Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Activation Energy Rechargeable Prussian Yellow Nano Film Electrode using Hydrated Ions

Author(s): Abeer Baioun* and Hassan Kellawi

Volume 15, Issue 4, 2023

Published on: 06 December, 2023

Page: [262 - 268] Pages: 7

DOI: 10.2174/0118764029204082231120144906

Price: $65

conference banner
Abstract

Aim: Interfacial charge transfer is a fundamental issue in both the science and technology of the batteries. In this work, the activation energy for the interfacial charge transfer, Ea, though PY thin film was estimated by measurement measurements of electrochemical impedance spectroscopy (EIS) for both monovalent and multivalent hydration cations: Li+, Na+, K+, Ca+2 and Mg+2 in aqueous electrolytes.

Background: Rechargeable batteries have become quintessential energy conversion devices that are widely used in portable electronic devices and hybrid electric vehicles. PB and its analogues have open channels that allow rapid insertion/extraction of different cations and that lead to a long cycle of its in such as batteries (Na+, Li+ and K+).

Objective: preparation of Prussian yellow Nanofilm on ITO glass by a simple chemical facial method and study of its charge/discharge processes of intercalation compounds in rechargeable features.

Methods: The electrochemical measurements of potentiostat/galvanostat cyclic voltammograms and EIS were carried out in three-electrode cells, with Ag/AgCl as a reference electrode. Pt. and ITO|PY as working and counter electrodes respectively. The electrolytes were solutions of 0.1 M+z cation in water where M+z was one of the following cations: Li+, Na+, K+, Ca+2 or Mg+2.

Results: The effect of hydration on the activation energy for the PY thin film was studied by the EIS at different temperatures. The ions K+ have an activation energy interfacial, which is lower than that of Na+ and Li+. So the coulombic repulsion at the interface is largely suppressed by the screening effect of ions hydration, explaining the small values of Ea with aqueous electrolyte. Furthermore, the hydration helped the Ca+2 and Mg+2 intercalation in PBA but with large values of Ea that were due to coulombic repulsion at the interface.

Conclusion: Prussian blue can be considered among the most promising cathode materials for energy storage batteries because of their rigid open framework with large interstitial sites that can pertain to mono and bivalent cation mobility and accommodate volume variation during ions insertion/ extraction.

[1]
Matsuda, T.; Takachi, M.; Moritomo, Y. A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem. Commun., 2013, 49(27), 2750-2752.
[http://dx.doi.org/10.1039/c3cc38839e] [PMID: 23407705]
[2]
Wang, L.; Lu, Y.; Liu, J.; Xu, M.; Cheng, J.; Zhang, D.; Goodenough, J.B. A superior low‐cost cathode for a NA‐ion battery. Angew. Chem. Int. Ed., 2013, 52(7), 1964-1967.
[http://dx.doi.org/10.1002/anie.201206854]
[3]
Zhou, M.; Qian, J.; Ai, X.; Yang, H. Redox-active Fe(CN)(6)(4-)-doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries. Adv. Mater., 2011, 23(42), 4913-4917.
[http://dx.doi.org/10.1002/adma.201102867] [PMID: 21972070]
[4]
Lee, H.; Kim, Y.I.; Park, J.K.; Choi, J.W. Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem. Commun., 2012, 48(67), 8416-8418.
[http://dx.doi.org/10.1039/c2cc33771a] [PMID: 22801752]
[5]
Wessells, C.D.; Peddada, S.V.; Huggins, R.A.; Cui, Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett., 2011, 11(12), 5421-5425.
[http://dx.doi.org/10.1021/nl203193q] [PMID: 22043814]
[6]
Wessells, C.D.; Huggins, R.A.; Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun., 2011, 2(1), 550-554.
[http://dx.doi.org/10.1038/ncomms1563] [PMID: 22109524]
[7]
Okubo, M.; Asakura, D.; Mizuno, Y.; Kim, J.D.; Mizokawa, T.; Kudo, T.; Honma, I. Switching redox-active sites by valence tautomerism in prussian blue analogues Ax Mny [Fe(CN)6]• nH2O (A: K, Rb): Robust frameworks for reversible li storage. J. Phys. Chem. Lett., 2010, 1(14), 2063-2071.
[http://dx.doi.org/10.1021/jz100708b]
[8]
Pasta, M.; Wessells, C.D.; Huggins, R.A.; Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun., 2012, 3(1), 1149.
[http://dx.doi.org/10.1038/ncomms2139] [PMID: 23093186]
[9]
Mizuno, Y.; Okubo, M.; Kagesawa, K.; Asakura, D.; Kudo, T.; Zhou, H.; Oh-ishi, K.; Okazawa, A.; Kojima, N. Precise electrochemical control of ferromagnetism in a cyanide-bridged bimetallic coordination polymer. Inorg. Chem., 2012, 51(19), 10311-10316.
[http://dx.doi.org/10.1021/ic301361h] [PMID: 22978515]
[10]
Mizuno, Y.; Okubo, M.; Hosono, E.; Kudo, T.; Zhou, H.; Oh-ishi, K. Suppressed activation energy for interfacial charge transfer of a prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+). J. Phys. Chem. C, 2013, 117(21), 10877-10882.
[http://dx.doi.org/10.1021/jp311616s]
[11]
Colin, D.; Mc Dowell, M.T.; Peddada, S.V.; Pasta, M.; Huggins, R.A.; Cui, Y. Tunable reaction potentials in open framework nano-particle battery electrodes for grid scale energy storage. J. ACS Nano., 2012, 6(2), 1688-1694.
[http://dx.doi.org/10.1021/nn204666v]
[12]
Zhijun, J.; Wang, B.; Wang, Y. Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. J. Mater. Chem. Phys., 2015, 149, 601-606.
[13]
Trócoli, R.; La Mantia, F. An aqueous zinc‐ion battery based on copper hexacyanoferrate. ChemSusChem, 2015, 8(3), 481-485.
[http://dx.doi.org/10.1002/cssc.201403143]
[14]
Baioun, A.; Kellawi, H.; Falah, A.; Alghoraibi, I. A novel non electrically prepared nano prussian yellow film modified electrode: As a sensor for ascorbic acid. Curr. Nanosci., 2017, 13(5), 201.
[http://dx.doi.org/10.2174/1573413713666170323162207]
[15]
Bucolo, M.; Buscarino, A.; Fortuna, L.; Frasca, M. Nyquist plots for MIMO systems under frequency transformations. IEEE Control Syst. Lett., 2022, 6, 169-174.
[http://dx.doi.org/10.1109/LCSYS.2021.3053660]
[16]
Chen, S-M.; Chan, C-M. Preparation, characterization, and electrocatalytic properties of copper hexacyanoferrate film and bilayer film modified electrodes. J. Electroanal. Chem. , 2003, 543(2), 161-173.
[17]
Schwudke, D.; Stößer, R.; Scholz, F. Solid-state electrochemical, X-ray and spectroscopic characterization of substitutional solid solutions of iron–copper hexacyanoferrates. Electrochem. Commun., 2000, 2(5), 301-306.
[http://dx.doi.org/10.1016/S1388-2481(00)00028-X]
[18]
Jolly, W.L. Modern Inorganic Chemistry, 2nd ed; McGraw-Hill: New York, 1991.
[19]
Ng, C.W.; Ding, J.; Shi, Y.; Gan, L.M. Structure and magnetic properties of copper(II) hexacyanoferrate(III) compound. J. Phys. Chem. Solids, 2001, 62(4), 767-775.
[http://dx.doi.org/10.1016/S0022-3697(00)00248-1]
[20]
Zadroneck, M.; Linek, I.A.; Stroka, J.; Wrona, P.K.; Galus, Z. High affinity of Thallium ions to copper hexacyanoferrate films. J. Electrochem. Soc., 2001, 148, E348.
[http://dx.doi.org/10.1149/1.1381074]
[21]
Wang, Q.; Li, J.; Jin, H.; Xin, S.; Gao, H. Prussian-blue materials: Revealing new opportunities for rechargeable batteries. InfoMat, 2022, 4(6), e12311.
[http://dx.doi.org/10.1002/inf2.12311]
[22]
Mizuno, Y.; Okubo, M.; Asakura, D.; Saito, T.; Hosono, E.; Saito, Y.; Oh-ishi, K.; Kudo, T.; Zhou, H. Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. Electrochim. Acta, 2012, 63, 139-145.
[http://dx.doi.org/10.1016/j.electacta.2011.12.068]
[23]
Pournaghi-Azar, M.H.; Nahalparvari, H. Electroless preparation and electrochemical behavior of a platinum-doped nickel hexacyanoferrate film–zinc modified electrode: Catalytic ability of the electrode for electrooxidation of methanol. J. Solid State Electrochem., 2004, 8(8), 550-557.
[http://dx.doi.org/10.1007/s10008-004-0496-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy