Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Review Article

The Importance of Traditional Chinese Medicine in the Intervention and Treatment of HIV while Considering its Safety and Efficacy

Author(s): Mohamad Hesam Shahrajabian* and Wenli Sun

Volume 21, Issue 6, 2023

Published on: 01 December, 2023

Page: [331 - 346] Pages: 16

DOI: 10.2174/011570162X271199231128092621

Price: $65

Abstract

Natural products have been considered a potential resource for the development of novel therapeutic agents, since time immemorial. It is an opportunity to discover cost-effective and safe drugs at the earliest, with the goal to hit specific targets in the HIV life cycle. Natural products with inhibitory activity against human immunodeficiency virus are terpenes, coumarins, flavonoids, curcumin, proteins, such as lectins, laccases, bromotyrosines, and ribosome-inactivating proteins. Terpenes inhibit virus fusion, lectins and flavonoids have an inhibitory impact on viral binding, curcumin and flavonoids inhibit viral DNA integration. The most important medicinal plants which have been used in traditional Chinese medicinal sciences with anti-HIV properties are Convallaria majalis, Digitalis lanata, Cassia fistula, Croton macrostachyus, Dodonaea angustifolia, Ganoderma lucidum, Trametes versicolor, Coriolus versicolor, Cordyceps sinensis, Gardenia jasminoides, Morus alba, Scutellaria baicalensis, Ophiopogon japonicus, Platycodon grandiflorus, Fritillaria thunbergii, Anemarrhena asphodeloides, Trichosanthes kirilowii, Citrus reticulata, Glycyrrhiza uralensis, Rheum officinale, Poria cocos, Rheum palmatum, Astragalus membranaceus, Morinda citrifolia, Potentilla kleiniana, Artemisia capillaris, Sargassum fusiforme, Piperis longi fructus, Stellera chamaejasme, Curcumae rhizoma, Dalbergia odorifera lignum, Arisaematis Rhizoma preparatum, and Phellodendron amurense. The information provided is gathered from randomized control experiments, review articles, and analytical studies and observations, which are obtained from different literature sources, such as Scopus, Google Scholar, PubMed, and Science Direct from July 2000 to August 2023. The aim of this review article is to survey and introduce important medicinal plants and herbs that have been used for the treatment of HIV, especially the medicinal plants that are common in traditional Chinese medicine, as research to date is limited, and more evidence is required to confirm TCM,s efficacy.

Next »
Graphical Abstract

[1]
Flores D, Leblanc N, Barroso J. Enroling and retaining human immunodeficiency virus (HIV) patients in their care: A metasynthesis of qualitative studies. Int J Nurs Stud 2016; 62: 126-36.
[http://dx.doi.org/10.1016/j.ijnurstu.2016.07.016] [PMID: 27494428]
[2]
Chow FC, Mundada NS, Abohashem S, et al. Psychological stress is associated with arterial inflammation in people living with treated HIV infection. Brain Behav Immun 2023; 113: 21-8.
[http://dx.doi.org/10.1016/j.bbi.2023.06.019] [PMID: 37369339]
[3]
Ou H, Chang KC, Li CY, Yang CY, Ko NY. Intensive statin regimens for reducing risk of cardiovascular diseases among human immunodeficiency virus-infected population: A nation-wide longitudinal cohort study 2000–2011. Int J Cardiol 2017; 230: 592-8.
[http://dx.doi.org/10.1016/j.ijcard.2016.12.050] [PMID: 28062146]
[4]
Cohen MR, Mitchell TF, Bacchetti P, et al. Use of a chinese herbal medicine for treatment of hiv-associated pathogen-negative diarrhea. Integr Med 2000; 2(2-3): 79-84.
[http://dx.doi.org/10.1016/S1096-2190(00)00007-X] [PMID: 10882880]
[5]
Feng L, Lu W, Ma Y, et al. A novel dual-luciferase assay for anti-HIV drug screening based on the CCR5/CXCR4 promoters. J Virol Methods 2018; 256: 17-23.
[http://dx.doi.org/10.1016/j.jviromet.2018.02.016] [PMID: 29481882]
[6]
Kunzweiler CP, Bailey RC, Mehta SD, et al. Factors associated with viral suppression among HIV-positive Kenyan gay and bisexual men who have sex with men. AIDS Care 2018; 30(sup5): S76-88.
[http://dx.doi.org/10.1080/09540121.2018.1510109] [PMID: 30897938]
[7]
Nyaku M, Beer L, Shu F. Non-persistence to antiretroviral therapy among adults receiving HIV medical care in the United States. AIDS Care 2019; 31(5): 599-608.
[http://dx.doi.org/10.1080/09540121.2018.1533232] [PMID: 30309269]
[8]
Ion A, Wagner AC, Greene S, Loutfy MR. HIV-related stigma in pregnancy and early postpartum of mothers living with HIV in Ontario, Canada. AIDS Care 2017; 29(2): 137-44.
[http://dx.doi.org/10.1080/09540121.2016.1211608] [PMID: 27449254]
[9]
Granade TC. Use of rapid HIV antibody testing for controlling the HIV pandemic. Expert Rev Anti Infect Ther 2005; 3(6): 957-69.
[http://dx.doi.org/10.1586/14787210.3.6.957] [PMID: 16307508]
[10]
Sun W, Shahrajabian MH, Cheng Q. Anise ( Pimpinella anisum L. ), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol 2019; 5(1): 1673688.
[http://dx.doi.org/10.1080/23312025.2019.1673688]
[11]
Wenli S, Mohamad HS, Qi C. The insight and survey on medicinal properties and nutritive components of Shallot. J Med Plants Res 2019; 13(18): 452-7.
[http://dx.doi.org/10.5897/JMPR2019.6836]
[12]
Surial B, Ramírez Mena A, Roumet M, et al. External validation of the PAGE-B score for HCC risk prediction in people living with HIV/HBV coinfection. J Hepatol 2023; 78(5): 947-57.
[http://dx.doi.org/10.1016/j.jhep.2022.12.029] [PMID: 36690280]
[13]
Otte F, Zhang Y, Spagnuolo J, et al. Revealing viral and cellular dynamics of HIV-1 at the single-cell level during early treatment periods. Cell Reports Methods 2023; 3(6): 100485.
[http://dx.doi.org/10.1016/j.crmeth.2023.100485] [PMID: 37426753]
[14]
Shahrajabian MH, Sun W, Soleymani A, Cheng Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother Res 2020; 2020(1): 1-11.
[http://dx.doi.org/10.1002/ptr.6888] [PMID: 33350538]
[15]
Armstrong HL, Roth EA, Rich A, et al. Associations between sexual partner number and HIV risk behaviors: Implications for HIV prevention efforts in a Treatment as Prevention (TasP) environment. AIDS Care 2018; 30(10): 1290-7.
[http://dx.doi.org/10.1080/09540121.2018.1454583] [PMID: 29558813]
[16]
Shahrajabian MH, Sun W, Cheng Q. Chemical components and pharmacological benefits of Basil ( Ocimum basilicum ): A review. Int J Food Prop 2020; 23(1): 1961-70.
[http://dx.doi.org/10.1080/10942912.2020.1828456]
[17]
Shahrajabian MH, Sun W, Cheng Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with Covid-19. Nat Prod Commun 2020; 15(8): 1934578X2095143.
[http://dx.doi.org/10.1177/1934578X20951431]
[18]
Shahrajabian MH, Sun W, Cheng Q. Product of natural evolution (SARS, MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum Vaccin Immunother 2021; 17(1): 62-83.
[http://dx.doi.org/10.1080/21645515.2020.1797369] [PMID: 32783700]
[19]
Shahrajabian MH, Sun W. Various techniques for molecular and rapid detection of infectious and epidemic diseases. Lett Org Chem 2023; 20(9): 779-801.
[http://dx.doi.org/10.2174/1570178620666230331095720]
[20]
Sun W, Shahrajabian MH. The golden spice for life: Turmeric with the pharmacological benefits of curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycurcumin. Curr Org Synth 2023; 20
[http://dx.doi.org/10.2174/1570179420666230607124949] [PMID: 37287298]
[21]
Shahrajabian MH, Sun W. A friendly strategy for an organic life by considering Syrian bean caper (Zygophyllum fabago L.), and parsnip (Pastinaca sativa L.). Curr Nutr Food Sci 2023; 19(9): 870-4.
[http://dx.doi.org/10.2174/1573401319666230207093757]
[22]
Shahrajabian MH, Sun W. The important nutritional benefits and wonderful health benefits of Cashew (Anacardium occidentale L.). Nat Prod J 2023; 13(4): e270422204127.
[http://dx.doi.org/10.2174/2210315512666220427113702]
[23]
Shahrajabian MH, Sun W. Assessment of wine quality, traceability and detection of grapes wine, detection of harmful substances in alcohol and liquor composition analysis. Lett Drug Des Discov 2023; 20
[http://dx.doi.org/10.2174/1570180820666230228115450]
[24]
Shahrajabian MH, Sun W. Kashk and doogh: The Yogurt-based national Persian products. Curr Nutr Food Sci 2023; 19(9): 922-7.
[http://dx.doi.org/10.2174/1573401319666230228115432]
[25]
Joshua TG, Williams WO, Benton S, Uhl G. Evaluation of an HIV prevention intervention for women living with HIV. AIDS Care 2020; 32(7): 835-42.
[http://dx.doi.org/10.1080/09540121.2019.1659910] [PMID: 31462062]
[26]
Shahrajabian MH, Sun W. Survey on multi-omics, and multi-omics data analysis, integration and application. Curr Pharm Anal 2023; 19(4): 267-81.
[http://dx.doi.org/10.2174/1573412919666230406100948]
[27]
Shahrajabian MH, Sun W. The importance of salicylic acid, humic acid and fulvic acid on crop production. Lett Drug Des Discov 2023; 20(20): 1-16.
[http://dx.doi.org/10.2174/1570180820666230411102209]
[28]
Shahrajabian MH, Sun W. Survey on medicinal plants and herbs in traditional Iranian medicine with anti-oxidant, anti-viral, anti-microbial, and anti-inflammation properties. Lett Drug Des Discov 2023; 20(11): 1707-43.
[http://dx.doi.org/10.2174/1570180819666220816115506]
[29]
Shahrajabian MH, Sun W. Importance of thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits. Lett Drug Des Discov 2023; 19
[http://dx.doi.org/10.2174/157018081966622090211521]
[30]
Shahrajabian MH, Petropoulos SA, Sun W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae 2023; 9(2): 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[31]
Shahrajabian MH, Marmitt DJ, Cheng Q, Sun W. Natural antioxidants of the underutilized and neglected plant species of Asia and South America. Lett Drug Des Discov 2023; 20(10): 1512-37.
[http://dx.doi.org/10.2174/1570180819666220616145558]
[32]
Sun W, Shahrajabian MH, Cheng Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev Med Chem 2021; 21(6): 724-30.
[http://dx.doi.org/10.2174/18755607MTEx4OTAn5] [PMID: 33245271]
[33]
Brandelli Costa A, de Moura Filho JB, Silva JM, et al. Key and general population HIV-related stigma and discrimination in HIV-specific health care settings: results from the Stigma Index Brazil. AIDS Care 2022; 34(1): 16-20.
[http://dx.doi.org/10.1080/09540121.2021.1876836] [PMID: 33487011]
[34]
Sun W, Shahrajabian MH, Cheng Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-Covid-19 era. Appl Sci 2021; 11(17): 7889.
[http://dx.doi.org/10.3390/app11177889]
[35]
Pires C, Silva IC. Initial review on medicinal preparations of undetermined constitution containing natural materials for the treatment of HIV or AIDS. J Herb Med 2021; 29: 100477.
[http://dx.doi.org/10.1016/j.hermed.2021.100477]
[36]
Shigemi U, Yamamura Y, Matsuda M, et al. Evaluation of the geenius HIV 1/2 confirmatory assay for HIV-2 samples isolated in Japan. J Clin Virol 2022; 152: 105189.
[http://dx.doi.org/10.1016/j.jcv.2022.105189] [PMID: 35640401]
[37]
Kabir Sulaiman S, Sale Musa M, Isma’il Tsiga-Ahmed F, et al. COVID-19 vaccine hesitancy among people living with HIV in a low-resource setting: A multi-center study of prevalence, correlates and reasons. Vaccine 2023; 41(15): 2476-84.
[http://dx.doi.org/10.1016/j.vaccine.2023.02.056] [PMID: 36932032]
[38]
Taramasso L, Bovis F, Di Biagio A, et al. Intrapartum use of zidovudine in a large cohort of pregnant women living with HIV in Italy. J Infect 2022; 85(5): 565-72.
[http://dx.doi.org/10.1016/j.jinf.2022.08.009] [PMID: 35987392]
[39]
Navarro J, Curran A, Raventos B, et al. Prevalence of non-alcoholic fatty liver disease in a multicentre cohort of people living with HIV in Spain. Eur J Int Med 2023; 110: 54-61.
[http://dx.doi.org/10.1016/j.ejim.2023.01.028] [PMID: 36764905]
[40]
Wen L, Liu YF, Jiang C, et al. Comparative proteomic profiling and biomarker identification of traditional Chinese medicine-based HIV/AIDS syndromes. Sci Rep 2018; 8(1): 4187.
[http://dx.doi.org/10.1038/s41598-018-22611-3] [PMID: 29520099]
[41]
Xiumin C, Qingting Y, Zhibin L, Jiping Y, Liran X, Huijun G. Asymptomatic stage of human immunodeficiency virus infection is the optimal timing for its management with Traditional Chinese Medicine. J Tradit Chin Med 2015; 35(2): 244-8.
[http://dx.doi.org/10.1016/S0254-6272(15)30036-4] [PMID: 25975061]
[42]
Chen J, Sun L, Dai Y, et al. Clinical pathology of primary central nervous system lymphoma in HIV-positive patients-a 41 Chinese patients retrospective study. Ann Diagn Pathol 2023; 63: 152108.
[http://dx.doi.org/10.1016/j.anndiagpath.2023.152108] [PMID: 36638601]
[43]
Yan H, Wu H, Xia Y, et al. Acquisition and transmission of HIV-1 among migrants and Chinese in Guangzhou, China from 2008 to 2012: Phylogenetic analysis of surveillance data. Infect Genet Evol 2021; 92: 104870.
[http://dx.doi.org/10.1016/j.meegid.2021.104870] [PMID: 33901684]
[44]
Zhang J, Fan Q, Ye L, et al. Tracing the origin of an imported HIV-1 sub-subtype A6 strain first identified in Zhejiang Province, China. Infect Genet Evol 2022; 106: 105388.
[http://dx.doi.org/10.1016/j.meegid.2022.105388] [PMID: 36403919]
[45]
Zhang F, Zhu S, Tang H, et al. Ambient particulate matter, a novel factor hindering life spans of HIV/AIDS patients: Evidence from a ten-year cohort study in Hubei, China. Sci Total Environ 2023; 875: 162589.
[http://dx.doi.org/10.1016/j.scitotenv.2023.162589] [PMID: 36871737]
[46]
Hirao K, Andrews S, Kuroki K, et al. Structure of HIV-2 reveals features distinct from HIV-1 involved in immune regulation. iScience 2020; 23(1): 100758.
[http://dx.doi.org/10.1016/j.isci.2019.100758] [PMID: 31927483]
[47]
Martí-Marí O, Martínez-Gualda B, Fernández-Barahona I, et al. Organotropic dendrons with high potency as HIV-1, HIV-2 and EV-A71 cell entry inhibitors. Eur J Med Chem 2022; 237: 114414.
[http://dx.doi.org/10.1016/j.ejmech.2022.114414] [PMID: 35512567]
[48]
Jensen MM, Byberg S, Jespersen S, et al. The HIV care continuum of Guinea-Bissau; Progress towards the UNAIDS 90-90-90 targets for HIV-1 and HIV-2. Acta Trop 2023; 241: 106887.
[http://dx.doi.org/10.1016/j.actatropica.2023.106887] [PMID: 36871618]
[49]
Elma M, Krusel K, Crumpler M, et al. Use of the Bio-Rad Geenius HIV-1/2 supplemental assay for the testing of oral fluids for the presence of HIV antibody. J Clin Virol 2020; 128: 104422.
[http://dx.doi.org/10.1016/j.jcv.2020.104422] [PMID: 32464307]
[50]
Nasrullah M, Ethridge SF, Delaney KP, et al. Comparison of alternative interpretive criteria for the HIV-1 Western blot and results of the Multispot HIV-1/HIV-2 Rapid Test for classifying HIV-1 and HIV-2 infections. J Clin Virol 2011; 52(S1): S23-7.
[http://dx.doi.org/10.1016/j.jcv.2011.09.020] [PMID: 21993309]
[51]
Lindman J, Hønge BL, Kjerulff B, et al. Performance of Bio-Rad HIV-1/2 confirmatory assay in HIV-1, HIV-2 and HIV-1/2 dually reactive patients - comparison with INNO-LIA and immunocomb discriminatory assays. J Virol Methods 2019; 268: 42-7.
[http://dx.doi.org/10.1016/j.jviromet.2019.03.005] [PMID: 30871983]
[52]
Zhibin L, Xia L, Jiping Y, Liran X, Huijun G. Differences in acquired immune deficiency syndrome treatment and evaluation strategies between Chinese and Western Medicine. J Tradit Chin Med 2015; 35(6): 718-22.
[http://dx.doi.org/10.1016/S0254-6272(15)30165-5] [PMID: 26742320]
[53]
Prinsloo G, Marokane CK, Street RA. Anti-HIV activity of southern African plants: Current developments, phytochemistry and future research. J Ethnopharmacol 2018; 210: 133-55.
[http://dx.doi.org/10.1016/j.jep.2017.08.005] [PMID: 28807850]
[54]
Marmitt DJ, Shahrajabian MH. Plant species used in Brazil and Asia regions with toxic properties. Phytother Res 2021; 35(9): 4703-26.
[http://dx.doi.org/10.1002/ptr.7100] [PMID: 33793002]
[55]
Marmitt DJ, Shahrajabian MH, Goettert MI, Rempel C. Clinical trials with plants in diabetes mellitus therapy: A systematic review. Expert Rev Clin Pharmacol 2021; 14(6): 735-47.
[http://dx.doi.org/10.1080/17512433.2021.1917380] [PMID: 33884948]
[56]
Shahrajabian MH. Medicinal herbs with anti-inflammatory activities for natural and organic healing. Curr Org Chem 2021; 25(23): 2885-901.
[http://dx.doi.org/10.2174/1385272825666211110115656]
[57]
Shahrajabian MH, Sun W, Cheng Q. Different method for molecular and rapid detection of human novel coronavirus. Curr Pharm Des 2021; 27(25): 2893-903.
[http://dx.doi.org/10.2174/1381612827666210604114411] [PMID: 34086547]
[58]
Shahrajabian MH, Chaski C, Polyzos N, Tzortzakis N, Petropoulos SA. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules 2021; 11(6): 819.
[http://dx.doi.org/10.3390/biom11060819] [PMID: 34072781]
[59]
Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA. Biostimulants application: A low input cropping management tool for sustainble farming of vegetables. Biomolecules 2021; 11(5): 698.
[http://dx.doi.org/10.3390/biom11050698] [PMID: 34067181]
[60]
Shahrajabian MH, Sun W. Asparagus (Asparagus officinalis L.) and pennyroyal (Mentha pulegium L.), impressive advantages with wondrous health-beneficial phytochemicals. Not Sci Biol 2022; 14(2): 11212.
[http://dx.doi.org/10.55779/nsb14211212]
[61]
Shahrajabian MH, Sun W. Medicinal plants, economical and natural agents with antioxidant activity. Curr Nutr Food Sci 2020; 18
[http://dx.doi.org/10.2174/1573401318666221003110058]
[62]
Shahrajabian MH, Sun W. Using sumac (Rhus coriaria L.), as a miraculous spice with outstanding pharmacological activities. Not Sci Biol 2022; 14(1): 11118.
[http://dx.doi.org/10.15835/nsb14111118]
[63]
Shahrajabian MH, Sun W, Cheng Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev Org Chem 2022; 19(3): 293-318.
[http://dx.doi.org/10.2174/1570178618666210707161025]
[64]
Shahrajabian MH, Cheng Q, Sun W. The most important medicinal herbs and plants in traditional Chinese and Iranian medicinal sciences with antioxidant activities. Lett Drug Des Discov 2022; 19(9)
[http://dx.doi.org/10.2174/1570180819666220414102700]
[65]
Shahrajabian MH, Cheng Q, Sun W. Wonderful natural drugs with surprising nutritional values, Rheum species, gifts of the nature. Lett Org Chem 2022; 19(10): 818-26.
[http://dx.doi.org/10.2174/1570178619666220112115918]
[66]
Das D, Bihari Jena A, Banerjee A, Kumar Radhakrishnan A, Duttaroy AK, Pathak S. Can plant-derived anti-HIV compounds be used in COVID-19 cases? Med Hypotheses 2022; 166: 110926.
[http://dx.doi.org/10.1016/j.mehy.2022.110926] [PMID: 35935095]
[67]
Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H. Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda. Eur J Integr Med 2020; 35: 101011.
[http://dx.doi.org/10.1016/j.eujim.2019.101011]
[68]
Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996; 271(5255): 1582-6.
[http://dx.doi.org/10.1126/science.271.5255.1582] [PMID: 8599114]
[69]
Cos P, Hermans N, De Bruyne T, et al. Antiviral activity of Rwandan medicinal plants against human immunodeficiency virus type-1 (HIV-1). Phytomedicine 2002; 9(1): 62-8.
[http://dx.doi.org/10.1078/0944-7113-00083] [PMID: 11924766]
[70]
Bessong PO, Obi CL, Andréola ML, et al. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J Ethnopharmacol 2005; 99(1): 83-91.
[http://dx.doi.org/10.1016/j.jep.2005.01.056] [PMID: 15848024]
[71]
Locher CP, Witvrouw M, De Béthune MP, et al. Antiviral activity of Hawaiian medicinal plants against human immunodeficiency Virus Type-1 (HIV-1). Phytomedicine 1996; 2(3): 259-64.
[http://dx.doi.org/10.1016/S0944-7113(96)80052-3] [PMID: 23194626]
[72]
Firempong CK, Addo-Fordjour P, Komlaga G, et al. Ethnobotanical study of medicinal plants used to treat HIV, cancer and diabetes in some communities of Ashanti Region, Ghana. J Herb Med 2023; 39: 100648.
[http://dx.doi.org/10.1016/j.hermed.2023.100648]
[73]
He X, Fang J, Guo Q, et al. Advances in antiviral polysaccharides derived from edible and medicinal plants and mushrooms. Carbohydr Polym 2020; 229: 115548.
[http://dx.doi.org/10.1016/j.carbpol.2019.115548] [PMID: 31826474]
[74]
Notka F, Meier GR, Wagner R. Inhibition of wild-type human immunodeficiency virus and reverse transcriptase inhibitor-resistant variants by Phyllanthus amarus. Antiviral Res 2003; 58(2): 175-86.
[http://dx.doi.org/10.1016/S0166-3542(02)00213-9] [PMID: 12742578]
[75]
Asiimwe S, Kamatenesi-Mugisha M, Namutebi A, Borg-Karlsson AK, Musiimenta P. Ethnobotanical study of nutri-medicinal plants used for the management of HIV/AIDS opportunistic ailments among the local communities of western Uganda. J Ethnopharmacol 2013; 150(2): 639-48.
[http://dx.doi.org/10.1016/j.jep.2013.09.017] [PMID: 24076461]
[76]
Lamorde M, Tabuti JRS, Obua C, et al. Medicinal plants used by traditional medicine practitioners for the treatment of HIV/AIDS and related conditions in Uganda. J Ethnopharmacol 2010; 130(1): 43-53.
[http://dx.doi.org/10.1016/j.jep.2010.04.004] [PMID: 20451595]
[77]
Mugisha MK, Asiimwe S, Namutebi A, Borg-Karlson AK, Kakudidi EK. Ethnobotanical study of indigenous knowledge on medicinal and nutritious plants used to manage opportunistic infections associated with HIV/AIDS in western Uganda. J Ethnopharmacol 2014; 155(1): 194-202.
[http://dx.doi.org/10.1016/j.jep.2014.05.012] [PMID: 24862490]
[78]
Gail H, Tarryn B, Oluwaseyi A, et al. An ethnobotanical survey of medicinal plants used by traditional health practitioners to manage HIV and its related opportunistic infections in Mpoza, Eastern Cape Province, South Africa. J Ethnopharmacol 2015; 171: 109-15.
[http://dx.doi.org/10.1016/j.jep.2015.05.029] [PMID: 26023032]
[79]
Nagata JM, Jew AR, Kimeu JM, Salmen CR, Bukusi EA, Cohen CR. Medical pluralism on Mfangano Island: Use of medicinal plants among persons living with HIV/AIDS in Suba District, Kenya. J Ethnopharmacol 2011; 135(2): 501-9.
[http://dx.doi.org/10.1016/j.jep.2011.03.051] [PMID: 21458556]
[80]
Richard K, Andrae-Marobela K, Tietjen I. An ethnopharmacological survey of medicinal plants traditionally used by the BaKalanga people of the Tutume subdistrict in Central Botswana to manage HIV/AIDS, HIV-associated conditions, and other health conditions. J Ethnopharmacol 2023; 316: 116759.
[http://dx.doi.org/10.1016/j.jep.2023.116759] [PMID: 37301306]
[81]
Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H. Indigenous traditional knowledge of medicinal plants used by herbalists in treating opportunistic infections among people living with HIV/AIDS in Uganda. J Ethnopharmacol 2020; 246: 112205.
[http://dx.doi.org/10.1016/j.jep.2019.112205] [PMID: 31476442]
[82]
Chawuke P, van den Berg N, Fouche G, et al. Lobostemon trigonus (Thunb.) H. Buek, a medicinal plant from South Africa as a potential natural microbicide against HIV-1. J Ethnopharmacol 2021; 277: 114222.
[http://dx.doi.org/10.1016/j.jep.2021.114222] [PMID: 34033901]
[83]
Bedoya LM, Sanchez-Palomino S, Abad MJ, Bermejo P, Alcami J. Anti-HIV activity of medicinal plant extracts. J Ethnopharmacol 2001; 77(1): 113-6.
[http://dx.doi.org/10.1016/S0378-8741(01)00265-3] [PMID: 11483387]
[84]
Tewtrakul S, Itharat A, Rattanasuwan P. Anti-HIV-1 protease- and HIV-1 integrase activities of Thai medicinal plants known as Hua-Khao-Yen. J Ethnopharmacol 2006; 105(1-2): 312-5.
[http://dx.doi.org/10.1016/j.jep.2005.11.021] [PMID: 16406414]
[85]
Woradulayapinij W, Soonthornchareonnon N, Wiwat C. In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. J Ethnopharmacol 2005; 101(1-3): 84-9.
[http://dx.doi.org/10.1016/j.jep.2005.03.030] [PMID: 15951145]
[86]
Klos M, van de Venter M, Milne PJ, Traore HN, Meyer D, Oosthuizen V. In vitro anti-HIV activity of five selected South African medicinal plant extracts. J Ethnopharmacol 2009; 124(2): 182-8.
[http://dx.doi.org/10.1016/j.jep.2009.04.043] [PMID: 19409474]
[87]
Wang RR, Gu Q, Yang LM, Chen JJ, Li SY, Zheng YT. Anti-HIV-1 activities of extracts from the medicinal plant Rhus chinensis. J Ethnopharmacol 2006; 105(1-2): 269-73.
[http://dx.doi.org/10.1016/j.jep.2005.11.008] [PMID: 16368204]
[88]
Wang RR, Gu Q, Wang YH, et al. Anti-HIV-1 activities of compounds isolated from the medicinal plant Rhus chinensis. J Ethnopharmacol 2008; 117(2): 249-56.
[http://dx.doi.org/10.1016/j.jep.2008.01.037] [PMID: 18343612]
[89]
Matsuse IT, Lim YA, Hattori M, Correa M, Gupta MP. A search for anti-viral properties in Panamanian medicinal plants. J Ethnopharmacol 1998; 64(1): 15-22.
[http://dx.doi.org/10.1016/S0378-8741(98)00099-3] [PMID: 10075118]
[90]
Liu Q, Li W, Huang L, et al. Identification, structural modification, and dichotomous effects on human immunodeficiency virus type 1 (HIV-1) replication of ingenane esters from Euphorbia kansui. Eur J Med Chem 2018; 156: 618-27.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.020] [PMID: 30031972]
[91]
Abd-Elazem IS, Chen HS, Bates RB, Huang RCC. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antiviral Res 2002; 55(1): 91-106.
[http://dx.doi.org/10.1016/S0166-3542(02)00011-6] [PMID: 12076754]
[92]
Maduray K, Moodley R, Ramdhani S, Parboosing R. The anti-HIV activity of biogenic silver nanoparticles synthesized from Centella asiatica extracts. J Herb Med 2022; 35: 100592.
[http://dx.doi.org/10.1016/j.hermed.2022.100592]
[93]
Fouokeng Y, Feumo Feusso HM, Mbosso Teinkela JE, et al. In vitro antimalarial, antitrypanosomal and HIV-1 integrase inhibitory activities of two Cameroonian medicinal plants: Antrocaryon klaineanum (Anacardiaceae) and Diospyros conocarpa (Ebenaceae). S Afr J Bot 2019; 122: 510-7.
[http://dx.doi.org/10.1016/j.sajb.2018.10.008]
[94]
Maregesi S, Van Miert S, Pannecouque C, et al. Screening of Tanzanian medicinal plants against Plasmodium falciparum and human immunodeficiency virus. Planta Med 2010; 76(2): 195-201.
[http://dx.doi.org/10.1055/s-0029-1186024]
[95]
Maregesi SM, Hermans N, Dhooghe L, et al. Phytochemical and biological investigations of Elaeodendron schlechteranum. J Ethnopharmacol 2010; 129(3): 319-26.
[http://dx.doi.org/10.1016/j.jep.2010.03.034] [PMID: 20371284]
[96]
Kim HJ, Woo ER, Shin CG, Park H. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J Nat Prod 1998; 61(1): 145-8.
[http://dx.doi.org/10.1021/np970171q] [PMID: 9461665]
[97]
Rahul J, Jain MK, Singh SP, et al. Adansonia digitata L. (baobab): A review of traditional information and taxonomic description. Asian Pac J Trop Biomed 2015; 5(1): 79-84.
[http://dx.doi.org/10.1016/S2221-1691(15)30174-X]
[98]
Sharma A, Rangari V. HIV-1 reverse transcriptase AND protease assay OF methanolic extracts OG. Int J Pharma Sci 2016; 8: 124-7. [REMOVED HYPERLINK FIELD].
[http://dx.doi.org/10.22159/ijpps.2016v8i9.12485]
[99]
Wang HX, Ng TB. Ascalin, a new anti-fungal peptide with human immunodeficiency virus type 1 reverse transcriptase-inhibiting activity from shallot bulbs. Peptides 2002; 23(6): 1025-9.
[http://dx.doi.org/10.1016/S0196-9781(02)00032-3] [PMID: 12126728]
[100]
Silprasit K, Seetaha S, Pongsanarakul P, Hannongbua S, Choowongkomon K. Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J Med Plants Res 2011; 5: 4899-906.
[101]
de Castro A, van Wyk B-E. Diagnostic characters and geographic distribution of Alepidea species used in traditional medicine. S Afr J Bot 1994; 60(6): 345-50.
[http://dx.doi.org/10.1016/S0254-6299(16)30590-7]
[102]
Louvel S, Moodley N, Seibert I, et al. Identification of compounds from the plant species Alepidea amatymbica active against HIV. S Afr J Bot 2013; 86: 9-14.
[http://dx.doi.org/10.1016/j.sajb.2013.01.009]
[103]
Mulaudzi RB, Ndhlala AR, Kulkarni MG, Finnie JF, Van Staden J. Antimicrobial properties and phenolic contents of medicinal plants used by the Venda people for conditions related to venereal diseases. J Ethnopharmacol 2011; 135(2): 330-7.
[http://dx.doi.org/10.1016/j.jep.2011.03.022] [PMID: 21402139]
[104]
Brinkhaus B, Lindner M, Schuppan D, Hahn EG. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine 2000; 7(5): 427-48.
[http://dx.doi.org/10.1016/S0944-7113(00)80065-3] [PMID: 11081995]
[105]
Yasurin P, Sriariyanun M, Phusantisampan T. Review: the bioavailability activity of Centella asiatica. KMUTNB Int J Appl Sci Technol 2015; 9: 1-9.
[http://dx.doi.org/10.14416/j.ijast.2015.11.001]
[106]
Chukwujekwu JC, Ndhlala AR, de Kock CA, Smith PJ, Van Staden J. Antiplasmodial, HIV-1 reverse transcriptase inhibitory and cytotoxicity properties of Centratherum punctatum Cass. and its fractions. S Afr J Bot 2014; 90: 17-9.
[http://dx.doi.org/10.1016/j.sajb.2013.10.001]
[107]
Decosterd LA, Parsons IC, Gustafson KR, et al. HIV inhibitory natural products. 11. Structure, absolute stereochemistry, and synthesis of conocurvone, a potent, novel HIV-inhibitory naphthoquinone trimer from a Conospermum sp. J Am Chem Soc 1993; 115(15): 6673-9.
[http://dx.doi.org/10.1021/ja00068a026]
[108]
Jordaan M, Van Wyk AE, Maurin O. A conspectus of <i>Combretum</i> (Combretaceae) in southern Africa, with taxonomic and nomenclatural notes on species and sections. Bothalia 2011; 41(1): 135-60.
[http://dx.doi.org/10.4102/abc.v41i1.36]
[109]
Singh IP, Bharate SB, Bhutani KK. Anti-HIV natural products. Curr Sci 2005; 89: 269-90.
[110]
Mathew D, Hsu WL. Antiviral potential of curcumin. J Funct Foods 2018; 40: 692-9.
[http://dx.doi.org/10.1016/j.jff.2017.12.017]
[111]
Seal A, Aykkal R, Ghosh MG, Ghosh M. Docking study of HIV-1 reverse transcriptase with phytochemicals. Bioinformation 2011; 5(10): 430-9.
[http://dx.doi.org/10.6026/97320630005430] [PMID: 21423889]
[112]
Zhang X, Huang SZ, Gu WG, et al. Wikstroelide M potently inhibits HIV replication by targeting reverse transcriptase and integrase nuclear translocation. Chin J Nat Med 2014; 12(3): 186-93.
[http://dx.doi.org/10.1016/S1875-5364(14)60031-5] [PMID: 24702804]
[113]
Moore PS, Pizza C. Observations on the inhibition of HIV-1 reverse transcriptase by catechins. Biochem J 1992; 288(3): 717-9.
[http://dx.doi.org/10.1042/bj2880717] [PMID: 1281981]
[114]
Sharma M, Hotpet V, B R S, A S K, Swamy BM, Inamdar SR. Purification, characterization and biological significance of mannose binding lectin from Dioscorea bulbifera bulbils. Int J Biol Macromol 2017; 102: 1146-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.085] [PMID: 28472687]
[115]
Sharma N, Murali A, Singh SK, Giri R. Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein. Int J Biol Macromol 2017; 104(Pt A): 1046-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.105] [PMID: 28666829]
[116]
Li YR, Liu QH, Wang HX, Ng TB. A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim Biophys Acta, Gen Subj 2008; 1780(1): 51-7.
[http://dx.doi.org/10.1016/j.bbagen.2007.09.004] [PMID: 17980165]
[117]
Gyuris A, Szlávik L, Minárovits J, Vasas A, Molnár J, Hohmann J. Antiviral activities of extracts of Euphorbia hirta L. against HIV-1, HIV-2 and SIVmac251. In Vivo 2009; 23(3): 429-32.
[PMID: 19454510]
[118]
Pisano MB, Cosentino S, Viale S, et al. Biological activities of aerial parts extracts of Euphorbia characias. BioMed Res Int 2016; 2016: 1-11.
[http://dx.doi.org/10.1155/2016/1538703] [PMID: 27314007]
[119]
Bokesch HR, Wamiru A, Le Grice SFJ, Beutler JA, McKee TC, McMahon JB. HIV-1 ribonuclease H inhibitory phenolic glycosides from Eugenia hyemalis. J Nat Prod 2008; 71(9): 1634-6.
[http://dx.doi.org/10.1021/np8002518] [PMID: 18763827]
[120]
Said SA. Antimalarial effect and other properties of Hoslundia opposita- a review. Global J Pharm Sci 2017; 4: 1-5.
[http://dx.doi.org/10.1016/S0031-9422(00)97526-5]
[121]
Hoang VD, Tan GT, Zhang HJ, et al. Natural anti-HIV agents—part I: (+)-demethoxyepiexcelsin and verticillatol from Litsea verticillata. Phytochemistry 2002; 59(3): 325-9.
[http://dx.doi.org/10.1016/S0031-9422(01)00454-X] [PMID: 11830141]
[122]
Modi M, Goel T, Das T, et al. Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity. Indian J Med Res 2013; 137(3): 540-8.
[PMID: 23640562]
[123]
Singh N, Shaik S, Dewir Y, et al. Detection of L-canavanine in the Cancer bush (Lessertia frutescens L.), a reputed anti-HIV/AIDS medicinal plant. S Afr J Bot 2009; 75(2): 440.
[http://dx.doi.org/10.1016/j.sajb.2009.02.165]
[124]
Lee TTY, Kashiwada Y, Huang L, Snider J, Cosentino M, Lee KH. Suksdorfin: An anti-HIV principle from Lomatium suksdorfii, its structure-activity correlation with related coumarins, and synergistic effects with anti-AIDS nucleosides. Bioorg Med Chem 1994; 2(10): 1051-6.
[http://dx.doi.org/10.1016/S0968-0896(00)82054-4] [PMID: 7773621]
[125]
Vlietinck A, De Bruyne T, Apers S, Pieters L. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med 1998; 64(2): 97-109.
[http://dx.doi.org/10.1055/s-2006-957384] [PMID: 9525100]
[126]
Ndhlala AR, Cele K, Mulaudzi R, et al. The potential of Moringa oleifera Lam. to manage HIV-1 infections and its positive pharmaco-synergy with antiretroviral therapies. Planta Med 2016; 81(S 01): S1-S381.
[http://dx.doi.org/10.1055/s-0036-1596331]
[127]
Nworu CS, C S, Okoye , et al. Extracts of Moringa oleifera Lam. showing inhibitory activity against early steps in the infectivity of HIV-1 lentiviral particles in a viral vector-based screening. Afr J Biotechnol 2013; 12(30): 4866-73.
[http://dx.doi.org/10.5897/AJB2013.12343]
[128]
Gechev TS, Hille J, Woerdenbag HJ, et al. Natural products from resurrection plants: Potential for medical applications. Biotechnol Adv 2014; 32(6): 1091-101.
[http://dx.doi.org/10.1016/j.biotechadv.2014.03.005] [PMID: 24681091]
[129]
Gescher K, Kühn J, Lorentzen E, et al. Proanthocyanidin-enriched extract from Myrothamnus flabellifolia Welw. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration. J Ethnopharmacol 2011; 134(2): 468-74.
[http://dx.doi.org/10.1016/j.jep.2010.12.038] [PMID: 21211557]
[130]
Moore JP, Lindsey GG, Farrant JM, Brandt WF. An overview of the biology of the desiccation-tolerant resurrection plant Myrothamnus flabellifolia. Ann Bot 2007; 99(2): 211-7.
[http://dx.doi.org/10.1093/aob/mcl269] [PMID: 17218343]
[131]
Fang EF, Ng TB. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties. Appl Biochem Biotechnol 2015; 175(8): 3828-39.
[http://dx.doi.org/10.1007/s12010-015-1550-1] [PMID: 25820360]
[132]
Sonar VP, Corona A, Distinto S, et al. Natural product-inspired esters and amides of ferulic and caffeic acid as dual inhibitors of HIV-1 reverse transcriptase. Eur J Med Chem 2017; 130: 248-60.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.054] [PMID: 28254698]
[133]
Helfer M, Koppensteiner H, Schneider M, et al. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor. PLoS One 2014; 9(1): e87487.
[http://dx.doi.org/10.1371/journal.pone.0087487] [PMID: 24489923]
[134]
Moyo M, Van Staden J. Medicinal properties and conservation of Pelargonium sidoides DC. J Ethnopharmacol 2014; 152(2): 243-55.
[http://dx.doi.org/10.1016/j.jep.2014.01.009] [PMID: 24463034]
[135]
Tamura Y, Lai PK, Bradley WG, Konno K, Tanaka A, Nonoyama M. A soluble factor induced by an extract from Pinus parviflora Sieb et Zucc can inhibit the replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci 1991; 88(6): 2249-53.
[http://dx.doi.org/10.1073/pnas.88.6.2249] [PMID: 2006164]
[136]
Alasbahi R, Melzig M. Plectranthus barbatus: A review of phytochemistry, ethnobotanical uses and pharmacology - Part 1. Planta Med 2010; 76(7): 653-61.
[http://dx.doi.org/10.1055/s-0029-1240898] [PMID: 20178070]
[137]
Kim SB, Chang BY, Jo YH, et al. Macrophage activating activity of pyrrole alkaloids from Morus alba fruits. J Ethnopharmacol 2013; 145(1): 393-6.
[http://dx.doi.org/10.1016/j.jep.2012.11.007] [PMID: 23164765]
[138]
Kapewangolo P, Hussein AA, Meyer D. Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus. J Ethnopharmacol 2013; 149(1): 184-90.
[http://dx.doi.org/10.1016/j.jep.2013.06.019] [PMID: 23811046]
[139]
Collins RA, Ng TB, Fong WP, Wan CC, Yeung HW. A comparison of human immunodeficiency virus type 1 inhibition by partially purified aqueous extracts of chinese medicinal herbs. Life Sci 1997; 60(23): PL345-51.
[http://dx.doi.org/10.1016/S0024-3205(97)00227-0] [PMID: 9180371]
[140]
Kim HI, Quan FS, Kim JE, et al. Inhibition of estrogen signaling through depletion of estrogen receptor alpha by ursolic acid and betulinic acid from Prunella vulgaris var. lilacina. Biochem Biophys Res Commun 2014; 451(2): 282-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.115] [PMID: 25088993]
[141]
Bai Y, Xia B, Xie W, et al. Phytochemistry and pharmacological activities of the genus Prunella. Food Chem 2016; 204: 483-96.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.047] [PMID: 26988527]
[142]
Kadu CAC, Parich A, Schueler S, et al. Bioactive constituents in Prunus africana: Geographical variation throughout Africa and associations with environmental and genetic parameters. Phytochemistry 2012; 83: 70-8.
[http://dx.doi.org/10.1016/j.phytochem.2012.06.001] [PMID: 22795601]
[143]
Rukunga GM, Kofi-Tsekpo MW, Kurokawa M, et al. Evaluation of the HIV-1 reverse transcriptase inhibitory properties of extracts from some medicinal plants in Kenya. Afr J Health Sci 2004; 9(1): 81-90.
[http://dx.doi.org/10.4314/ajhs.v9i1.30758] [PMID: 17298148]
[144]
Kuete V, Sandjo LP. Isobavachalcone: An overview. Chin J Integr Med 2012; 18(7): 543-7.
[http://dx.doi.org/10.1007/s11655-012-1142-7] [PMID: 22772918]
[145]
Watanabe M, Kobayashi Y, Ogihara J, Kato J, Oishi K. HIV-1 reverse transcriptase-inhibitory compound in Salvia officinalis. Food Sci Technol Res 2000; 6(3): 216-20. [REMOVED HYPERLINK FIELD].
[http://dx.doi.org/10.3136/fstr.6.216]
[146]
Bekut M, Brkić S, Kladar N, Dragović G, Gavarić N, Božin B. Potential of selected Lamiaceae plants in anti(retro)viral therapy. Pharmacol Res 2018; 133: 301-14.
[http://dx.doi.org/10.1016/j.phrs.2017.12.016] [PMID: 29258916]
[147]
Yamasaki K, Nakano M, Kawahata T, et al. Anti-HIV-1 activity of herbs in Labiatae. Biol Pharm Bull 1998; 21(8): 829-33.
[http://dx.doi.org/10.1248/bpb.21.829] [PMID: 9743251]
[148]
Herrera-Ruiz M, García-Beltrán Y, Mora S, et al. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. J Ethnopharmacol 2006; 107(1): 53-8.
[http://dx.doi.org/10.1016/j.jep.2006.02.003] [PMID: 16530995]
[149]
Asres K, Bucar F, Kartnig T, Witvrouw M, Pannecouque C, De Clercq E. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother Res 2001; 15(1): 62-9.
[http://dx.doi.org/10.1002/1099-1573(200102)15:1<62::AID-PTR956>3.0.CO;2-X] [PMID: 11180526]
[150]
Muazu J, Kaita MH. A review of traditional plants used in the treatment of epilepsy amongst the Hausa/Fulani tribes of northern Nigeria. Afr J Tradit Complement Altern Med 2008; 5(4): 387-90.
[http://dx.doi.org/10.4314/ajtcam.v5i4.31294] [PMID: 20161961]
[151]
Viol DI, Chagonda LS, Moyo SR. Toxicity and antiviral activities of some medicinal plants used by traditional medical paractitioners in Zimbabwe. Am J Plant Sci 2016; 1538-44.
[http://dx.doi.org/10.4236/ajps.2016.711145]
[152]
Cassels BK, Asencio M. Anti-HIV activity of natural triterpenoids and hemisynthetic derivatives 2004–2009. Phytochem Rev 2011; 10(4): 545-64.
[http://dx.doi.org/10.1007/s11101-010-9172-2]
[153]
Sun H, Qiu S, Lin L, et al. Nigranoic acid, a triterpenoid from Schisandra sphaerandra that inhibits HIV-1 reverse transcriptase. J Nat Prod 1996; 59(5): 525-7.
[http://dx.doi.org/10.1021/np960149h] [PMID: 8778243]
[154]
Han YS, Xiao WL, Xu H, et al. Identification of a dibenzocyclooctadiene lignan as a HIV-1 non-nucleoside reverse transcriptase inhibitor. Antivir Chem Chemother 2015; 24(1): 28-38.
[http://dx.doi.org/10.1177/2040206614566580] [PMID: 26149264]
[155]
Xu L, Grandi N, Del Vecchio C, et al. From the traditional Chinese medicine plant Schisandra chinensis new scaffolds effective on HIV-1 reverse transcriptase resistant to non-nucleoside inhibitors. J Microbiol 2015; 53(4): 288-93.
[http://dx.doi.org/10.1007/s12275-015-4652-0] [PMID: 25740376]
[156]
Kumar S, Pandey AK. Medicinal attributes of Solanum xanthocarpum fruit consumed by several tribal communities as food: An in vitro antioxidant, anticancer and anti HIV perspective. BMC Complement Altern Med 2014; 14(1): 112.
[http://dx.doi.org/10.1186/1472-6882-14-112] [PMID: 24678980]
[157]
Harnett SM, Oosthuizen V, van de Venter M. Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonus. J Ethnopharmacol 2005; 96(1-2): 113-9.
[http://dx.doi.org/10.1016/j.jep.2004.08.038] [PMID: 15588658]
[158]
Narayan LC, Rai VR, Tewtrakul S. Emerging need to use phytopharmaceuticals in the treatment of HIV. J Pharm Res 2013; 6(1): 218-23.
[http://dx.doi.org/10.1016/j.jopr.2012.11.002]
[159]
Yadav IK, Jaiswal D, Singh HP, Mishra A, Jain DA. Anti-HIV drugs from natural sources. Pharm Res 2009; 1: 93-109.
[160]
Eldeen IMS, Seow E-M, Abdullah R, Sulaiman SF. In vitro antibacterial, antioxidant, total phenolic contents and anti-HIV-1 reverse transcriptase activities of extracts of seven Phyllanthus sp. S Afr J Bot 2011; 77(1): 75-9.
[http://dx.doi.org/10.1016/j.sajb.2010.05.009]
[161]
Tshikalange TE, Meyer JJM, Hattori T, Suzuki Y. Anti-HIV screening of ethnobotanical selected SA plants. S Afr J Bot 2008; 74(2): 391.
[http://dx.doi.org/10.1016/j.sajb.2008.01.161]
[162]
Kuete V, Metuno R, Keilah PL, Tshikalange ET, Ngadjui BT. Evaluation of the genus Treculia for antimycobacterial, anti-reverse transcriptase, radical scavenging and antitumor activities. S Afr J Bot 2010; 76(3): 530-5.
[http://dx.doi.org/10.1016/j.sajb.2010.04.005]
[163]
Rashid MA, Gustafson KR, Kashman Y, Cardellina JH II, McMahon JB, Boyd MR. Anti-HIV alkaloids from Toddalia asiatica. Nat Prod Lett 1995; 6(2): 153-6. [REMOVED HYPERLINK FIELD].
[http://dx.doi.org/10.1080/10575639508044104]
[164]
Yadav M, Sehrawat A, Kumar D, Bhidhasra A. Therapeutic plants and phytoconstituents as natural anti-HIV agents: A review. Inventi Rapid: Planta Activa. 2017.
[165]
Jack DB. Traditional chinese medicine yields a kinase inhibitor for use in cancer and HIV. Mol Med Today 1996; 2(4): 137.
[http://dx.doi.org/10.1016/1357-4310(96)88777-6] [PMID: 8796872]
[166]
Cui H, Shahrajabian MH, Kuang Y, Zhang HY, Sun W. Heterologous expression and function of cholesterol oxidase: A review. Protein Pept Lett 2023; 30(7): 531-40.
[http://dx.doi.org/10.2174/0929866530666230525162545] [PMID: 37231716]
[167]
Sun W, Shahrajabian MH, Lin M. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation 2022; 8(12): 688.
[http://dx.doi.org/10.3390/fermentation8120688]
[168]
Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules 2023; 28(4): 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]
[169]
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants 2023; 12(13): 2469.
[http://dx.doi.org/10.3390/plants12132469] [PMID: 37447031]
[170]
Wang W, Yao N, Ju B, et al. A simian-human immunodeficiency virus carrying the rt gene from Chinese CRF01_AE strain of HIV is sensitive to nucleoside reverse transcriptase inhibitors and has a highly genetic stability in vivo. Microbes Infect 2014; 16(6): 461-71.
[http://dx.doi.org/10.1016/j.micinf.2014.03.008] [PMID: 24709063]
[171]
Tran LM, Cong G, Eslami MH, Mailliard RB, Sachdev-Ost U. Symptomatic human immunodeficiency virus infection is associated with advanced presentation and perioperative mortality in patients undergoing surgery for peripheral arterial disease. J Vasc Surg 2022; 75(4): 1403-1412.e2.
[http://dx.doi.org/10.1016/j.jvs.2021.09.034] [PMID: 34634419]
[172]
Faulhaber JR, Baffoe-Bonnie AW, Oursler KK, Vasudeva SS. Update in human immunodeficiency virus and aging. Infect Dis Clin North Am 2023; 37(1): 153-73.
[http://dx.doi.org/10.1016/j.idc.2022.11.006] [PMID: 36805011]
[173]
Jiang F, Zhang R, Gu Z, et al. Fuzhengpaidu granule regulates immune activation molecules CD38 and human leukocyte antigen-D related on CD4+ and CD8+ T cells in patients with acquired immunodeficiency syndrome/human immunodeficiency virus. J Tradit Chin Med 2013; 33(4): 439-43.
[http://dx.doi.org/10.1016/S0254-6272(13)60145-4] [PMID: 24187862]
[174]
Jin Y, Liu Z, Chen X, et al. Survival of people living with HIV after treatment with Traditional Chinese Medicine in Henan province of China: A retrospective cohort study. J Tradit Chin Med 2014; 34(4): 430-6.
[http://dx.doi.org/10.1016/S0254-6272(15)30042-X] [PMID: 25185360]
[175]
Liu Z, Yang J, Liu H, Jin Y. Factors associated with fatigue in acquired immunodeficiency syndrome patients with antiretroviral drug adverse reactions: A retrospective study. J Tradit Chin Med 2013; 33(3): 316-21.
[http://dx.doi.org/10.1016/S0254-6272(13)60172-7] [PMID: 24024326]
[176]
Rautela I, Thapliyal P, Sahni S, Rayal R, Sharma MD. Potential of seaweeds in preventing cancer and HIV infection in humans. Process Biochem 2022; 123: 91-106.
[http://dx.doi.org/10.1016/j.procbio.2022.10.034]
[177]
Chen HS, Tang XS, Guo JT. Inhibition of HIV and DHBV reverse transcriptase by extracts or components of Chinese traditional medicines and herbs. Antiviral Res 1991; 15(1): 62.
[http://dx.doi.org/10.1016/0166-3542(91)90119-C]
[178]
Shen C, Liu J, Li J, Lian YJ, Zhang WJ. Traditional Chinese medicine for HIV/AIDS patients with incomplete immune reconstruction: A systematic review. Eur J Integr Med 2021; 48: 102075.
[http://dx.doi.org/10.1016/j.eujim.2021.102075]
[179]
Tian C, Huang H, zheng Y, et al. Identification of an effective fraction from Ampelopsis Radix with anti-dengue virus activities in vitro and in vivo. J Ethnopharmacol 2023; 309: 116339.
[http://dx.doi.org/10.1016/j.jep.2023.116339] [PMID: 36870463]
[180]
Zhao JZ, Li LF, Xu LM, et al. Traditional Chinese medicine bufalin inhibits infectious pancreatic necrosis virus genogroups I and V infection in vitro and in vivo. Aquaculture 2023; 576: 739789.
[http://dx.doi.org/10.1016/j.aquaculture.2023.739789]
[181]
Priyadarsani Mandhata C, Ranjan Sahoo C, Nath Padhy R. A comprehensive overview on the role of phytocompounds in human immunodeficiency virus treatment. J Integr Med 2023; 21(4): 332-53.
[http://dx.doi.org/10.1016/j.joim.2023.05.001] [PMID: 37244763]
[182]
Forzan M, Pacini MI, Bonaccini P, Mazzei M. Antiviral effect of a commercially phytotherapeutic compound against feline immunodeficiency virus. Nat Prod Res 2022; 36(16): 4159-64.
[http://dx.doi.org/10.1080/14786419.2021.1960329] [PMID: 34586005]
[183]
Sun J. A mathematic equation derived from host-pathogen interactions elucidates the significance of integrating modern medicine with traditional Chinese medicine to treat infectious diseases. J Integr Med 2023; 21(4): 324-31.
[http://dx.doi.org/10.1016/j.joim.2023.06.004] [PMID: 37349214]
[184]
Liu T, Shao Q, Wang W, et al. The Chinese herbal prescription JieZe-1 inhibits caspase-1-dependent pyroptosis induced by herpes simplex virus-2 infection in vitro. J Integr Med 2023; 21(3): 277-88.
[http://dx.doi.org/10.1016/j.joim.2023.03.003] [PMID: 36973158]
[185]
Anastasi JK, McMahon DJ. Testing strategies to reduce diarrhea in persons with HIV using traditional Chinese medicine: acupuncture and moxibustion. J Assoc Nurses AIDS Care 2003; 14(3): 28-40.
[http://dx.doi.org/10.1177/1055329003014003003] [PMID: 12800810]
[186]
Liu M, Zhao F, Xu J, et al. Qingjin Huatan decoction protects mice against influenza a virus pneumonia via the chemokine signaling pathways. J Ethnopharmacol 2023; 317: 116745.
[http://dx.doi.org/10.1016/j.jep.2023.116745] [PMID: 37336335]
[187]
Liu T, Li AX, Miao YP, Wu KZ, Ma Y. Screening of new non-nucleoside reverse transcriptase inhibitors of HIV-1 based on traditional Chinese medicines database. Chin Chem Lett 2009; 20(11): 1386-8.
[http://dx.doi.org/10.1016/j.cclet.2009.04.007]
[188]
Esposito F, Carli I, Del Vecchio C, et al. Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine 2016; 23(12): 1383-91.
[http://dx.doi.org/10.1016/j.phymed.2016.08.001] [PMID: 27765358]
[189]
Zhang H, Cai J, Li C, et al. Wogonin inhibits latent HIV-1 reactivation by downregulating histone crotonylation. Phytomedicine 2023; 116: 154855.
[http://dx.doi.org/10.1016/j.phymed.2023.154855] [PMID: 37172478]
[190]
Tsai FJ, Li TM, Cheng CF, et al. Effects of Chinese herbal medicine on hyperlipidemia and the risk of cardiovascular disease in HIV-infected patients in Taiwan. J Ethnopharmacol 2018; 219: 71-80.
[http://dx.doi.org/10.1016/j.jep.2018.03.006] [PMID: 29530610]
[191]
Cheng BH, Zhou X, Wang Y, et al. Herb–drug interaction between an anti-HIV Chinese herbal SH formula and atazanavir in vitro and in vivo. J Ethnopharmacol 2015; 162: 369-76.
[http://dx.doi.org/10.1016/j.jep.2015.01.010] [PMID: 25614104]
[192]
Zhao YY, Li YJ, Yu XM, et al. Bisabolane-type sesquiterpenoids with potential anti-inflammatory and anti-HIV activities from the stems and leaves of Morinda citrifolia. Nat Prod Res 2023; 37(12): 1961-8.
[http://dx.doi.org/10.1080/14786419.2022.2112577] [PMID: 35975763]
[193]
Zhou YQ, Li SM, Wei X, et al. Identification and quantitative analysis of bioactive components from Potentilla kleiniana Wight et Arn with anti HIV-1 proteases activity. Nat Prod Res 2022; •••: 1-4.
[http://dx.doi.org/10.1080/14786419.2022.2162513] [PMID: 36584286]
[194]
Guo H, Liu Y, Paskaleva EE, et al. Use of Sargassum fusiforme extract and its bioactive molecules to inhibit HIV infection: Bridging two paradigms between Eastern and Western medicine. Chin Herb Med 2014; 6(4): 265-73.
[http://dx.doi.org/10.1016/S1674-6384(14)60041-1]
[195]
Ding K, Wu ZY, Zhang N, et al. Stelleratenoids A−F, macrocyclic daphnane orthoesters with anti-HIV activity from the roots of Stellera chamaejasme L. Phytochemistry 2023; 210: 113648.
[http://dx.doi.org/10.1016/j.phytochem.2023.113648] [PMID: 36963707]
[196]
Wei W, Li Z, Li H, et al. The inhibitory effect of 225 frequently-used traditional Chinese medicines for CYP3A4 metabolic enzyme by isoform-specific probe. Fitoterapia 2021; 152: 104858.
[http://dx.doi.org/10.1016/j.fitote.2021.104858] [PMID: 33677011]
[197]
Liang J, Chen J, Tan Z, et al. Extracts of the medicinal herb Sanguisorba officinalis inhibit the entry of human immunodeficiency virus-1. J Food Drug Anal 2013; 21(4): S52-8.
[http://dx.doi.org/10.1016/j.jfda.2013.09.034] [PMID: 25191092]
[198]
Zhao Y, Hua C, Sha Y, et al. Diterpenoids from Euphorbia lactea and their anti-HIV-1 activity. Phytochemistry 2023; 213: 113745.
[http://dx.doi.org/10.1016/j.phytochem.2023.113745] [PMID: 37277012]
[199]
Xie Y, Xie L, Chen A, et al. Anti-HIV/SIV activity of icariin and its metabolite anhydroicaritin mainly involve reverse transcriptase. Eur J Pharmacol 2020; 884: 173327.
[http://dx.doi.org/10.1016/j.ejphar.2020.173327] [PMID: 32726656]
[200]
Tietjen I, Gatonye T, Ngwenya BN, et al. Croton megalobotrys Müll Arg. and Vitex doniana (Sweet): Traditional medicinal plants in a three-step treatment regimen that inhibit in vitro replication of HIV-1. J Ethnopharmacol 2016; 191: 331-40.
[http://dx.doi.org/10.1016/j.jep.2016.06.040] [PMID: 27350006]
[201]
Liu X, Lin L, Lv T, et al. Combined multi-omics and network pharmacology approach reveals the role of Tripterygium Wilfordii Hook F in treating HIV immunological non-responders. Phytomedicine 2022; 101: 154103.
[http://dx.doi.org/10.1016/j.phymed.2022.154103] [PMID: 35468451]
[202]
Shen QQ, Wang JJ, Roy D, et al. Organic anion transporter 1 and 3 contribute to traditional Chinese medicine-induced nephrotoxicity. Chin J Nat Med 2020; 18(3): 196-205.
[http://dx.doi.org/10.1016/S1875-5364(20)30021-2] [PMID: 32245589]
[203]
Liu YP, Guo JM, Xie Z, et al. Clausanisumine, a prenylated bicarbazole alkaloid from the fruits of Clausena anisum-olens and its potential anti-HIV activity. J Org Chem 2021; 86(24): 17722-6.
[http://dx.doi.org/10.1021/acs.joc.1c02020] [PMID: 34817178]
[204]
Huang K, Zhang P, Zhang Z, et al. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacol Ther 2021; 225: 107843.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107843] [PMID: 33811957]
[205]
Li T, Peng T. Traditional Chinese herbal medicine as a source of molecules with antiviral activity. Antiviral Res 2013; 97(1): 1-9.
[http://dx.doi.org/10.1016/j.antiviral.2012.10.006] [PMID: 23153834]
[206]
Li C, Wang L, Ren L. Antiviral mechanisms of candidate chemical medicines and traditional Chinese medicines for SARS-CoV-2 infection. Virus Res 2020; 286: 198073.
[http://dx.doi.org/10.1016/j.virusres.2020.198073] [PMID: 32592817]
[207]
Wang J, Zou W. Recent advances of HIV/AIDS treatment with traditional Chinese medicine in China. J Tradit Chin Med 2010; 30(4): 305-8.
[http://dx.doi.org/10.1016/S0254-6272(10)60062-3] [PMID: 21287791]
[208]
Ding X, Meng P, Ma X, et al. Integrated traditional Chinese medicine intervention for delaying HIV morbidity: study protocol for a multicentre randomised controlled trial. Trials 2022; 23(1): 665.
[http://dx.doi.org/10.1186/s13063-022-06625-x] [PMID: 35978377]
[209]
Chiou JS, Chou CH, Ho MW, et al. Effect of Chinese herbal medicine therapy on risks of all-cause mortality, infections, parasites, and circulatory-related mortality in HIV/AIDS patients with neurological diseases. Front Pharmacol 2023; 14: 1097862.
[http://dx.doi.org/10.3389/fphar.2023.1097862] [PMID: 36937878]
[210]
Liang Q, Hu JX, Zhang XM, Xu WH. Traditional uses, phytochemistry, pharmacology, toxicology, and quality control of Rhododendron dauricum L. leaves: A comprehensive review. J Ethnopharmacol 2023; 305: 116085.
[http://dx.doi.org/10.1016/j.jep.2022.116085] [PMID: 36584919]
[211]
Liu ZB, Yang JP, Xu LR. Effectiveness and safety of traditional Chinese medicine in treating acquired immune deficiency syndrome: 2004–2014. Infect Dis Poverty 2015; 4(1): 59.
[http://dx.doi.org/10.1186/s40249-015-0093-6] [PMID: 26699285]
[212]
Xu Z, Yang XP, Ni L, Zhang ML, Guo CH, Wang DX, et al. Clinical study on Xielikang capsule in treatment of AIDS-related chronic diarrhea. Glob Tradit Chin Med 2011; 14: 197-200.
[213]
Wang J, Liu Y, Zou W, He YL, Yan SY, Yuan YH. Clinical observations on 100 HIV/AIDS cases treated with Chinese herb Aining Granule plus HAART. Chin J AIDS STD 2008; 14(2): 101-7.
[214]
Cen YW, Tan XH, Zhang JS, et al. Randomized controlled study of integrated treatment of traditional Chinese medicine and western medicine on AIDS with pulmonary inflammation patients. Zhongguo Zhongyao Zazhi 2013; 38(15): 2448-52.
[http://dx.doi.org/10.4268/cjcmm20131506] [PMID: 24228533]
[215]
Xie SP, Guo HJ, Xu QL, Guo YM, Pan WQ. Effects of Aikang capsule on life quality in HIV/AIDS patients. SH J Tradit Chin Med 2007; 41(9): 15-8.
[216]
Zhang XW, Guo HJ, Jiang F, Chen XM. Study on Wendan granule in treatment of gastrointestinal adverse caused by antiretroviral therapy. Chin J Exp Tradit Med Form 2012; 18(7): 252-4.
[217]
Jiang S, Sun H, Xu Y, Jiang Y, Pei J, Wang H. Effects of jingyuankang capsules on leukocyte level in AIDS patients. J Tradit Chin Med 2011; 31(1): 32-5.
[http://dx.doi.org/10.1016/S0254-6272(11)60007-1] [PMID: 21563503]
[218]
Huang L, Zhou CJ, Liang FL, Lu XE, Wang ZM. Treatment of HAART associated hepatic function damage with Dang Gui Shao Yao powder in 48 AIDS patients. Tradit Chin Med Res 2007; 20(8): 55-6.
[219]
Wang J, Li Y, Tang YL, Lin HS, Wu XF, Liu J. Effect of Immune No. 2 on the immune reconstitution in patients with HIV/AIDS after highly active antiretroviral treatment: A randomized double blind placebo controlled clinical trial. Chin J Integr Med 2013; 19(5): 340-6.
[http://dx.doi.org/10.1007/s11655-013-1449-z] [PMID: 23494328]
[220]
Jian W, Feng-zhen Y, Min Z, et al. Randomized double-blinded and controlled clinical trial on treatment of HIV/AIDS by Zhongyan-4. Chin J Integr Med 2006; 12(1): 6-11.
[http://dx.doi.org/10.1007/BF02857422] [PMID: 16571276]
[221]
Martini R, Esposito F, Corona A, et al. Natural product Kuwanon-L inhibits HIV-1 replication through multiple target binding. ChemBioChem 2017; 18(4): 374-7.
[http://dx.doi.org/10.1002/cbic.201600592] [PMID: 27992102]
[222]
Zhang HJ, Rumschlag-Booms E, Guan YF, et al. Potent inhibitor of drug-resistance HIV-1 strains identified from the medicinal plant Justicia gendarussa. J Nat Prod 2017; 80(6): 1798-807.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00004] [PMID: 28613071]
[223]
Esposito F, Tintori C, Martini R, et al. Kuwanon-L as a new allosteric HIV-1 integrase inhibitor: Molecular modeling and biological evaluation. ChemBioChem 2015; 16(17): 2507-12.
[http://dx.doi.org/10.1002/cbic.201500385] [PMID: 26360521]
[224]
Kashman Y, Gustafson KR, Fuller RW, et al. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 1992; 35(15): 2735-43.
[http://dx.doi.org/10.1021/jm00093a004] [PMID: 1379639]
[225]
Cho YK, Kim JE. Effect of Korean Red Ginseng intake on the survival duration of human immunodeficiency virus type 1 patients. J Ginseng Res 2017; 41(2): 222-6.
[http://dx.doi.org/10.1016/j.jgr.2016.12.006] [PMID: 28413328]
[226]
Shahrajabian MH, Sun W. Five important seeds in traditional medicine, and pharmacological benefits. Seeds 2023; 2(3): 290-308.
[http://dx.doi.org/10.3390/seeds2030022]
[227]
Chinsembu KC. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Rev Bras Farmacogn 2019; 29(4): 504-28.
[http://dx.doi.org/10.1016/j.bjp.2018.10.006]
[228]
Sun W, Shahrajabian MH. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023; 12(17): 3101.
[http://dx.doi.org/10.3390/plants12173101] [PMID: 37687348]
[229]
Shahrajabian MH, Sun W. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods. Mini Rev Med Chem 2023; 23
[http://dx.doi.org/10.2174/1389557523666230816090054] [PMID: 37587815]
[230]
Shahrajabian MH, Kuang Y, Cui H, Fu L, Sun W. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses. Curr Org Chem 2023; 27(9): 782-806.
[http://dx.doi.org/10.2174/1385272827666230807150910]
[231]
Skevington SM, Norweg S, Standage M. Predicting quality of life for people living with HIV: international evidence from seven cultures. AIDS Care 2010; 22(5): 614-22.
[http://dx.doi.org/10.1080/09540120903311466] [PMID: 20229378]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy