Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Discovering Microbe-disease Associations with Weighted Graph Convolution Networks and Taxonomy Common Tree

Author(s): Jieqi Xing, Yu Shi, Xiaoquan Su* and Shunyao Wu*

Volume 19, Issue 7, 2024

Published on: 01 December, 2023

Page: [663 - 673] Pages: 11

DOI: 10.2174/0115748936270441231116093650

Price: $65

Abstract

Background: Microbe-disease associations are integral to understanding complex diseases and their screening procedures.

Objective: While numerous computational methods have been developed to detect these associations, their performance remains limited due to inadequate utilization of weighted inherent similarities and microbial taxonomy hierarchy. To address this limitation, we have introduced WTHMDA (weighted taxonomic heterogeneous network-based microbe-disease association), a novel deep learning framework.

Methods: WTHMDA combines a weighted graph convolution network and the microbial taxonomy common tree to predict microbe-disease associations effectively. The framework extracts multiple microbe similarities from the taxonomy common tree, facilitating the construction of a microbe- disease heterogeneous interaction network. Utilizing a weighted DeepWalk algorithm, node embeddings in the network incorporate weight information from the similarities. Subsequently, a deep neural network (DNN) model accurately predicts microbe-disease associations based on this interaction network.

Results: Extensive experiments on multiple datasets and case studies demonstrate WTHMDA's superiority over existing approaches, particularly in predicting unknown associations.

Conclusion: Our proposed method offers a new strategy for discovering microbe-disease linkages, showcasing remarkable performance and enhancing the feasibility of identifying disease risk.

Graphical Abstract

[1]
Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207-14.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[2]
Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. Role of the microbiome in energy regulation and metabolism. Gastroenterology 2014; 146(6): 1525-33.
[http://dx.doi.org/10.1053/j.gastro.2014.02.008] [PMID: 24560870]
[3]
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021; 19(1): 55-71.
[http://dx.doi.org/10.1038/s41579-020-0433-9] [PMID: 32887946]
[4]
Cani PD, Van Hul M, Lefort C, Depommier C, Rastelli M, Everard A. Microbial regulation of organismal energy homeostasis. Nat Metab 2019; 1(1): 34-46.
[http://dx.doi.org/10.1038/s42255-018-0017-4] [PMID: 32694818]
[5]
Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 2020; 577(7790): 410-5.
[http://dx.doi.org/10.1038/s41586-019-1865-0] [PMID: 31875848]
[6]
Wang S, Harvey L, Martin R, et al. Targeting the gut microbiota to influence brain development and function in early life. Neurosci Biobehav Rev 2018; 95: 191-201.
[http://dx.doi.org/10.1016/j.neubiorev.2018.09.002] [PMID: 30195933]
[7]
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance imbalances the brain: a review of gut microbiota association with neurological and psychiatric disorders. Front Med 2022; 9: 813204.
[http://dx.doi.org/10.3389/fmed.2022.813204] [PMID: 35433746]
[8]
Lee M, Chang EB. Inflammatory bowel diseases (IBD) and the microbiome—searching the crime scene for clues. Gastroenterology 2021; 160(2): 524-37.
[http://dx.doi.org/10.1053/j.gastro.2020.09.056] [PMID: 33253681]
[9]
Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol 2019; 10: 29.
[http://dx.doi.org/10.3389/fendo.2019.00029] [PMID: 30761090]
[10]
Wong SH, Yu J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 2019; 16(11): 690-704.
[http://dx.doi.org/10.1038/s41575-019-0209-8] [PMID: 31554963]
[11]
Shen X, Chen Y, Jiang X, Hu X, He T, Yang J. Predicting disease-microbe association by random walking on the heterogeneous network. In: BioinformBiomed. 2016.
[12]
Long Y, Luo J. WMGHMDA: A novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network. BMC Bioinformatics 2019; 20(1): 541.
[http://dx.doi.org/10.1186/s12859-019-3066-0] [PMID: 31675979]
[13]
Zou S, Zhang J, Zhang Z. A novel approach for predicting microbe-disease associations by bi-random walk on the heterogeneous network. PLoS One 2017; 12(9): e0184394.
[http://dx.doi.org/10.1371/journal.pone.0184394] [PMID: 28880967]
[14]
Chen X, Huang Y-A, You Z-H, Yan G, Wang X. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 2016.
[15]
Luo J, Long Y. NTSHMDA: Prediction of human microbe-disease association based on random walk by integrating network topological similarity. IEEE/ACM Trans Comput Biol Bioinformatics 2020; 17(4): 1341-51.
[PMID: 30489271]
[16]
Lei X, Wang Y. Predicting microbe-disease association by learning graph representations and rule-based inference on the heterogeneous network. Front Microbiol 2020; 11: 579.
[http://dx.doi.org/10.3389/fmicb.2020.00579] [PMID: 32351464]
[17]
Zhang W, Lu X, Yang W, Huang F, Wang B, Wang A, et al. HNGRNMF: Heterogeneous network-based graph regularized nonnegative matrix factorization for predicting events of microbedisease associations. 2018 IEEE In Conf Bioinform Biomed (BIBM) 803-7.
[http://dx.doi.org/10.1109/BIBM.2018.8621085]
[18]
Qu J, Zhao Y, Yin J. Identification and analysis of human microbe-disease associations by matrix decomposition and label propagation. Front Microbiol 2019; 10: 291.
[http://dx.doi.org/10.3389/fmicb.2019.00291] [PMID: 30863376]
[19]
Long Y, Luo J, Zhang Y, Xia Y. Predicting human microbe–disease associations via graph attention networks with inductive matrix completion. Brief Bioinform 2021; 22(3): bbaa146.
[http://dx.doi.org/10.1093/bib/bbaa146] [PMID: 32725163]
[20]
Jiang C, Tang M, Jin S, Huang W, Liu X. KGNMDA: A knowledge graph neural network method for predicting microbe-disease associations. IEEE/ACM Trans Comput Biol Bioinform 2022.
[21]
Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining 701-10.
[http://dx.doi.org/10.1145/2623330.2623732]
[22]
Mikolov T, Chen K, Corrado GS, Dean J. Eds. Efficient estimation of word representations in vector space. Int Conf Learn Represent.
[23]
Kipf T, Welling M. Semi-supervised classification with graph convolutional networks. ArXivabs/160902907 2016.
[24]
Wu Z, Palmer M. Semantics and lexical selection. ArXivabs/cmplg/9406033 1994.
[25]
Leacock C, Chodorow M. Eds, Combining local context and wordnet similarity for word sense identification An electronic lexical database. MIT PressEditors 1998; pp. 265-83.
[26]
Lin D. Ed An information-theoretic definition of similarity. Int Conf Mach Learn.
[27]
Jiang JJ, Conrath DW. Eds, Semantic similarity based on corpus statistics and lexical taxonomy. ROCLING/IJCLCLP 1997.
[28]
Zhu S, Zeng J, Mamitsuka H. Eds. Enhancing medline document clustering by incorporating MeSH semantic similarity. Bioinformatics 2009; 25(15): 1944-51.
[http://dx.doi.org/10.1093/bioinformatics/btp338]
[29]
Hwang S, Kim CY, Yang S, et al. HumanNet v2: Human gene networks for disease research. Nucleic Acids Res 2019; 47(D1): D573-80.
[http://dx.doi.org/10.1093/nar/gky1126] [PMID: 30418591]
[30]
Kamneva OK. Genome composition and phylogeny of microbes predict their co-occurrence in the environment. PLOS Comput Biol 2017; 13(2): e1005366.
[http://dx.doi.org/10.1371/journal.pcbi.1005366] [PMID: 28152007]
[31]
Mikolov T, Chen K, Corrado GS, Dean J. Eds. Efficient estimation of word representations in vector space. arXiv:13013781 2013.
[32]
Scarselli F, Gori M, Hagenbuchner M, Monfardini G, Monfardini G. The graph neural network model. IEEE Trans Neural Netw 2009; 20(1): 61-80.
[http://dx.doi.org/10.1109/TNN.2008.2005605] [PMID: 19068426]
[33]
Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large graphs. Proceedings of the 31st International Conference on Neural Information Processing Systems 1025-35.
[34]
Ma W, Zhang L, Zeng P, et al. An analysis of human microbe–disease associations. Brief Bioinform 2017; 18(1): 85-97.
[http://dx.doi.org/10.1093/bib/bbw005] [PMID: 26883326]
[35]
Janssens Y, Nielandt J, Bronselaer A, et al. Disbiome database: Linking the microbiome to disease. BMC Microbiol 2018; 18(1): 50.
[http://dx.doi.org/10.1186/s12866-018-1197-5] [PMID: 29866037]
[36]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[37]
Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 2016; 33(6): 1635-8.
[http://dx.doi.org/10.1093/molbev/msw046] [PMID: 26921390]
[38]
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G. Eds. PyTorch: An imperative style.high-performance deep learning library. arXiv:191201703 2019.
[39]
Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X. Eds. Deep graph library: A graph-centric.highly-performant package for graph neural networks. arXiv:190901315 2019.
[40]
Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet 2018; 391(10122): 783-800.
[http://dx.doi.org/10.1016/S0140-6736(17)33311-1 ] [PMID: 29273246]
[41]
Brar T, Nagaraj S, Mohapatra S. Microbes and asthma. Curr Opin Pulm Med 2012; 18(1): 14-22.
[http://dx.doi.org/10.1097/MCP.0b013e32834dccc0 ] [PMID: 22113000]
[42]
Sokolowska M, Frei R, Lunjani N, Akdis CA, O’Mahony L. Microbiome and asthma. Asthma Res Pract 2018; 4(1): 1.
[http://dx.doi.org/10.1186/s40733-017-0037-y] [PMID: 29318023]
[43]
Preston JA, Essilfie AT, Horvat JC, et al. Inhibition of allergic airways disease by immunomodulatory therapy with whole killed Streptococcus pneumoniae. Vaccine 2007; 25(48): 8154-62.
[http://dx.doi.org/10.1016/j.vaccine.2007.09.034] [PMID: 17950502]
[44]
Yu J, Jang SO, Kim BJ, et al. The effects of lactobacillus rhamnosus on the prevention of asthma in a murine model. Allergy Asthma Immunol Res 2010; 2(3): 199-205.
[http://dx.doi.org/10.4168/aair.2010.2.3.199] [PMID: 20592920]
[45]
Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 2015; 12(12): 720-7.
[http://dx.doi.org/10.1038/nrgastro.2015.150] [PMID: 26323879]
[46]
Goethel A, Croitoru K, Philpott DJ. The interplay between microbes and the immune response in inflammatory bowel disease. J Physiol 2018; 596(17): 3869-82.
[http://dx.doi.org/10.1113/JP275396] [PMID: 29806140]
[47]
Guzzo GL, Andrews JM, Weyrich LS. The neglected gut microbiome: Fungi, protozoa, and bacteriophages in inflammatory bowel disease. Inflamm Bowel Dis 2022; 28(7): 1112-22.
[http://dx.doi.org/10.1093/ibd/izab343] [PMID: 35092426]
[48]
Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci 2007; 104(34): 13780-5.
[http://dx.doi.org/10.1073/pnas.0706625104] [PMID: 17699621]
[49]
Thomas M, Langella P, Neyrolles O. Lactobacillus acidophilus: A promising tool for the treatment of inflammatory bowel diseases? Med Sci 2015; 31(8-9): 715-7.
[http://dx.doi.org/10.1051/medsci/20153108004] [PMID: 26340825]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy