Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Characterization of a New Hypotensive Peptide from the Venom of Snake Bothrops jararaca (Bj)

Author(s): Ajoy Basak*, Euridice Carmona, Felicia Au and Rosa Anna Maria Barbarulo Borgheresi

Volume 20, Issue 3, 2023

Published on: 06 December, 2023

Page: [192 - 207] Pages: 16

DOI: 10.2174/0115701646254996231130050528

Price: $65

Abstract

Background: Snake venom has become a key source of many bioactive peptides, enzymes, and toxins associated with blood coagulation and neuronal toxicity. In the past, a number of bradykinin potentiating peptides have been isolated from snake venom that display hypotensive activity due to their inhibitory action towards Angiotensin-Converting Enzyme (ACE). Significant interest has developed to isolate, characterize, and subsequently design peptide analogs as potent ACE-inhibitors which may find therapeutic applications for the treatment of hypertension and associated diseases.

Aim: The aim of this study is to search for new bioactive peptide/s in the venom of the snake Bothrops Jararaca (Bj).

Objective: The objective is to isolate and characterize new hypotensive peptides from BJ venom.

Methods: We examined the venom of Bj which is known to host a range of bioactive peptides. We have isolated a new peptide (BJ-1) which displayed in vitro potent hypotensive activity. The peptide was purified via Sephadex G25 column chromatography and RP-HPLC. It was characterized by mass spectrometry, amino acid analysis, N-terminal sequencing, and chemical synthesis.

Result: The peptide was identified as an octa-decapeptide with amino acid sequence as DCPSDWSSYEGHCYKPFS where the two Cys residues are likely present in free state, although they can form an internal S-S bond upon oxidation. It was fully confirmed by comparing with synthetic peptide prepared by solid phase chemistry. Both have the same molecular mass (2,108 Da) and identical bioactivity. Furthermore, we rationalize that BJ-1 may be derived from precursor protein “Coagulation factor IX/factor X binding protein (CF-IX/X-BP)” by proteolytic cleavage at the Nterminus of its B-chain within the sequence KPFS18↓E19PKN. This cleavage site contains the recognition motif of enzyme PCSK8 (Proprotein Convertase Subtilisin Kexin8) also known as Subtilisin Kexin Isozyme 1 (SKI-1) or Site 1 Protease (S1P). Despite this observation, using a synthetic peptide encompassing the proposed cleavage site and recombinant PCSK8 enzyme, we found that the enzyme responsible for generation of BJ-1 is not PCSK8. Further studies will be needed to identify the associated enzyme and fully characterize the pharmacological and biological properties of the peptide.

Conclusion: Our study revealed the presence of a novel hypotensive octa-decapeptide in the venom of the snake Bothrops jararaca. It is likely derived from the A-chain of protein CF-IX/X-BP via proteolytic cleavage at the N-terminus by a protease yet to be characterized.

Graphical Abstract

[1]
Assis, R.A.; Bittar, B.B.; Amorim, N.P.L.; Carrasco, G.H.; Silveira, E.D.R.; Benvindo-Souza, M.; Santos, L.R.S. Studies about snake peptides: A review about brazilian contribution. Braz. Arch. Biol. Technol., 2022, 65, e22210421.
[http://dx.doi.org/10.1590/1678-4324-2022210421]
[2]
Nicolau, C.A.; Carvalho, P.C.; Junqueira-de-Azevedo, I.L.M.; Teixeira-Ferreira, A.; Junqueira, M.; Perales, J.; Neves-Ferreira, A.G.C.; Valente, R.H. An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca. J. Proteomics, 2017, 151, 214-231.
[http://dx.doi.org/10.1016/j.jprot.2016.06.029] [PMID: 27373870]
[3]
Serrano, S.M.T.; Zelanis, A.; Kitano, E.S.; Tashima, A.K. Analysis of the snake venom peptidome. Methods Mol. Biol., 2018, 1719, 349-358.
[http://dx.doi.org/10.1007/978-1-4939-7537-2_23] [PMID: 29476523]
[4]
Cardoso, F.C.; Servent, D.; de Lima, M.E. Editorial: Venom peptides: A rich combinatorial library for drug development. Front. Mol. Biosci., 2022, 9, 924023.
[http://dx.doi.org/10.3389/fmolb.2022.924023] [PMID: 35647027]
[5]
Ferreira, S.H.; Bartelt, D.C.; Greene, L.J. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry, 1970, 9(13), 2583-2593.
[http://dx.doi.org/10.1021/bi00815a005] [PMID: 4317874]
[6]
Lewis, R.J.; Garcia, M.L. Therapeutic potential of venom peptides. Nat. Rev. Drug Discov., 2003, 2(10), 790-802.
[http://dx.doi.org/10.1038/nrd1197] [PMID: 14526382]
[7]
Oliveira, A.L.; Viegas, M.F.; da Silva, S.L.; Soares, A.M.; Ramos, M.J.; Fernandes, P.A. The chemistry of snake venom and its medicinal potential. Nat. Rev. Chem., 2022, 6(7), 451-469.
[http://dx.doi.org/10.1038/s41570-022-00393-7]
[8]
Murayama, N.; Hayashi, M.A.F.; Ohi, H.; Ferreira, L.A.F.; Hermann, V.V.; Saito, H.; Fujita, Y.; Higuchi, S.; Fernandes, B.L.; Yamane, T.; de Camargo, A.C.M. Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide. Proc. Natl. Acad. Sci. USA, 1997, 94(4), 1189-1193.
[http://dx.doi.org/10.1073/pnas.94.4.1189] [PMID: 9037028]
[9]
Schneider, M.C.; Min, K.; Hamrick, P.N.; Montebello, L.R.; Ranieri, T.M.; Mardini, L.; Camara, V.M.; Raggio Luiz, R.; Liese, B.; Vuckovic, M.; Moraes, M.O.; Lima, N.T. Overview of snakebite in Brazil: Possible drivers and a tool for risk mapping. PLoS Negl. Trop. Dis., 2021, 15(1), e0009044.
[http://dx.doi.org/10.1371/journal.pntd.0009044] [PMID: 33513145]
[10]
Abdalla, F.M.F.; Hiraichi, E.; Picarelli, Z.P.; Prezoto, B.C. Kallikrein-kinin system in the plasma of the snake Bothrops jararaca. Br. J. Pharmacol., 1989, 98(1), 252-258.
[http://dx.doi.org/10.1111/j.1476-5381.1989.tb16889.x] [PMID: 2804549]
[11]
Borgheresi, R.A.M.B.; Lucca, J.D.; Carmona, E.; Picarelli, Z.P. Isolation and identification of angiotensin-like peptides from the plasma of the snake Bothrops jararaca. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1996, 113(3), 467-473.
[http://dx.doi.org/10.1016/0305-0491(95)02072-1] [PMID: 8829801]
[12]
Borgheresi, R.A.; Leroy, J.M.; Yogi, A.; DosSantos, R.A.; Breno, M.C.; Tostes, R.C. Pharmacologic and molecular characterization of the vascular ETA receptor in the venomous snake Bothrops jararaca. Exp. Biol. Med., 2006, 231(6), 729-735.
[PMID: 16740989]
[13]
Breno, M.C.; Prezoto, B.C.; Borgheresi, R.A.M.B.; Lazari, M.F.M.; Yamanouye, N. Characteristics of neural and humoral systems involved in the regulation of blood pressure in snakes. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2007, 147(3), 766-778.
[http://dx.doi.org/10.1016/j.cbpa.2006.09.002] [PMID: 17046304]
[14]
Hayashi, M.A.F.; Camargo, A.C.M. The Bradykinin-potentiating peptides from venom gland and brain of Bothrops jararaca contain highly site specific inhibitors of the somatic angiotensin-converting enzyme. Toxicon, 2005, 45(8), 1163-1170.
[http://dx.doi.org/10.1016/j.toxicon.2005.02.017] [PMID: 15922781]
[15]
Waheed, H.; Moin, S.F.; Choudhary, M.I. Snake venom: From deadly toxins to life-saving therapeutics. Curr. Med. Chem., 2017, 24(17), 1874-1891.
[PMID: 28578650]
[16]
Harvey, A.L. Snake peptides. In: Handbook of Biologically Active Peptides; , 2013; pp. 451-460.
[http://dx.doi.org/10.1016/B978-0-12-385095-9.00062-2]
[17]
Xu, X.; Li, B.; Zhu, S.; Rong, R. Hypotensive peptides from snake venoms: Structure, function and mechanism. Curr. Top. Med. Chem., 2015, 15(7), 658-669.
[http://dx.doi.org/10.2174/1568026615666150217113835] [PMID: 25686732]
[18]
Cardoso, F.C.; Servent, D.; de Lima, M.E. Editorial: Venom peptides: A rich combinatorial library for drug development. Front. Mol. Biosci., Sec. Cell. Biochem., 2022, 9, 1-3.
[19]
Joglekar, A.V.; Dehari, D.; Anjum, M.M.; Dulla, N.; Chaudhuri, A.; Singh, S.; Agrawal, A.K. Therapeutic potential of venom peptides: Insights in the nanoparticle-mediated venom formulations. Future J. Pharm. Sci., 2022, 8(1), 34.
[http://dx.doi.org/10.1186/s43094-022-00415-7]
[20]
Snake venom peptides: Promising molecules with anti-tumor effects. In: Bioactive Food Peptides in Health and Disease; Hernandez-Ledesma, B.; Hsieh, C-C.; Sarray, S.; Luis, J; Ayeb, M; Marrakchi, N, Eds.; IntechOpen, 2013.
[21]
Schneider, R.; Primon-Barros, M.; Von Borowski, R.G.; Chat, S.; Nonin-Lecomte, S.; Gillet, R.; Macedo, A.J. Pseudonajide peptide derived from snake venom alters cell envelope integrity interfering on biofilm formation in Staphylococcus epidermidis. BMC Microbiol., 2020, 20(1), 237.
[http://dx.doi.org/10.1186/s12866-020-01921-5] [PMID: 32746783]
[22]
Hu, W; Liu, Z; Salato, V; North, PE; Bischoff, J; Kumar, SN NOGOB receptor-mediated RAS signaling pathway is a target for suppressing proliferating hemangioma. JCI Insight, 2021, 6(3), e142299.
[http://dx.doi.org/10.1172/jci.insight.142299]
[23]
Gouda, A.S.; Mégarbane, B. Snake venom-derived bradykinin-potentiating peptides: A promising therapy for COVID -19? Drug Dev. Res., 2021, 82(1), 38-48.
[http://dx.doi.org/10.1002/ddr.21732] [PMID: 32761647]
[24]
Lameu, C.; Neiva, M.; Hayashi, M.A.F. Venom bradykinin-related peptides (BRPs) and its multiple biological roles. In: An Integrated View of the Molecular Recognition and Toxinology-From Analytical Procedures to Biomedical Applications; Radis-Baptista, G., Ed.; , 2013; pp. 119-151.
[http://dx.doi.org/10.5772/52872]
[25]
Sciani, J.M.; Pimenta, D.C. The modular nature of bradykinin-potentiating peptides isolated from snake venoms. J. Venom. Anim. Toxins Incl. Trop. Dis., 2017, 23(1), 45.
[http://dx.doi.org/10.1186/s40409-017-0134-7] [PMID: 29090005]
[26]
Seidah, N.G.; Mowla, S.J.; Hamelin, J.; Mamarbachi, A.M.; Benjannet, S.; Touré, B.B.; Basak, A.; Munzer, J.S.; Marcinkiewicz, J.; Zhong, M.; Barale, J.C.; Lazure, C.; Murphy, R.A.; Chrétien, M.; Marcinkiewicz, M. Mammalian subtilisin/kexin isozyme SKI-1: A widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc. Natl. Acad. Sci., 1999, 96(4), 1321-1326.
[http://dx.doi.org/10.1073/pnas.96.4.1321] [PMID: 9990022]
[27]
Touré, B.B.; Munzer, J.S.; Basak, A.; Benjannet, S.; Rochemont, J.; Lazure, C.; Chrétien, M.; Seidah, N.G. Biosynthesis and enzymatic characterization of human SKI-1/S1P and the processing of its inhibitory prosegment. J. Biol. Chem., 2000, 275(4), 2349-2358.
[http://dx.doi.org/10.1074/jbc.275.4.2349] [PMID: 10644685]
[28]
Hayes, W.K.; Fox, G.A.; Nelsen, D.R. Venom collection from spiders and snakes: Voluntary and involuntary extractions (“Milking”) and venom gland extractions. Methods Mol. Biol., 2020, 2068, 53-71.
[http://dx.doi.org/10.1007/978-1-4939-9845-6_3] [PMID: 31576522]
[29]
Jiménez-Porras, J.M. Pharmacology of peptides and proteins in snake venoms. Annu. Rev. Pharmacol., 1968, 8(1), 299-318.
[http://dx.doi.org/10.1146/annurev.pa.08.040168.001503] [PMID: 4875394]
[30]
Basak, A.; Chrétien, M.; Seidah, N.G. A rapid fluorometric assay for the proteolytic activity of SKI-1/S1P based on the surface glycoprotein of the hemorrhagic fever Lassa virus. FEBS Lett., 2002, 514(2-3), 333-339.
[http://dx.doi.org/10.1016/S0014-5793(02)02394-3] [PMID: 11943176]
[31]
Basak, A.; Lotfipour, F. Modulating furin activity with designed mini-PDX peptides: Synthesis and in vitro kinetic evaluation. FEBS Lett., 2005, 579(21), 4813-4821.
[http://dx.doi.org/10.1016/j.febslet.2005.07.062] [PMID: 16102752]
[32]
Siegfried, G.; Basak, A.; Prichett-Pejic, W.; Scamuffa, N.; Ma, L.; Benjannet, S.; Veinot, J.P.; Calvo, F.; Seidah, N.; Khatib, A.M. Regulation of the stepwise proteolytic cleavage and secretion of PDGF-B by the proprotein convertases. Oncogene, 2005, 24(46), 6925-6935.
[http://dx.doi.org/10.1038/sj.onc.1208838] [PMID: 16007151]
[33]
Alghamdi, R.H.; O’Reilly, P.; Lu, C.; Gomes, J.; Lagace, T.A.; Basak, A. LDL-R promoting activity of peptides derived from human PCSK9 catalytic domain (153–421): Design, synthesis and biochemical evaluation. Eur. J. Med. Chem., 2015, 92, 890-907.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.022] [PMID: 25679794]
[34]
Nour, N.; Basak, A.; Chrétien, M.; Seidah, N.G. Structure-function analysis of the prosegment of the proprotein convertase PC5A. J. Biol. Chem., 2003, 278(5), 2886-2895.
[http://dx.doi.org/10.1074/jbc.M208009200] [PMID: 12414802]
[35]
Siegfried, G.; Basak, A.; Cromlish, J.A.; Benjannet, S.; Marcinkiewicz, J.; Chrétien, M.; Seidah, N.G.; Khatib, A.M. The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J. Clin. Invest., 2003, 111(11), 1723-1732.
[http://dx.doi.org/10.1172/JCI200317220] [PMID: 12782675]
[36]
Bergeron, E.; Vincent, M.J.; Wickham, L.; Hamelin, J.; Basak, A.; Nichol, S.T.; Chrétien, M.; Seidah, N.G. Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus. Biochem. Biophys. Res. Commun., 2005, 326(3), 554-563.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.063] [PMID: 15596135]
[37]
Mowla, S.J.; Farhadi, H.F.; Pareek, S.; Atwal, J.K.; Morris, S.J.; Seidah, N.G.; Murphy, R.A. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J. Biol. Chem., 2001, 276(16), 12660-12666.
[http://dx.doi.org/10.1074/jbc.M008104200] [PMID: 11152678]
[38]
Reim, D.F.; Speicher, D.W. N-terminal sequence analysis of proteins and peptides. Curr Protoc Protein Sci, 2001.
[39]
Elagoz, A.; Benjannet, S.; Mammarbassi, A.; Wickham, L.; Seidah, N.G. Biosynthesis and cellular trafficking of the convertase SKI-1/S1P: ectodomain shedding requires SKI-1 activity. J. Biol. Chem., 2002, 277(13), 11265-11275.
[http://dx.doi.org/10.1074/jbc.M109011200] [PMID: 11756446]
[40]
Pasquato, A.; Pullikotil, P.; Asselin, M.C.; Vacatello, M.; Paolillo, L.; Ghezzo, F.; Basso, F.; Di Bello, C.; Dettin, M.; Seidah, N.G. The proprotein convertase SKI-1/S1P. in vitro analysis of Lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors. J. Biol. Chem., 2006, 281(33), 23471-23481.
[http://dx.doi.org/10.1074/jbc.M513675200] [PMID: 16790437]
[41]
Akimoto, M.; Yamamoto, Y.; Watanabe, S.; Yamaga, H.; Yoshida, K.; Wakabayashi, K.; Tahara, Y.; Horie, N.; Fujimoto, K.; Kusakari, K.; Kamiya, K.; Kojima, K.; Kawakami, T.; Kojima, H.; Ono, A.; Kasahara, T.; Fujita, M. Oxidation of a cysteine‐derived nucleophilic reagent by dimethyl sulfoxide in the amino acid derivative reactivity assay. J. Appl. Toxicol., 2020, 40(6), 843-854.
[http://dx.doi.org/10.1002/jat.3948] [PMID: 32052484]
[42]
Tamamura, H.; Otaka, A.; Nakamura, J.; Okubo, K.; Koide, T.; Ikeda, K.; Iblka, T.; Fujii, N. Disulfide bond‐forming reaction using a dimethyl sulfoxide/aqueous HCl system and its application to regioselective two disulfide bond formation. Int. J. Pept. Protein Res., 1995, 45(4), 312-319.
[http://dx.doi.org/10.1111/j.1399-3011.1995.tb01043.x] [PMID: 7601603]
[43]
Parasuraman, S.; Raveendran, R. Measurement of invasive blood pressure in rats. J. Pharmacol. Pharmacother., 2012, 3(2), 172-177.
[PMID: 22629093]
[44]
Wallace, B.A. The role of circular dichroism spectroscopy in the era of integrative structural biology. Curr. Opin. Struct. Biol., 2019, 58, 191-196.
[http://dx.doi.org/10.1016/j.sbi.2019.04.001] [PMID: 31078334]
[45]
Miles, A.J.; Ramalli, S.G.; Wallace, B.A. DICHROWEB, a website for calculating protein secondary structure from circular dichroism spectroscopic data. Protein Sci., 2022, 31(1), 37-46.
[http://dx.doi.org/10.1002/pro.4153] [PMID: 34216059]
[46]
Whitmore, L.; Wallace, B.A. DICHROWEB, an online server f coagulation factors IX/X-binding protein or protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res., 2004, 32, W668-673.
[http://dx.doi.org/10.1093/nar/gkh371]
[47]
Devarie Baez, N.O.; Reisz, J.A.; Furdui, C.M. Mass spectrometry in studies of protein thiol chemistry and signaling: Opportunities and caveats. Free Radic. Biol. Med., 2015, 80, 191-211.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.016] [PMID: 25261734]
[48]
Basile, F.; Zhang, S.; Kandar, S.K.; Lu, L. Mass spectrometry characterization of the thermal decomposition/digestion (TDD) at cysteine in peptides and proteins in the condensed phase. J. Am. Soc. Mass Spectrom., 2011, 22(11), s13361-011-0222-9.
[http://dx.doi.org/10.1007/s13361-011-0222-9] [PMID: 21952765]
[49]
Grigoryan, H.; Li, H.; Iavarone, A.T.; Williams, E.R.; Rappaport, S.M. Cys34 adducts of reactive oxygen species in human serum albumin. Chem. Res. Toxicol., 2012, 25(8), 1633-1642.
[http://dx.doi.org/10.1021/tx300096a] [PMID: 22591159]
[50]
Rutherfurd, S.M.; Gilani, G.S. Amino acid analysis. In: Current Protocol Protein Sciences; John Wiley & Sons, Inc., 2009.
[51]
Edman, P.; Högfeldt, E.; Sillén, L.G.; Kinell, P-O. Method for determination of the amino acid sequence in peptides. Acta Chem. Scand., 1950, 4, 283-293.
[http://dx.doi.org/10.3891/acta.chem.scand.04-0283]
[52]
Smith, B.J. Protein Sequencing Protocols; Humana Press: Totowa, NJ, 1997, 64, .
[53]
Smith, B.J.; Chapman, J.R. Protein sequencing In: Molecular Biomethods Handbook; Springer Protocols Handbooks, 1998.
[http://dx.doi.org/10.1007/978-1-59259-642-3_41]
[54]
Mizuno, H.; Fujimoto, Z.; Koizumi, M.; Kano, H.; Atoda, H.; Morita, T. Crystal structure of coagulation factor IX-binding protein from habu snake venom at 2.6 å: implication of central loop swapping based on deletion in the linker region 1 1Edited by R. Huber. J. Mol. Biol., 1999, 289(1), 103-112.
[http://dx.doi.org/10.1006/jmbi.1999.2756] [PMID: 10339409]
[55]
Peterfi, O; Boda, F; Szabo, Z; Ferencz, E; Baba, L. Hypotensive snake venom components-a mini-review. Molecules, 2019, 24(1778), 1-16.
[http://dx.doi.org/10.3390/molecules24152778]
[56]
Sciani, J.M.; Vigerelli, H.; Costa, A.S.; Câmara, D.A.D.; Junior, P.L.S.; Pimenta, D.C. An unexpected cell-penetrating peptide from Bothrops jararaca venom identified through a novel size exclusion chromatography screening. J. Pept. Sci., 2017, 23(1), 68-76.
[http://dx.doi.org/10.1002/psc.2965] [PMID: 28054409]
[57]
Wang, Y.; Soukhova, G.; Proctor, M.; Walker, J.; Yu, J. Bradykinin causes hypotension by activating pulmonary sympathetic afferents in the rabbit. J. Appl. Physiol., 2003, 95(1), 233-240.
[http://dx.doi.org/10.1152/japplphysiol.00584.2002] [PMID: 12679362]
[58]
Paula, R.D.; Lima, C.V.; Britto, R.R.; Campagnole-Santos, M.J.; Khosla, M.C.; Santos, R.A.S. Potentiation of the hypotensive effect of bradykinin by angiotensin-(1–7)-related peptides. Peptides, 1999, 20(4), 493-500.
[http://dx.doi.org/10.1016/S0196-9781(99)00031-5] [PMID: 10458520]
[59]
Sekiya, F.; Atoda, H.; Morita, T. Isolation and characterization of an anticoagulant protein homologous to botrocetin from the venom of Bothrops jararaca. Biochemistry, 1993, 32(27), 6892-6897.
[http://dx.doi.org/10.1021/bi00078a012] [PMID: 8334120]
[60]
Atoda, H.; Morita, T. A novel blood coagulation factor IX/factor X-binding protein with anticoagulant activity from the venom of Trimeresurus flavoviridis (Habu snake): isolation and characterization. J. Biochem., 1989, 106(5), 808-813.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a122935] [PMID: 2613688]
[61]
Li, L; Huang, J; Lin, Y. Snake venoms in cancer therapy: Past, present and future. Toxins, 2018, 10(9), 346.
[62]
Mirzaei, S.; Fekri, H.S.; Hashemi, F.; Hushmandi, K.; Mohammadinejad, R.; Ashrafizadeh, M.; Zarrabi, A.; Garg, M. Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol. Res., 2021, 164, 105327.
[http://dx.doi.org/10.1016/j.phrs.2020.105327] [PMID: 33276098]
[63]
Appel, W. Chymotrypsin: Molecular and catalytic properties. Clin. Biochem., 1986, 19(6), 317-322.
[http://dx.doi.org/10.1016/S0009-9120(86)80002-9] [PMID: 3555886]
[64]
Azrin, N.A.M.; Ali, M.S.M.; Rahman, R.N.Z.R.A.; Oslan, S.N.; Noor, N.D.M. Versatility of subtilisin: A review on structure, characteristics, and applications. Biotechnol. Appl. Biochem., 2022, 69(6), 2599-2616.
[http://dx.doi.org/10.1002/bab.2309] [PMID: 35019178]
[65]
Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci., 2020, 21(24), 9739.
[http://dx.doi.org/10.3390/ijms21249739] [PMID: 33419373]
[66]
Suur, B.E.; Chemaly, M.; Lindquist Liljeqvist, M.; Djordjevic, D.; Stenemo, M.; Bergman, O.; Karlöf, E.; Lengquist, M.; Odeberg, J.; Hurt-Camejo, E.; Eriksson, P.; Ketelhuth, D.F.J.; Roy, J.; Hedin, U.; Nyberg, M.; Matic, L. Therapeutic potential of the Proprotein Convertase Subtilisin/Kexin family in vascular disease. Front. Pharmacol., 2022, 13(988561), 988561.
[http://dx.doi.org/10.3389/fphar.2022.988561] [PMID: 36188622]
[67]
Maruyama, M.; Sugiki, M.; Yoshida, E.; Mihara, H.; Nakajima, N. Purification and characterization of two fibrinolytic enzymes from Bothrops jararaca (jararaca) venom. Toxicon, 1992, 30(8), 853-864.
[http://dx.doi.org/10.1016/0041-0101(92)90383-G] [PMID: 1523677]
[68]
Carone, S.E.I.; Menaldo, D.L.; Sartim, M.A.; Bernardes, C.P.; Caetano, R.C.; da Silva, R.R.; Cabral, H.; Barraviera, B.; Ferreira Junior, R.S.; Sampaio, S.V. BjSP, a novel serine protease from Bothrops jararaca snake venom that degrades fibrinogen without forming fibrin clots. Toxicol. Appl. Pharmacol., 2018, 357, 50-61.
[http://dx.doi.org/10.1016/j.taap.2018.08.018] [PMID: 30145175]
[69]
dos Santos, R.V.; Grillo, G.; Fonseca, H.; Stanisic, D.; Tasic, L. Hesperetin as an inhibitor of the snake venom serine protease from Bothrops jararaca. Toxicon, 2021, 198, 64-72.
[http://dx.doi.org/10.1016/j.toxicon.2021.04.016] [PMID: 33940046]
[70]
Latinović, Z.; Leonardi, A.; Koh, C.Y.; Kini, R.M.; Trampuš Bakija, A.; Pungerčar, J.; Križaj, I. The procoagulant snake venom serine protease potentially having a dual, blood coagulation factor v and x-activating activity. Toxins, 2020, 12(6), 358.
[http://dx.doi.org/10.3390/toxins12060358] [PMID: 32485989]
[71]
Yamashita, K.M.; Alves, A.F.; Barbaro, K.C.; Santoro, M.L. Bothrops jararaca venom metalloproteinases are essential for coagulopathy and increase plasma tissue factor levels during envenomation. PLoS Negl. Trop. Dis., 2014, 8(5), e2814.
[http://dx.doi.org/10.1371/journal.pntd.0002814] [PMID: 24831016]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy