Generic placeholder image

Reviews on Recent Clinical Trials

Editor-in-Chief

ISSN (Print): 1574-8871
ISSN (Online): 1876-1038

Systematic Review Article

PARP Inhibitors in Colorectal Malignancies: A 2023 Update

Author(s): Nikolaos Skouteris* and Georgios Papageorgiou

Volume 19, Issue 2, 2024

Published on: 06 December, 2023

Page: [101 - 108] Pages: 8

DOI: 10.2174/0115748871260815231116060817

Price: $65

Abstract

Background: Colorectal carcinoma (CRC) is one of the most common malignancies in the Western world, and metastatic disease is associated with a dismal prognosis. Poly-ADpribose polymerase (PARP) inhibitors gain increasing attention in the field of medical oncology, as they lead to synthetic lethality in malignancies with preexisting alterations in the DNA damage repair (DDR) pathway. As those alterations are frequently seen in CRC, a targeted approach through PARP inhibitors is expected to benefit these patients, both alone and in combination with other agents like chemotherapy, immunotherapy, antiangiogenics, and radiation.

Objective: This review article aims to better clarify the role of PARP inhibitors as a treatment option in patients with metastatic CRC with alterations in the DDR pathway.

Methods: We used the PubMed database to retrieve journal articles and the inclusion criteria were all human studies that illustrated the effective role of PARP inhibitors in patients with metastatic CRC with homologous repair deficiency (HRD) and the correct line of therapy.

Results: Current evidence supports the utilization of PARP inhibitors in CRC subgroups, as monotherapy and in combination with other agents. Up to now, data are insufficient to support a formal indication, and further research is needed.

Conclusion: Efforts to precisely define the homologous repair deficiency (HRD) in CRC – and eventually the subgroup of patients that are expected to benefit the most – are also underway.

Next »
Graphical Abstract

[1]
Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers 2021; 13(9): 2025.
[http://dx.doi.org/10.3390/cancers13092025] [PMID: 33922197]
[2]
Zhang J, Deng J, Hu J, et al. Safety and feasibility of neoadjuvant chemotherapy as a surgical bridge for acute left-sided malignant colorectal obstruction: A retrospective study. BMC Cancer 2022; 22(1): 806.
[http://dx.doi.org/10.1186/s12885-022-09906-5] [PMID: 35864459]
[3]
Cercek A, Lumish M, Sinopoli J, et al. PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N Engl J Med 2022; 386(25): 2363-76.
[http://dx.doi.org/10.1056/NEJMoa2201445] [PMID: 35660797]
[4]
Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer. JAMA 2021; 325(7): 669-85.
[http://dx.doi.org/10.1001/jama.2021.0106] [PMID: 33591350]
[5]
Murai J, Huang SN, Das BB, et al. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res 2012; 72(21): 5588-99.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2753] [PMID: 23118055]
[6]
Del Vecchio F, Mastroiaco V, Di Marco A, et al. Next-generation sequencing: Recent applications to the analysis of colorectal cancer. J Transl Med 2017; 15(1): 246.
[http://dx.doi.org/10.1186/s12967-017-1353-y] [PMID: 29221448]
[7]
Krishnakumar R, Kraus WL. The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets. Mol Cell 2010; 39(1): 8-24.
[http://dx.doi.org/10.1016/j.molcel.2010.06.017] [PMID: 20603072]
[8]
Pines A, Vrouwe MG, Marteijn JA, et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 2012; 199(2): 235-49.
[http://dx.doi.org/10.1083/jcb.201112132] [PMID: 23045548]
[9]
Hu Y, Petit SA, Ficarro SB, et al. PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov 2014; 4(12): 1430-47.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0891] [PMID: 25252691]
[10]
Zhao Q, Lan T, Su S, Rao Y. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem Commun 2019; 55(3): 369-72.
[http://dx.doi.org/10.1039/C8CC07813K] [PMID: 30540295]
[11]
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol 2020; 8: 564601.
[http://dx.doi.org/10.3389/fcell.2020.564601] [PMID: 33015058]
[12]
Alhusaini A, Cannon A, Maher SG, Reynolds JV, Lynam-Lennon N. Therapeutic potential of PARP inhibitors in the treatment of gastrointestinal cancers. Biomedicines 2021; 9(8): 1024.
[http://dx.doi.org/10.3390/biomedicines9081024] [PMID: 34440228]
[13]
Thorsell AG, Ekblad T, Karlberg T, et al. Structural basis for potency and promiscuity in poly(ADP-ribose) Polymerase (PARP) and tankyrase inhibitors. J Med Chem 2017; 60(4): 1262-71.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00990] [PMID: 28001384]
[14]
Mauri G, Arena S, Siena S, Bardelli A, Sartore-Bianchi A. The DNA damage response pathway as a land of therapeutic opportunities for colorectal cancer. Ann Oncol 2020; 31(9): 1135-47.
[http://dx.doi.org/10.1016/j.annonc.2020.05.027]
[15]
Uson PLS Jr, Riegert-Johnson D, Boardman L, et al. Germline cancer susceptibility gene testing in unselected patients with colorectal adenocarcinoma: A multicenter prospective study. Clin Gastroenterol Hepatol 2022; 20(3): e508-28.
[http://dx.doi.org/10.1016/j.cgh.2021.04.013] [PMID: 33857637]
[16]
Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science 2017; 355(6330): 1152-8.
[http://dx.doi.org/10.1126/science.aam7344] [PMID: 28302823]
[17]
Byrum AK, Vindigni A, Mosammaparast N. Defining and modulating ‘BRCAness’. Trends Cell Biol 2019; 29(9): 740-51.
[http://dx.doi.org/10.1016/j.tcb.2019.06.005] [PMID: 31362850]
[18]
Carden CP, Yap TA, Kaye SB. PARP inhibition: Targeting the Achilles’ heel of DNA repair to treat germline and sporadic ovarian cancers. Curr Opin Oncol 2010; 22(5): 473-80.
[http://dx.doi.org/10.1097/CCO.0b013e32833b5126] [PMID: 20485165]
[19]
Sims T, Floyd J, Sood A, et al. Correlation of BRCA and HRD status with clinical and survival outcomes in patients with advanced-stage ovarian cancer in the age of PARPi maintenance therapy (187). Gynecol Oncol 2022; 166: S107-8.
[http://dx.doi.org/10.1016/S0090-8258(22)01414-7]
[20]
Tattersall A, Ryan N, Wiggans AJ, Rogozińska E, Morrison J. Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Libr 2022; 2022(2): CD007929.
[http://dx.doi.org/10.1002/14651858.CD007929.pub4] [PMID: 35170751]
[21]
Pacheco-Barcia V, Muñoz A, Castro E, et al. The Homologous Recombination Deficiency Scar in Advanced Cancer: Agnostic Targeting of Damaged DNA Repair. Cancers 2022; 14(12): 2950.
[http://dx.doi.org/10.3390/cancers14122950] [PMID: 35740616]
[22]
Curtin NJ, Drew Y, Sharma-Saha S. Why BRCA mutations are not tumour-agnostic biomarkers for PARP inhibitor therapy. Nat Rev Clin Oncol 2019; 16(12): 725-6.
[http://dx.doi.org/10.1038/s41571-019-0285-2] [PMID: 31582817]
[23]
Smith M, Pothuri B. Appropriate selection of PARP inhibitors in ovarian cancer. Curr Treat Options Oncol 2022; 23(6): 887-903.
[http://dx.doi.org/10.1007/s11864-022-00938-4] [PMID: 35412195]
[24]
Tung N, Garber JE. PARP inhibition in breast cancer: Progress made and future hopes. NPJ Breast Cancer 2022; 8(1): 47.
[http://dx.doi.org/10.1038/s41523-022-00411-3] [PMID: 35396508]
[25]
Brown TJ, Reiss KA. PARP inhibitors in pancreatic cancer. Cancer J 2021; 27(6): 465-75.
[http://dx.doi.org/10.1097/PPO.0000000000000554] [PMID: 34904809]
[26]
de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020; 382(22): 2091-102.
[http://dx.doi.org/10.1056/NEJMoa1911440] [PMID: 32343890]
[27]
Abida W, Patnaik A, Campbell D, et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol 2020; 38(32): 3763-72.
[http://dx.doi.org/10.1200/JCO.20.01035] [PMID: 32795228]
[28]
Clarke NW, Armstrong AJ, Thiery-Vuillemin A, et al. Abiraterone and Olaparib for metastatic castration-resistant prostate cancer. NEJM Evidence 2022; 1(9)
[http://dx.doi.org/10.1056/EVIDoa2200043]
[29]
Chi KN, Rathkopf D, Smith MR, et al. Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer. J Clin Oncol 2023; 41(18): 3339-51. Advance online publication
[http://dx.doi.org/10.1200/JCO.22.01649] [PMID: 36952634]
[30]
Agarwal N, Azad A, Shore ND, et al. Talazoparib plus enzalutamide in metastatic castration-resistant prostate cancer: TALAPRO-2 phase III study design. Future Oncol 2022; 18(4): 425-36.
[http://dx.doi.org/10.2217/fon-2021-0811] [PMID: 35080190]
[31]
Dörsam B, Seiwert N, Foersch S, et al. PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proc Natl Acad Sci 2018; 115(17): E4061-70.
[http://dx.doi.org/10.1073/pnas.1712345115] [PMID: 29632181]
[32]
Cai L, Threadgill MD, Wang Y, Li M. Effect of poly (ADP-ribose) polymerase-1 inhibition on the proliferation of murine colon carcinoma CT26 cells. Pathol Oncol Res 2009; 15(3): 323-8.
[http://dx.doi.org/10.1007/s12253-008-9116-y] [PMID: 18989759]
[33]
Kiszałkiewicz JM, Majewski S, Piotrowski WJ, et al. Evaluation of selected IL6/STAT3 pathway molecules and miRNA expression in chronic obstructive pulmonary disease. Sci Rep 2021; 11(1): 22756.
[http://dx.doi.org/10.1038/s41598-021-01950-8] [PMID: 34815425]
[34]
Li M, Threadgill MD, Wang Y, Cai L, Lin X. Poly(ADP-ribose) polymerase inhibition down-regulates expression of metastasis-related genes in CT26 colon carcinoma cells. Pathobiology 2009; 76(3): 108-16.
[http://dx.doi.org/10.1159/000209388] [PMID: 19468250]
[35]
Yue J, Zhang K, Chen J. Role of integrins in regulating proteases to mediate extracellular matrix remodeling. Cancer Microenviron 2012; 5(3): 275-83.
[http://dx.doi.org/10.1007/s12307-012-0101-3] [PMID: 22437309]
[36]
Hiroshi Y, Takashi T, Masatoshi H, Hideaki K, Shigekazu H, Terumitsu S, et al. Elevated expression of poly(ADP-Ribose) polymerase-1 is associated with liver metastasis in colorectal cancer. Acta Med Nagasaki 2002; 47: 111-5.
[37]
Freire MV, Martin M, Thissen R, et al. Case report series: Aggressive HR deficient colorectal cancers related to BRCA1 pathogenic germline variants. Front Oncol 2022; 12: 835581.
[http://dx.doi.org/10.3389/fonc.2022.835581] [PMID: 35280729]
[38]
Cullinane CM, Creavin B, O’Connell EP, et al. Risk of colorectal cancer associated with BRCA1 and/or BRCA2 mutation carriers: Systematic review and meta-analysis. Br J Surg 2020; 107(8): 951-9.
[http://dx.doi.org/10.1002/bjs.11603] [PMID: 32297664]
[39]
Wang C, Jette N, Moussienko D, Bebb DG, Lees-Miller SP. ATM-deficient colorectal cancer cells are sensitive to the PARP inhibitor olaparib. Transl Oncol 2017; 10(2): 190-6.
[http://dx.doi.org/10.1016/j.tranon.2017.01.007] [PMID: 28182994]
[40]
Ozden O, Bishehsari F, Bauer J, et al. Expression of an oncogenic BARD1 splice variant impairs homologous recombination and predicts response to PARP-1 inhibitor therapy in colon cancer. Sci Rep 2016; 6(1): 26273.
[http://dx.doi.org/10.1038/srep26273] [PMID: 27197561]
[41]
Lee MS, Kopetz S. Are homologous recombination deficiency mutations relevant in colorectal cancer? J Natl Cancer Inst 2022; 114(2): 176-8.
[http://dx.doi.org/10.1093/jnci/djab170] [PMID: 34469539]
[42]
Moretto R, Elliott A, Zhang J, et al. Homologous recombination deficiency alterations in colorectal cancer: Clinical, molecular, and prognostic implications. J Natl Cancer Inst 2022; 114(2): 271-9.
[http://dx.doi.org/10.1093/jnci/djab169] [PMID: 34469533]
[43]
Sundar R, Miranda S, Rodrigues DN, et al. Ataxia telangiectasia mutated protein loss and benefit from oxaliplatin-based chemotherapy in colorectal cancer. Clin Colorectal Cancer 2018; 17(4): 280-4.
[http://dx.doi.org/10.1016/j.clcc.2018.05.011] [PMID: 30042009]
[44]
Bakkenist CJ, Lee JJ, Schmitz JC. ATM is required for the repair of oxaliplatin-induced DNA damage in colorectal Cancer. Clin Colorectal Cancer 2018; 17(4): 255-7.
[http://dx.doi.org/10.1016/j.clcc.2018.09.001] [PMID: 30316683]
[45]
Randon G, Fucà G, Rossini D, et al. Prognostic impact of ATM mutations in patients with metastatic colorectal cancer. Sci Rep 2019; 9(1): 2858.
[http://dx.doi.org/10.1038/s41598-019-39525-3] [PMID: 30814645]
[46]
Tang X, Lin Y, He J, et al. Establishment and validation of a prognostic model based on HRR-related lncRNAs in colon adenocarcinoma. World J Surg Oncol 2022; 20(1): 74.
[http://dx.doi.org/10.1186/s12957-022-02534-0] [PMID: 35264195]
[47]
Heeke A L, Pishvaian M J, Lynce F, Xiu J, Brody J R, Chen W J, et al. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis Oncol 2018; 2018: PO.17.00286.
[http://dx.doi.org/10.1200/PO.17.00286]
[48]
Smeby J, Kryeziu K, Berg KCG, et al. Molecular correlates of sensitivity to PARP inhibition beyond homologous recombination deficiency in pre-clinical models of colorectal cancer point to wild-type TP53 activity. EBioMedicine 2020; 59: 102923.
[http://dx.doi.org/10.1016/j.ebiom.2020.102923] [PMID: 32799124]
[49]
Leichman L, Groshen S, O’Neil BH, et al. Phase II study of olaparib (AZD-2281) after standard systemic therapies for disseminated colorectal cancer. Oncologist 2016; 21(2): 172-7.
[http://dx.doi.org/10.1634/theoncologist.2015-0319] [PMID: 26786262]
[50]
Donawho CK, Luo Y, Luo Y, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 2007; 13(9): 2728-37.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3039] [PMID: 17473206]
[51]
Ghiringhelli F, Richard C, Chevrier S, Végran F, Boidot R. Efficiency of olaparib in colorectal cancer patients with an alteration of the homologous repair protein. World J Gastroenterol 2016; 22(48): 10680-6.
[http://dx.doi.org/10.3748/wjg.v22.i48.10680] [PMID: 28082821]
[52]
Stewart MD, Merino Vega D, Arend RC, et al. Homologous recombination deficiency: Concepts, definitions, and assays. Oncologist 2022; 27(3): 167-74.
[http://dx.doi.org/10.1093/oncolo/oyab053] [PMID: 35274707]
[53]
Wang J, He H, Xu W, Chen J. Positive response to niraparib in chemo-refractory patients with metastatic appendiceal mucinous adenocarcinoma harboring ATM mutations: A case report. Front Oncol 2023; 13: 1010871.
[http://dx.doi.org/10.3389/fonc.2023.1010871] [PMID: 36860317]
[54]
González-Martín A, Pothuri B, Vergote I, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2019; 381(25): 2391-402.
[http://dx.doi.org/10.1056/NEJMoa1910962] [PMID: 31562799]
[55]
Xu K, chen , Cui Y, qin , He , song . Combined olaparib and oxaliplatin inhibits tumor proliferation and induces G2/M arrest and γ-H2AX foci formation in colorectal cancer. OncoTargets Ther 2015; 8: 3047-54.
[http://dx.doi.org/10.2147/OTT.S89154] [PMID: 26543375]
[56]
Genther Williams SM, Kuznicki AM, Andrade P, et al. Treatment with the PARP inhibitor, niraparib, sensitizes colorectal cancer cell lines to irinotecan regardless of MSI/MSS status. Cancer Cell Int 2015; 15(1): 14.
[http://dx.doi.org/10.1186/s12935-015-0162-8] [PMID: 25685067]
[57]
Jarrar A, Lotti F, DeVecchio J, et al. Poly(ADP-Ribose) polymerase inhibition sensitizes colorectal cancer-initiating cells to chemotherapy. Stem Cells 2019; 37(1): 42-53.
[http://dx.doi.org/10.1002/stem.2929] [PMID: 30353615]
[58]
Berlin J, Ramanathan RK, Strickler JH, et al. A phase 1 dose-escalation study of veliparib with bimonthly FOLFIRI in patients with advanced solid tumours. Br J Cancer 2018; 118(7): 938-46.
[http://dx.doi.org/10.1038/s41416-018-0003-3] [PMID: 29527010]
[59]
Gorbunova V, Beck JT, Hofheinz RD, et al. A phase 2 randomised study of veliparib plus FOLFIRI±bevacizumab versus placebo plus FOLFIRI±bevacizumab in metastatic colorectal cancer. Br J Cancer 2019; 120(2): 183-9.
[http://dx.doi.org/10.1038/s41416-018-0343-z] [PMID: 30531832]
[60]
Pishvaian MJ, Slack RS, Jiang W, et al. A phase 2 study of the PARP inhibitor veliparib plus temozolomide in patients with heavily pretreated metastatic colorectal cancer. Cancer 2018; 124(11): 2337-46.
[http://dx.doi.org/10.1002/cncr.31309] [PMID: 29579325]
[61]
Kummar S, Chen A, Ji J, et al. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res 2011; 71(17): 5626-34.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1227] [PMID: 21795476]
[62]
Samol J, Ranson M, Scott E, et al. Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: A phase I study. Invest New Drugs 2012; 30(4): 1493-500.
[http://dx.doi.org/10.1007/s10637-011-9682-9] [PMID: 21590367]
[63]
Illuzzi G, Staniszewska AD, Gill SJ, et al. Preclinical characterization of AZD5305, a next-generation, highly selective PARP1 inhibitor and trapper. Clin Cancer Res 2022; 28(21): 4724-36.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-0301] [PMID: 35929986]
[64]
Jette NR, Kumar M, Radhamani S, et al. ATM-deficient cancers provide new opportunities for precision oncology. Cancers 2020; 12(3): 687.
[http://dx.doi.org/10.3390/cancers12030687] [PMID: 32183301]
[65]
Vitiello PP, Martini G, Mele L, et al. Vulnerability to low-dose combination of irinotecan and niraparib in ATM-mutated colorectal cancer. J Exp Clin Cancer Res 2021; 40(1): 15.
[http://dx.doi.org/10.1186/s13046-020-01811-8] [PMID: 33407715]
[66]
Augustine T, Maitra R, Zhang J, Nayak J, Goel S. Sensitization of colorectal cancer to irinotecan therapy by PARP inhibitor rucaparib. Invest New Drugs 2019; 37(5): 948-60.
[http://dx.doi.org/10.1007/s10637-018-00717-9] [PMID: 30612311]
[67]
Chen EX, Jonker DJ, Siu LL, et al. A Phase I study of olaparib and irinotecan in patients with colorectal cancer: Canadian Cancer Trials Group IND 187. Invest New Drugs 2016; 34(4): 450-7.
[http://dx.doi.org/10.1007/s10637-016-0351-x] [PMID: 27075016]
[68]
Papageorgiou GI, Fergadis E, Skouteris N, et al. Case report: Combination of olaparib with chemotherapy in a patient with ATM-deficient colorectal cancer. Front Oncol 2021; 11: 788809.
[http://dx.doi.org/10.3389/fonc.2021.788809] [PMID: 35004311]
[69]
Arena S, Corti G, Durinikova E, et al. A subset of colorectal cancers with cross-sensitivity to olaparib and oxaliplatin. Clin Cancer Res 2020; 26(6): 1372-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2409] [PMID: 31831554]
[70]
Ma WW, Zemla TJ, Walden D, et al. A phase I study of pharmacokinetic (PK)-driven sequential dosing of rucaparib (RUB) with irinotecan liposome (nal-IRI) and fluorouracil (5FU) in metastatic gastrointestinal (mGI) and pancreas (PANC) cancers. J Clin Oncol 2022; 40(S4): 563-3.
[http://dx.doi.org/10.1200/JCO.2022.40.4_suppl.563]
[71]
Lee A. Fuzuloparib: First Approval. Drugs 2021; 81(10): 1221-6.
[http://dx.doi.org/10.1007/s40265-021-01541-x] [PMID: 34118019]
[72]
de Castro e Gloria H, Jesuíno Nogueira L, Bencke Grudzinski P, et al. Olaparib-mediated enhancement of 5-fluorouracil cytotoxicity in mismatch repair deficient colorectal cancer cells. BMC Cancer 2021; 21(1): 448.
[http://dx.doi.org/10.1186/s12885-021-08188-7] [PMID: 33888065]
[73]
Jover R, Zapater P, Castells A, Llor X, Andreu M, Cubiella J, et al. The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Europ J Cancer 2009; 45(3): 365-73.
[http://dx.doi.org/10.1016/j.ejca.2008.07.016]
[74]
Vikas P, Borcherding N, Chennamadhavuni A, Garje R. Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Front Oncol 2020; 10: 570.
[http://dx.doi.org/10.3389/fonc.2020.00570] [PMID: 32457830]
[75]
Seyedin SN, Hasibuzzaman MM, Pham V, et al. Combination therapy with radiation and PARP inhibition enhances responsiveness to Anti-PD-1 therapy in colorectal tumor models. Int J Radiat Oncol Biol Phys 2020; 108(1): 81-92.
[http://dx.doi.org/10.1016/j.ijrobp.2020.01.030] [PMID: 32036006]
[76]
Franzese O, Graziani G. Role of PARP inhibitors in cancer immunotherapy: Potential friends to immune activating molecules and foes to immune checkpoints. Cancers 2022; 14(22): 5633.
[http://dx.doi.org/10.3390/cancers14225633] [PMID: 36428727]
[77]
Wang Q, Bergholz JS, Ding L, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun 2022; 13(1): 3022.
[http://dx.doi.org/10.1038/s41467-022-30568-1]
[78]
Borcoman E, Kanjanapan Y, Champiat S, et al. Novel patterns of response under immunotherapy. Ann Oncol 2019; 30(3): 385-96.
[http://dx.doi.org/10.1093/annonc/mdz003] [PMID: 30657859]
[79]
Stover EH, Fuh K, Konstantinopoulos PA, Matulonis UA, Liu JF. Clinical assays for assessment of homologous recombination DNA repair deficiency. Gynecol Oncol 2020; 159(3): 887-98.
[http://dx.doi.org/10.1016/j.ygyno.2020.09.029] [PMID: 33012552]
[80]
Zimmer AS, Nichols E, Cimino-Mathews A, et al. A phase I study of the PD-L1 inhibitor, durvalumab, in combination with a PARP inhibitor, olaparib, and a VEGFR1–3 inhibitor, cediranib, in recurrent women’s cancers with biomarker analyses. J Immunother Cancer 2019; 7(1): 197.
[http://dx.doi.org/10.1186/s40425-019-0680-3] [PMID: 31345267]
[81]
Karzai F, VanderWeele D, Madan RA, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer 2018; 6(1): 141.
[http://dx.doi.org/10.1186/s40425-018-0463-2] [PMID: 30514390]
[82]
Czito BG, Deming DA, Jameson GS, et al. Safety and tolerability of veliparib combined with capecitabine plus radiotherapy in patients with locally advanced rectal cancer: A phase 1b study. Lancet Gastroenterol Hepatol 2017; 2(6): 418-26.
[http://dx.doi.org/10.1016/S2468-1253(17)30012-2] [PMID: 28497757]
[83]
George TJ, Yothers G, Hong TS, et al. NRG-GI002: A phase II clinical trial platform using total neoadjuvant therapy (TNT) in locally advanced rectal cancer (LARC)—First experimental arm (EA) initial results. J Clin Oncol 2019; 37(S15): 3505-5.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.3505]
[84]
Ray-Coquard I, Pautier P, Pignata S, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 2019; 381(25): 2416-28.
[http://dx.doi.org/10.1056/NEJMoa1911361] [PMID: 31851799]
[85]
Veneris JT, Matulonis UA, Liu JF, Konstantinopoulos PA. Choosing wisely: Selecting PARP inhibitor combinations to promote anti-tumor immune responses beyond BRCA mutations. Gynecol Oncol 2020; 156(2): 488-97.
[http://dx.doi.org/10.1016/j.ygyno.2019.09.021] [PMID: 31630846]
[86]
Kim TW, Taieb J, Gurary EB, Lerman N, Cui K, Yoshino T. Olaparib with or without bevacizumab or bevacizumab and 5-fluorouracil in advanced colorectal cancer: Phase III LYNK-003. Future Oncol 2021; 17(36): 5013-22.
[http://dx.doi.org/10.2217/fon-2021-0899] [PMID: 34779646]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy