Org. Biomol. Chem., 2022, 20(45), 8925-8931.
[http://dx.doi.org/10.1039/D2OB01596J] [PMID: 36321688]
[24]
Macreadie, L.K.; Gilchrist, A.M.; McNaughton, D.A.; Ryder, W.G.; Fares, M.; Gale, P.A. Progress in anion receptor chemistry. Chem, 2022, 8(1), 46-118.
[http://dx.doi.org/10.1016/j.chempr.2021.10.029]
[25]
Chen, S.Q.; Zhao, W.; Wu, B. Separation of sulfate anion from aqueous solution governed by recognition chemistry: A minireview. Front Chem., 2022, 10, 905563.
[http://dx.doi.org/10.3389/fchem.2022.905563] [PMID: 35572111]
[26]
Naithani, S.; Goswami, T.; Thetiot, F.; Kumar, S. Imidazo[4,5-f][1,10]phenanthroline based luminescent probes for anion recognition: Recent achievements and challenges. Coord. Chem. Rev., 2023, 475, 214894.
[http://dx.doi.org/10.1016/j.ccr.2022.214894]
[27]
Orenha, R.P.; Furtado, S.S.P.; Caramori, G.F.; Piotrowski, M.J.; Muñoz-Castro, A.; Parreira, R.L.T. Anion recognition using enhanced halogen bonding through intramolecular hydrogen bonds-A computational insight. New J. Chem., 2023, 47(9), 4439-4447.
[http://dx.doi.org/10.1039/D2NJ05969J]
[28]
Sahu, S.; Sikdar, Y.; Bag, R.; Cerezo, J.; Cerón-Carrasco, J.P.; Goswami, S. Turn on fluorescence sensing of Zn2+ based on fused isoindole-imidazole scaffold. Molecules, 2022, 27(9), 2859.
[http://dx.doi.org/10.3390/molecules27092859] [PMID: 35566211]
[29]
Jiang, Q.; Mak, D.; Devidas, S.; Schwiebert, E.M.; Bragin, A.; Zhang, Y.; Skach, W.R.; Guggino, W.B.; Foskett, J.K.; Engelhardt, J.F. Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor. J. Cell Biol., 1998, 143(3), 645-657.
[http://dx.doi.org/10.1083/jcb.143.3.645] [PMID: 9813087]
[30]
Huber, C.; Werner, T.; Krause, C.; Klimant, I.; Wolfbeis, O.S. Energy transfer-based lifetime sensing of chloride using a luminescent transition metal complex. Anal. Chim. Acta, 1998, 364(1-3), 143-151.
[http://dx.doi.org/10.1016/S0003-2670(98)00151-2]
[31]
Montemor, M.F.; Alves, J.H.; Simões, A.M.; Fernandes, J.C.S.; Lourenço, Z.; Costa, A.J.S.; Appleton, A.J.; Ferreira, M.G.S. Multiprobe chloride sensor for in situ monitoring of reinforced concrete structures. Cement Concr. Compos., 2006, 28(3), 233-236.
[http://dx.doi.org/10.1016/j.cemconcomp.2006.01.005]
[32]
Martin, A.; Narayanaswamy, R. Studies on quenching of fluorescence of reagents in aqueous solution leading to an optical chloride-ion sensor. Sens. Actuators B Chem., 1997, 39(1-3), 330-333.
[http://dx.doi.org/10.1016/S0925-4005(97)80228-6]
[33]
Badr, I.H.A.; Diaz, M.; Hawthorne, M.F.; Bachas, L.G. Mercuracarborand “anti-crown ether”-based chloride-sensitive liquid/polymeric membrane electrodes. Anal. Chem., 1999, 71(7), 1371-1377.
[http://dx.doi.org/10.1021/ac980896e] [PMID: 10204038]
[34]
Shen, Y.Y.; Li, Y.; Wang, B.; Li, X. Anion binding by tert-butanesulfinamide based phenol receptors. Tetrahedron Lett., 2016, 57(5), 582-586.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.090]
[35]
Bowman-James, K. Alfred Werner revisited: The coordination chemistry of anions. Acc. Chem. Res., 2005, 38(8), 671-678.
[http://dx.doi.org/10.1021/ar040071t] [PMID: 16104690]
[36]
Amendola, V.; Bonizzoni, M.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M.; Sancenón, F.; Taglietti, A. Some guidelines for the design of anion receptors. Coord. Chem. Rev., 2006, 250(11-12), 1451-1470.
[http://dx.doi.org/10.1016/j.ccr.2006.01.006]
[37]
Caltagirone, C.; Gale, P.A. Anion receptor chemistry: Highlights from 2007. Chem. Soc. Rev., 2009, 38(2), 520-563.
[http://dx.doi.org/10.1039/B806422A] [PMID: 19169465]
[38]
Salvadori, K.; Ludvík, J.; Šimková, L.; Matějka, P.; Cuřínová, P. Nitro group as a redox switch in urea-based receptors of anions. J. Electroanal. Chem. , 2021, 902, 115816.
[http://dx.doi.org/10.1016/j.jelechem.2021.115816]
[39]
Ronchetti, R.; Moroni, G.; Carotti, A.; Gioiello, A.; Camaioni, E. Recent advances in urea- and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Med. Chem., 2021, 12(7), 1046-1064.
[http://dx.doi.org/10.1039/D1MD00058F] [PMID: 34355177]
[40]
Dey, S.K.; Gil-Hernández, B.; Gobre, V.V.; Woschko, D.; Harmalkar, S.S.; Gayen, F.R.; Saha, B.; Goswamee, R.L.; Janiak, C. Selective recognition and extraction of arsenate by a urea-functionalized tripodal receptor from competitive aqueous media. Dalton Trans., 2022, 51(40), 15239-15245.
[http://dx.doi.org/10.1039/D2DT02281H] [PMID: 36205190]
[41]
Karges, J.; Cohen, S.M. Preorganized homochiral pyrrole‐based receptors that display enantioselective anion binding. Eur. J. Org. Chem., 2022, 2022(16), e202101346.
[http://dx.doi.org/10.1002/ejoc.202101346] [PMID: 36778753]
[42]
Wang, F.; Bucher, C.; He, Q.; Jana, A.; Sessler, J.L. Oligopyrrolic cages: From classic molecular constructs to chemically responsive polytopic receptors. Acc. Chem. Res., 2022, 55(12), 1646-1658.
[http://dx.doi.org/10.1021/acs.accounts.2c00120] [PMID: 35500276]
[43]
Zhou, D.; Zhao, B.; Bai, Y.; Mukherjee, S.; Liu, J.; Bian, H.; Fang, Y. Exploring the structure and complexation dynamics of azide anion recognition by calix [4] pyrroles in solution. J. Phys. Chem. Lett., 2022, 13(2), 669-675.
[http://dx.doi.org/10.1021/acs.jpclett.1c03962] [PMID: 35023744]
[44]
Li, S.R.; Tan, Y.M.; Zhang, L.; Zhou, C.H. Comprehensive insights into medicinal research on imidazole-based supramolecular complexes. Pharmaceutics, 2023, 15(5), 1348.
[http://dx.doi.org/10.3390/pharmaceutics15051348] [PMID: 37242590]
[45]
Tolomeu, H.V.; Fraga, C.A.M. Imidazole: Synthesis, functionalization and physicochemical properties of a privileged structure in medicinal chemistry. Molecules, 2023, 28(2), 838.
[http://dx.doi.org/10.3390/molecules28020838] [PMID: 36677894]
[46]
Kang, S.O.; Begum, R.A.; Bowman-James, K. Amide-based ligands for anion coordination. Angew. Chem. Int. Ed., 2006, 45(47), 7882-7894.
[http://dx.doi.org/10.1002/anie.200602006] [PMID: 17072919]
[47]
Gale, P.A. Synthetic indole, carbazole, biindole and indolocarbazole-based receptors: Applications in anion complexation and sensing. Chem. Commun. , 2008, (38), 4525-4540.
[http://dx.doi.org/10.1039/b809508f] [PMID: 18815678]
[48]
Gale, P.A.; García-Garrido, S.E.; Garric, J. Anion receptors based on organic frameworks: Highlights from 2005 and 2006. Chem. Soc. Rev., 2008, 37(1), 151-190.
[http://dx.doi.org/10.1039/B715825D] [PMID: 18197339]
[49]
Li, X. Wu, Y.D.; Yang, D. α-aminoxy acids: New possibilities from foldamers to anion receptors and channels. Acc. Chem. Res., 2008, 41(10), 1428-1438.
[http://dx.doi.org/10.1021/ar8001393] [PMID: 18785763]
[50]
Prabakaran, G.; Velmurugan, K.; Immanuel David, C.; Prince Makarios Paul, S.; Abiram, A.; Suresh Kumar, R.; Almansour, A.I.; Perumal, K.; Nandhakumar, R. Imidazole appended rotatable hydroxy quinoline scaffold as dual signaling fluorescent chemosensor: Detection of silver ions with hypsochromic shift and hydroxide ions with bathochromic shift and their LFP’s, anticounterfeiting, soil analysis and bio-imaging. J. Mol. Liq., 2023, 388, 122733.
[http://dx.doi.org/10.1016/j.molliq.2023.122733]
[51]
Manna, U.; Das, G. An overview of anion coordination by hydroxyl, amine and amide based rigid and symmetric neutral dipodal receptors. Coord. Chem. Rev., 2021, 427, 213547.
[http://dx.doi.org/10.1016/j.ccr.2020.213547]
[52]
Prajapati, S.; Sinha, P.; Suryavanshi, K.K.; Jana, S. Recognition of monocarboxylic acids by imidazole‐containing receptors. J. Phys. Org. Chem., 2022, 35(9), e4397.
[http://dx.doi.org/10.1002/poc.4397]
[53]
Ihm, H.; Yun, S.; Kim, H.G.; Kim, J.K.; Kim, K.S. Tripodal nitro-imidazolium receptor for anion binding driven by (C-H)+- - -X- hydrogen bonds. Org. Lett., 2002, 4(17), 2897-2900.
[http://dx.doi.org/10.1021/ol026373h] [PMID: 12182583]
[54]
Hu, Y.; Long, S.; Fu, H.; She, Y.; Xu, Z.; Yoon, J. Revisiting imidazolium receptors for the recognition of anions: Highlighted research during 2010–2019. Chem. Soc. Rev., 2021, 50(1), 589-618.
[http://dx.doi.org/10.1039/D0CS00642D] [PMID: 33174897]
[55]
Zapata, F.; Caballero, A.; White, N.G.; Claridge, T.D.W.; Costa, P.J.; Félix, V.; Beer, P.D. Fluorescent charge-assisted halogen-bonding macrocyclic halo-imidazolium receptors for anion recognition and sensing in aqueous media. J. Am. Chem. Soc., 2012, 134(28), 11533-11541.
[http://dx.doi.org/10.1021/ja302213r] [PMID: 22703526]
[56]
Alcalde, E.; Dinares, I.; Mesquida, N. Imidazolium-based receptors. Anion Recog. Supramol. Chem., 2010, 267-300.
[57]
Ruiz-Botella, S.; Vidossich, P.; Ujaque, G.; Peris, E.; Beer, P.D. Tripodal halogen bonding iodo-azolium receptors for anion recognition. RSC Advances, 2017, 7(19), 11253-11258.
[http://dx.doi.org/10.1039/C6RA28082J]
[58]
Xu, Z.; Kim, S.K.; Yoon, J. Revisit to imidazolium receptors for the recognition of anions: Highlighted research during 2006–2009. Chem. Soc. Rev., 2010, 39(5), 1457-1466.
[http://dx.doi.org/10.1039/b918937h] [PMID: 20419201]
[59]
Fiorucci, S.; Biagioli, M.; Zampella, A.; Distrutti, E. Bile acids activated receptors regulate innate immunity. Front. Immunol., 2018, 9, 1853.
[http://dx.doi.org/10.3389/fimmu.2018.01853] [PMID: 30150987]
[60]
Tamminen, J.; Kolehmainen, E. Bile acids as building blocks of supramolecular hosts. Molecules, 2001, 6(12), 21-46.
[http://dx.doi.org/10.3390/60100021]
[61]
Yu, H.; Zhao, T.; Liu, S.; Wu, Q.; Johnson, O.; Wu, Z.; Zhuang, Z.; Shi, Y.; Peng, L.; He, R.; Yang, Y.; Sun, J.; Wang, X.; Xu, H.; Zeng, Z.; Zou, P.; Lei, X.; Luo, W.; Li, Y. MRGPRX4 is a bile acid receptor for human cholestatic itch. eLife, 2019, 8, e48431.
[http://dx.doi.org/10.7554/eLife.48431] [PMID: 31500698]
[62]
Patel, S.; Bariya, D.; Mishra, R.; Mishra, S. Bile acid-based receptors and their applications in recognition. Steroids, 2022, 179, 108981.
[http://dx.doi.org/10.1016/j.steroids.2022.108981] [PMID: 35176289]
[63]
Muwal, P.K.; Mishra, R.; Pandey, P.S. Novel bile acid based 1,2,3-triazole receptors for recognition of acetate and dihydrogen phosphate ions. ChemistrySelect, 2020, 5(35), 10982-10987.
[http://dx.doi.org/10.1002/slct.202002339]
[64]
Xu, Y. Recent progress on bile acid receptor modulators for treatment of metabolic diseases. J. Med. Chem., 2016, 59(14), 6553-6579.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00342] [PMID: 26878262]
[65]
Schaap, FG; Trauner, M.; Jansen, PL Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(1), 55-67.
[66]
Nayal, A.; Muwal, P.K.; Pandey, P.S. Bile acid based receptors for multiple metal ion recognition. Tetrahedron, 2019, 75(13), 1968-1974.
[http://dx.doi.org/10.1016/j.tet.2019.02.017]
[67]
Brotherhood, P.R.; Davis, A.P. Steroid-based anion receptors and transporters. Chem. Soc. Rev., 2010, 39(10), 3633-3647.
[http://dx.doi.org/10.1039/b926225n] [PMID: 20714471]
[68]
Chahar, M.; Upreti, S.; Pandey, P.S. Anion recognition by bisimidazolium and bisbenzimidazolium cholapods. Tetrahedron, 2007, 63(1), 171-176.
[http://dx.doi.org/10.1016/j.tet.2006.10.037]
[69]
Khatri, V.K.; Chahar, M.; Pavani, K.; Pandey, P.S. Bile acid-based cyclic bisbenzimidazolium receptors for anion recognition: Highly improved receptors for fluoride and chloride ions. J. Org. Chem., 2007, 72(26), 10224-10226.
[http://dx.doi.org/10.1021/jo701341r] [PMID: 18004866]
[70]
Chahar, M.; Pandey, P.S. Design of steroid-based imidazolium receptors for fluoride ion recognition. Tetrahedron, 2008, 64(27), 6488-6493.
[http://dx.doi.org/10.1016/j.tet.2008.04.065]
[71]
Kovacevic, B.; Jones, M.; Ionescu, C.; Walker, D.; Wagle, S.; Chester, J.; Foster, T.; Brown, D.; Mikov, M.; Mooranian, A.; Al-Salami, H. The emerging role of bile acids as critical components in nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-biomaterial applications. Biomaterials, 2022, 283, 121459.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121459] [PMID: 35303546]
[72]
Mooranian, A.; Raj Wagle, S.; Kovacevic, B.; Takechi, R.; Mamo, J.; Lam, V.; Watts, G.F.; Mikov, M.; Golocorbin-Kon, S.; Stojanovic, G.; Al-Sallami, H.; Al-Salami, H. Bile acid bio-nanoencapsulation improved drug targeted-delivery and pharmacological effects via cellular flux: 6-months diabetes preclinical study. Sci. Rep., 2020, 10(1), 106.
[http://dx.doi.org/10.1038/s41598-019-53999-1] [PMID: 31919411]
[73]
Zhang, M.; Strandman, S.; Waldron, K.C.; Zhu, X.X. Supramolecular hydrogelation with bile acid derivatives: Structures, properties and applications. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(47), 7506-7520.
[http://dx.doi.org/10.1039/C6TB02270G] [PMID: 32263808]
[74]
Goldshleger, N.F.; Lobach, A.S.; Baulin, V.E.; Tsivadze, A.Y. Supramolecular gels based on bile acid salts. Russ. Chem. Rev., 2017, 86(4), 269-297.
[http://dx.doi.org/10.1070/RCR4682]
[75]
Kecman, S.; Škrbić, R.; Badnjevic Cengic, A.; Mooranian, A.; Al-Salami, H.; Mikov, M.; Golocorbin-Kon, S. Potentials of human bile acids and their salts in pharmaceutical nano delivery and formulations adjuvants. Technol. Health Care, 2020, 28(3), 325-335.
[http://dx.doi.org/10.3233/THC-191845] [PMID: 31594273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy