Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Review Article

Microwave-activated Synthetic Route to Various Biologically Important Heterocycles Involving Transition Metal Catalysts

Author(s): Soumyadip Basu and Chhanda Mukhopadhyay*

Volume 10, Issue 2, 2023

Published on: 08 December, 2023

Page: [97 - 121] Pages: 25

DOI: 10.2174/0122133356267427231120062925

Price: $65

Abstract

This study incorporates the assembly of development methodologies of microwave-activated protocol involving transition metal catalysts for the synthesis of numerous biologically important heterocycles during the past few years. Herein, it highlights the potential of transition metal salts as catalysts in multicomponent reactions performed under microwave conditions for the formation of oxygen, nitrogen, and sulphur-containing bioactive heterocycle moieties. Microwaveactivated organic synthesis has been well-utilized as an alternative to conventional methodology in pharmaceutical companies due to its potential to significantly improve the rate and consequently diminish the time span of the synthetic process. The traditional methods involving transition metal catalysts for synthesizing bioactive heterocyclic molecules are prolonged and, thus, difficult to meet the requirements for the timely supply of these important compounds. In our review, our main focus is on integrating such synthetic strategies involving transition metal catalysis with a microwaveactivated multicomponent approach for developing bioactive heterocycles.

Graphical Abstract

[1]
(a) Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108(6), 2015-2050.
[http://dx.doi.org/10.1021/cr078399y] [PMID: 18543878];
(b) Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. Chem. Rev., 2009, 109(9), 4140-4182.
[http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022];
(c) Candeias, N.R.; Branco, L.C.; Gois, P.M.P.; Afonso, C.A.M.; Trindade, A.F. More sustainable approaches for the synthesis of N-based heterocycles. Chem. Rev., 2009, 109(6), 2703-2802.
[http://dx.doi.org/10.1021/cr800462w] [PMID: 19385653]
[2]
Bacolini, G. Topics Heterocycl Syst Synth React Prop, 1996, 1, 103.
[3]
Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological significance of synthetic heterocycles scaffold: A Review. Adv. Biores., 2011, 5, 120-144.
[4]
(a) Caddick, S. Microwave assisted organic reactions. Tetrahedron, 1995, 51(38), 10403-10432.
[http://dx.doi.org/10.1016/0040-4020(95)00662-R];
(b) Varma, R.S. Solvent-free organic syntheses. Green Chem., 1999, 1(1), 43-55.
[http://dx.doi.org/10.1039/a808223e];
(c) Perreux, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 2001, 57(45), 9199-9223.
[http://dx.doi.org/10.1016/S0040-4020(01)00905-X];
(d) Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis-a review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1];
(e) Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j] [PMID: 18648680];
(f) Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655]
[5]
(a) Adam, D. Out of the kitchen. Nature, 2003, 421(6923), 571-572.
[http://dx.doi.org/10.1038/421571a] [PMID: 12571563];
(b) Kappe, C.O.; Dallinger, D.; Murphree, S.S., Eds.;]; Practical MW synthesis for organic chemists: Strategies, instruments and protocols. Wiley-VCH: Weinheim, Germany, 2009; Strauss, C.R.; Clark, J.; Duncan, M., Eds.; , Eds.; Wiley-VCH: Weinheim, Germany, 2009.
[6]
Strauss, C.R; Clark, J; Duncan, M. Eds.; Handbook of Green Chemistry and Technology; Blackwell Science: Oxford; , 2002, pp. 397-415.
[http://dx.doi.org/10.1002/9780470988305.ch17]
[7]
Strauss, C.R. Invited review. A combinatorial approach to the development of environmentally benign organic chemical preparations. Aust. J. Chem., 1999, 52(2), 83-96.
[http://dx.doi.org/10.1071/C98156]
[8]
Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov., 2006, 5(1), 51-63.
[http://dx.doi.org/10.1038/nrd1926] [PMID: 16374514]
[9]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[10]
Shipe, W.D.; Wolkenberg, S.E.; Lindsley, C.W. Accelerating lead development by microwave-enhanced medicinal chemistry. Drug Discov. Today. Technol., 2005, 2(2), 155-161.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.002]
[11]
de Meijere, A.; Brase, S.; Oestreich, M. Metal-catalyzed cross-coupling reactions and more, 3rd ed.; Meijere, A.; Brase, S.; Oestreich, M., Eds.;: Wiley-VCH: Weinheim, Germany, 2014, p. 1.
[12]
(a) Tsuji, J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis By J. Tsuji. Wiley: Chichester. 2000. 492 pp. Org. Proc. Res. Dev., 2000, 6(2), 201.;
(b) Tsuji, J. Palladium in organic synthesis; Springer: New York, 2005.
[13]
(a) de Meijere, A.; Diederich, F. Metal‐Catalyzed Cross-; Coupling Reactions;, 2004. ;
(b) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/9783527619405]
[14]
(a) Nilsson, P.; Olofsson, K.; Larhed, M. Microwave-assisted and metal-catalyzed coupling reactions. Top. Curr. Chem., 2006, 266, 103-144.
[http://dx.doi.org/10.1007/128_046];
(b) Wang, K.U.; Wang, J.X. Wiley-VCH: Weinheim, Germany,; , 2013.
[15]
Magano, J.; Dunetz, J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev., 2011, 111(3), 2177-2250.
[http://dx.doi.org/10.1021/cr100346g] [PMID: 21391570]
[16]
Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc. Chem. Res., 2002, 35(9), 717-727.
[http://dx.doi.org/10.1021/ar010074v] [PMID: 12234201]
[17]
Olofsso n, K.; Hallberg, A.; Larhed, M. Microwaves in Organic Synthesis; Loupy, A., Ed.; Wiley: Weinheim, 2002, pp. 379-403.
[http://dx.doi.org/10.1002/3527601775.ch11]
[18]
Larhed, M.; Hallberg, A. Microwave-promoted palladium-catalyzed coupling reactions. J. Org. Chem., 1996, 61(26), 9582-9584.
[http://dx.doi.org/10.1021/jo9612990]
[19]
(a) Santagada, V.; Perissutti, E.; Caliendo, G. The application of microwave irradiation as new convenient synthetic procedure in drug discovery. Curr. Med. Chem., 2002, 9(13), 1251-1283.
[http://dx.doi.org/10.2174/0929867023369989] [PMID: 12052166];
(b) Santagada, V.; Frecentese, F.; Perissutti, E.; Fiorino, F.; Severino, B.; Caliendo, G. Microwave assisted synthesis: A new technology in drug discovery. Mini Rev. Med. Chem., 2009, 9(3), 340-358.
[http://dx.doi.org/10.2174/1389557510909030340] [PMID: 19275727];
(c) Appukkuttan, P.; Van der Eycken, E. Recent developments in microwave‐assisted, transition‐metal‐catalysed C–C and C–N bond‐forming reactions. Eur. J. Org. Chem., 2008, 2008(7), 1133-1155.
[http://dx.doi.org/10.1002/ejoc.200701056];
(d) Bai, L.; Wang, J. Environmentally friendly suzuki Aryl-Aryl cross-coupling reaction. Curr. Org. Chem., 2005, 9(6), 535-553.
[http://dx.doi.org/10.2174/1385272053544407]
[20]
Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. 1953. JAMA, 1993, 269(15), 1966-1967.
[http://dx.doi.org/10.1001/jama.1993.03500150078030] [PMID: 8464128]
[21]
Lesher, G.Y.; Froelich, E.J.; Gruett, M.D.; Bailey, J.H.; Brundage, R.P. 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J. Med. Pharm. Chem., 1962, 5(5), 1063-1065.
[http://dx.doi.org/10.1021/jm01240a021] [PMID: 14056431]
[22]
Pasgualooto, A.C.; Thiele, K.O.; Goldani, L.Z. Novel triazole antifungal drugs: Focus on isavuconazole, ravuconazole and albaconazole. Curr. Opin. Investig. Drugs, 2010, 11, 165-174.
[PMID: 20112166]
[23]
Lesyk, R.; Vladzimirska, O.; Zimenkovsky, B.; Horishny, V.; Nektegayev, I.; Solyanyk, V.; Vovk, O. New thiazolidones-4 with pyrazolone-5 substituent as the potential NSAIDs. Boll. Chim. Farm., 1998, 137(6), 210-217.
[PMID: 9713155]
[24]
Hart, F.D.; Boardman, P.L. Indomethacin: A new non-steroid anti-inflammatory agent. BMJ, 1963, 2(5363), 965-970.
[http://dx.doi.org/10.1136/bmj.2.5363.965] [PMID: 14056924]
[25]
Laura, G.; Robeti Marinella, R.; Daniela, P. Nitrogen-containing heterocyclic quinones: A class of potential selective antitumor agents. Mini Rev. Med. Chem., 2007, 7, 481-489.
[http://dx.doi.org/10.2174/138955707780619626] [PMID: 17504183]
[26]
Bawa, S.; Siddiqui, N.; Andalip,; Ali, R.; Afzal, O.; Akhtar, M.J.; Azad, B.; Kumar, R. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review. J. Pharm. Bioallied Sci., 2011, 3(2), 194-212.
[http://dx.doi.org/10.4103/0975-7406.80765] [PMID: 21687347]
[27]
Majumder, A.; Gupta, R.; Jain, A. Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem. Lett. Rev., 2013, 6(2), 151-182.
[http://dx.doi.org/10.1080/17518253.2012.733032]
[28]
Sharma, A.; Appukkuttan, P.; Van der Eycken, E. Microwave-assisted synthesis of medium-sized heterocycles. Chem. Commun., 2012, 48(11), 1623-1637.
[http://dx.doi.org/10.1039/C1CC15238F] [PMID: 22031184]
[29]
Donets, P.A.; Van der Eycken, E.V. Efficient synthesis of the 3-benzazepine framework via intramolecular Heck reductive cyclization. Org. Lett., 2007, 9(16), 3017-3020.
[http://dx.doi.org/10.1021/ol071079g] [PMID: 17608431]
[30]
Donets, P.A.; Goeman, J.L.; Van der Eycken, J.; Robeyns, K.; Van Meervelt, L.; Van der Eycken, E.V. An asymmetric approach towards (–)‐Aphanorphine and its analogues. Eur. J. Org. Chem., 2009, 2009(6), 793-796.
[http://dx.doi.org/10.1002/ejoc.200801175]
[31]
Peshkov, A.A.; Peshkov, V.A.; Pereshivko, O.P.; Van Hecke, K.; Kumar, R.; Van der Eycken, E.V. Heck-suzuki tandem reaction for the synthesis of 3-benzazepines. J. Org. Chem., 2015, 80(13), 6598-6608.
[http://dx.doi.org/10.1021/acs.joc.5b00670] [PMID: 25996648]
[32]
Bariwal, J.B.; Ermolat’ev, D.S.; Glasnov, T.N.; Hecke, K.V.; Mehta, V.P.; Meervelt, L.V.; Kappe, C.O.; Van der Eycken, E.V. Diversity-oriented synthesis of dibenzoazocines and dibenzoazepines via a microwave-assisted intramolecular A(3)-coupling reaction. Org. Lett., 2010, 12(12), 2774-2777.
[http://dx.doi.org/10.1021/ol1008729] [PMID: 20481446]
[33]
Appukkuttan, P.; Dehaen, W.; Van der Eycken, E. Microwave-assisted transition-metal-catalyzed synthesis of N-shifted and ring-expanded buflavine analogues. Chemistry, 2007, 13(22), 6452-6460.
[http://dx.doi.org/10.1002/chem.200700177] [PMID: 17508369]
[34]
Li, Z.; Legras, L.; Kumar, A.; Vachhani, D.D.; Sharma, S.K.; Parmar, V.S.; Van der Eycken, E.V. Microwave-assisted synthesis of 4H-benzo[f]imidazo[1,4]diazepin-6-ones via a post-Ugi copper-catalyzed intramolecular Ullmann coupling. Tetrahedron Lett., 2014, 55(13), 2070-2074.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.023]
[35]
Shang, H.; Wang, Y.; Tian, Y.; Feng, J.; Tang, Y. The divergent synthesis of nitrogen heterocycles by Rhodium(II)‐Catalyzed Cycloadditions of 1‐Sulfonyl 1,2,3‐Triazoles with 1,3-. Dienes. Angew. Chem. Int. Ed., 2014, 53(22), 5662-5666.
[http://dx.doi.org/10.1002/anie.201400426]
[36]
Manna, S.K.; Panda, G. Microwave assisted [RuCl 2 (p-cymene) 2] 2 catalyzed regioselective endo-tandem cyclization involving imine and alkyne activation: An approach to benzo[4,5]imidazo[2,1-a]pyridine scaffold. RSC Advances, 2014, 4(40), 21032-21041.
[http://dx.doi.org/10.1039/C4RA02581D]
[37]
Liu, Y.; Jin, S.; Wang, Z.; Song, L.; Hu, Y. Microwave assisted tandem Heck-Sonogashira reactions of N,N-di-Boc-protected 6-amino-5-iodo-2-methyl pyrimidin-4-ol in an efficient approach to functionalized pyrido[2,3-d]pyrimidines. Org. Lett., 2014, 16(13), 3524-3527.
[http://dx.doi.org/10.1021/ol501459e] [PMID: 24956126]
[38]
Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of indolines by copper-mediated intramolecular aromatic C-h amination. J. Org. Chem., 2015, 80(6), 3242-3249.
[http://dx.doi.org/10.1021/acs.joc.5b00307] [PMID: 25716755]
[39]
Shekarrao, K.; Kaishap, P.P.; Saddanapu, V.; Addlagatta, A.; Gogoi, S.; Boruah, R.C. Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines, pyrazolo[3,4-b]quinolines, pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines. RSC Advances, 2014, 4(46), 24001-24006.
[http://dx.doi.org/10.1039/C4RA02865A]
[40]
Alcaide, B.; Almendros, P.; Quirós, M.T. Gold/acid-co-catalyzed direct microwave-assisted synthesis of fused azaheterocycles from propargylic hydroperoxides. Chemistry, 2014, 20(12), 3384-3393.
[http://dx.doi.org/10.1002/chem.201304509] [PMID: 24532455]
[41]
Pandey, G.; Bhowmik, S.; Batra, S. Synthesis of 3H-pyrazolo[3,4-c]isoquinolines and thieno[3,2-c]isoquinolines via cascade imination/intramolecular decarboxylative coupling. Org. Lett., 2013, 15(19), 5044-5047.
[http://dx.doi.org/10.1021/ol4023722] [PMID: 24047440]
[42]
Grotkopp, O.; Ahmad, A.; Frank, W.; Müller, T.J.J. Blue-luminescent 5-(3-indolyl)oxazoles via microwave-assisted three-component coupling–cycloisomerization–Fischer indole synthesis. Org. Biomol. Chem., 2011, 9(23), 8130-8140.
[http://dx.doi.org/10.1039/c1ob06153d] [PMID: 22024934]
[43]
Karuvalam, R.P.; Haridas, K.R.; Sajith, A.M.; Muralidharan, A. A facile access to substituted indoles utilizing palladium catalyzed annulation under microwave enhanced conditions. Tetrahedron Lett., 2013, 54(37), 5126-5129.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.073]
[44]
Nguyen, H.H.; Kurth, M.J. Microwave-assisted synthesis of 3-nitroindoles from N-aryl enamines via intramolecular arene-alkene coupling. Org. Lett., 2013, 15(2), 362-365.
[http://dx.doi.org/10.1021/ol303314x] [PMID: 23268775]
[45]
Hellal, M.; Cuny, G.D. Microwave assisted copper-free Sonogashira coupling/5-exo-dig cycloisomerization domino reaction: access to 3-(phenylmethylene)isoindolin-1-ones and related heterocycles. Tetrahedron Lett., 2011, 52(42), 5508-5511.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.070]
[46]
Han, J.; Xu, B.; Hammond, G.B. Highly efficient Cu(I)-catalyzed synthesis of N-heterocycles through a cyclization-triggered addition of alkynes. J. Am. Chem. Soc., 2010, 132(3), 916-917.
[http://dx.doi.org/10.1021/ja908883n] [PMID: 20041710]
[47]
Naresh, G.; Kant, R.; Narender, T. Copper(II) catalyzed expeditious synthesis of furoquinoxalines through a one-pot three-component coupling strategy. Org. Lett., 2014, 16(17), 4528-4531.
[http://dx.doi.org/10.1021/ol502072k] [PMID: 25115644]
[48]
Saha, P.; Naskar, S.; Paira, R.; Mondal, S.; Maity, A.; Sahu, K.B.; Paira, P.; Hazra, A.; Bhattacharya, D.; Banerjee, S.; Mondal, N.B. One-pot tandem synthesis of Furo[3,2-h]quinolines by a sonogashira cross-coupling and cyclization reaction supported by basic alumina under microwave irradiation. Synthesis, 2010, 3, 486-492.
[49]
Yang, D.; Burugupalli, S.; Daniel, D.; Chen, Y. Microwave-assisted one-pot synthesis of isoquinolines, furopyridines, and thienopyridines by palladium-catalyzed sequential coupling-imination-annulation of 2-bromoarylaldehydes with terminal acetylenes and ammonium acetate. J. Org. Chem., 2012, 77(9), 4466-4472.
[http://dx.doi.org/10.1021/jo300494a] [PMID: 22494334]
[50]
Vachhani, D.D.; Mehta, V.P.; Modha, S.G.; Van Hecke, K.; VanMeervelt, L.; Van der Eycken, E.V. Microwave‐assisted synthesis of pyrazino[2,1‐ b]quinazolines and 3‐Indolyl‐2(1 H)‐pyrazinones employing a chemoselective Silver(I)‐ and Gold(I)‐catalyzed reaction. Adv. Synth. Catal., 2012, 354(8), 1593-1599.
[http://dx.doi.org/10.1002/adsc.201100881]
[51]
Åkerbladh, L.; Nordeman, P.; Wejdemar, M.; Odell, L.R.; Larhed, M. Synthesis of 4-quinolones via a carbonylative Sonogashira cross-coupling using molybdenum hexacarbonyl as a CO source. J. Org. Chem., 2015, 80(3), 1464-1471.
[http://dx.doi.org/10.1021/jo502400h] [PMID: 25575042]
[52]
Moustafa, A.H.; Malakar, C.C.; Aljaar, N.; Merisor, E.; Conrad, J.; Beifuss, U. Microwave-assisted molybdenum-catalyzed reductive cyclization of o-nitrobenzylidene amines to 2-Aryl-2H-indazoles. Synlett, 2013, 24, 1573-1577.
[http://dx.doi.org/10.1055/s-0033-1339195]
[53]
Ho, S.L.; Cho, C.S. Microwave-assisted copper-powder-catalyzed synthesis of pyrimidinones from β-Bromo α,β-unsaturated carboxylic acids and amidines. Synlett, 2013, 24, 2705-2708.
[http://dx.doi.org/10.1055/s-0033-1340283]
[54]
Zhang, X.Y.; Yang, Z.W.; Chen, Z.; Wang, J.; Yang, D.L.; Shen, Z.; Hu, L.L.; Xie, J.W.; Zhang, J.; Cui, H.L. Tandem copper-catalyzed propargylation/alkyne azacyclization/isomerization reaction under microwave irradiation: Synthesis of fully substituted pyrroles. J. Org. Chem., 2016, 81, 1778-1785.
[http://dx.doi.org/10.1021/acs.joc.5b02429] [PMID: 26872395]
[55]
Zhao, J.; Zhao, X.J.; Cao, P.; Liu, J.K.; Wu, B. Polycyclic azetidines and pyrrolidines via palladium-catalyzed intramolecular amination of unactivated C(sp3)–H bonds. Org. Lett., 2017, 19(18), 4880-4883.
[http://dx.doi.org/10.1021/acs.orglett.7b02339] [PMID: 28876944]
[56]
Panday, A.K.; Mishra, R.; Jana, A.; Parvin, T.; Choudhury, L.H. Synthesis of pyrimidine fused quinolines by ligand-free copper-catalyzed domino reactions. J. Org. Chem., 2018, 83(7), 3624-3632.
[http://dx.doi.org/10.1021/acs.joc.7b03272] [PMID: 29570285]
[57]
Dao, P.D.Q.; Ho, S.L.; Cho, C.S. Synthesis of N-Fused Benzimidazole-4,7-diones via sequential copper-catalyzed C–N coupling/cyclization and oxidation. ACS Omega, 2018, 3(5), 5643-5653.
[http://dx.doi.org/10.1021/acsomega.8b00805] [PMID: 31458764]
[58]
Malasala, S.; Polomoni, A.; Chelli, S.M.; Kar, S.; Madhavi, Y.V.; Nanduri, S. A microwave-assisted copper-mediated tandem approach for fused quinazoline derivatives. Org. Biomol. Chem., 2021, 19(8), 1854-1859.
[http://dx.doi.org/10.1039/D0OB02312D] [PMID: 33565553]
[59]
Dao, P.D.Q.; Cho, C.S. Copper‐catalyzed synthesis of 5‐Arylindolo[1,2‐ c]quinazolin‐6(5 H)‐ones from 2‐(2‐Bromoaryl)indoles and Aryl isocyanates under microwave irradiation. Eur. J. Org. Chem., 2022, 2022(22), e202200479.
[http://dx.doi.org/10.1002/ejoc.202200479]
[60]
Yuan, J.W.; Mou, C.X.; Zhang, Y.; Hu, W.Y.; Yang, L.R.; Xiao, Y.M.; Mao, P.; Zhang, S.R.; Qu, L.B. Transition-metal catalyzed oxidative spirocyclization of N -aryl alkynamides with methylarenes under microwave irradiation. Org. Biomol. Chem., 2021, 19(47), 10348-10358.
[http://dx.doi.org/10.1039/D1OB01970H] [PMID: 34812461]
[61]
Hadiyal, S.D.; Lalpara, J.N.; Parmar, N.D.; Joshi, H.S. Microwave irradiated targeted synthesis of pyrrolobenzodiazepine Embrace 1,2,3-Triazole by click chemistry synthetic aspect and evaluation of anticancer and antimicrobial activity. Polycycl. Aromat. Compd., 2022, 42(7), 4752-4768.
[http://dx.doi.org/10.1080/10406638.2021.1913425]
[62]
Gajaganti, S.; Kumari, S.; Kumar, D.; Allam, B.K.; Srivastava, V.; Singh, S.J. An efficient, green, and solvent-free multi-component synthesis of benzimidazolo/benzothiazolo quinazolinone derivatives using Sc (OTf)3 catalyst under controlled microwave irradiation. J. Heterocycl. Chem., 2018, 55, 2578-2584.
[63]
Mahmoud, A.G.; Guedes da Silva, M.F.C.; Sokolnicki, J.; Smoleński, P.; Pombeiro, A.J.L. Hydrosoluble Cu(I)-DAPTA complexes: Synthesis, characterization, luminescence thermochromism and catalytic activity for microwave-assisted three-component azide–alkyne cycloaddition click reaction. Dalton Trans., 2018, 47(21), 7290-7299.
[http://dx.doi.org/10.1039/C8DT01232F] [PMID: 29767654]
[64]
Hartwig, J.F. Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: Scope and mechanism. Angew. Chem. Int. Ed., 1998, 37(15), 2046-2067.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2046:AID-ANIE2046>3.0.CO;2-L]
[65]
Prim, D.; Campagne, J.M.; Joseph, D.; Andrioletti, B. Palladium-catalysed reactions of aryl halides with soft, non-organometallic nucleophiles. Tetrahedron, 2002, 58(11), 2041-2075.
[http://dx.doi.org/10.1016/S0040-4020(02)00076-5]
[66]
Yamamoto, Y.; Itonaga, K. Synthesis of chromans via [3 + 3] cyclocoupling of phenols with allylic alcohols using a Mo/o-chloranil catalyst system. Org. Lett., 2009, 11(3), 717-720.
[http://dx.doi.org/10.1021/ol802800s] [PMID: 19117489]
[67]
Vishnumurthy, K.; Makriyannis, A. Novel and efficient one-step parallel synthesis of dibenzopyranones via Suzuki-Miyaura cross coupling. J. Comb. Chem., 2010, 12(5), 664-669.
[http://dx.doi.org/10.1021/cc100068a] [PMID: 20831265]
[68]
Thasana, N.; Worayuthakarn, R.; Kradanrat, P.; Hohn, E.; Young, L.; Ruchirawat, S. Copper(I)-mediated and microwave-assisted C(aryl)-O(carboxylic) coupling: Synthesis of benzopyranones and isolamellarin alkaloids. J. Org. Chem., 2007, 72(24), 9379-9382.
[http://dx.doi.org/10.1021/jo701599g] [PMID: 17975927]
[69]
Xu, T.; Zhang, E.; Wang, D.; Wang, Y.; Zou, Y. Cu-catalyzed consecutive hydroxylation and aerobic oxidative cycloetherification under microwave conditions: Entry to 2-Arylbenzofuran-3-carboxylic acids. J. Org. Chem., 2015, 80(9), 4313-4324.
[http://dx.doi.org/10.1021/jo502802k] [PMID: 25836742]
[70]
Battini, N.; Battula, S.; Kumar, R.R.; Ahmed, Q.N. 2-Oxo driven unconventional reactions: Microwave assisted approaches to tetrahydrofuro[3,2- d]oxazoles and furanones. Org. Lett., 2015, 17(12), 2992-2995.
[http://dx.doi.org/10.1021/acs.orglett.5b01271] [PMID: 26047063]
[71]
Svennebring, A.; Nilsson, P.; Larhed, M. Microwave-accelerated spiro-cyclizations of o-halobenzyl cyclohexenyl ethers by palladium(0) catalysis. J. Org. Chem., 2007, 72(15), 5851-5854.
[http://dx.doi.org/10.1021/jo0708487] [PMID: 17602595]
[72]
Castagnolo, D.; Botta, L.; Botta, M. One-pot multicomponent synthesis of 2,3-dihydropyrans: New access to furanose–pyranose 1,3-C–C-linked-disaccharides. Tetrahedron Lett., 2009, 50(14), 1526-1528.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.047]
[73]
Awuah, E.; Capretta, A. Access to flavones via a microwave-assisted, one-pot Sonogashira-carbonylation-annulation reaction. Org. Lett., 2009, 11(15), 3210-3213.
[http://dx.doi.org/10.1021/ol901043q] [PMID: 19580257]
[74]
Murugavel, G.; Punniyamurthy, T. Microwave-assisted copper-catalyzed four-component tandem synthesis of 3- N -Sulfonylamidine Coumarins. J. Org. Chem., 2015, 80(12), 6291-6299.
[http://dx.doi.org/10.1021/acs.joc.5b00738] [PMID: 26024048]
[75]
Seth, K.; Garg, S.K.; Kumar, R.; Purohit, P.; Meena, V.S.; Goyal, R.; Banerjee, U.C.; Chakraborti, A.K. 2-(2-Arylphenyl)benzoxazole as a novel anti-inflammatory scaffold: Synthesis and biological evaluation. ACS Med. Chem. Lett., 2014, 5, 512-516.
[76]
(a) Seth, K.; Purohit, P.; Chakraborti, A.K. Cooperative catalysis by palladium-nickel binary nanocluster for Suzuki-Miyaura reaction of ortho-heterocycle-tethered sterically hindered aryl bromides. Org. Lett., 2014, 16(9), 2334-2337.
[http://dx.doi.org/10.1021/ol500587m] [PMID: 24720556];
(b) Seth, K.; Nautiyal, M.; Purohit, P.; Parikh, N.; Chakraborti, A.K. Palladium catalyzed C sp2 –H activation for direct aryl hydroxylation: The unprecedented role of 1,4-dioxane as a source of hydroxyl radicals. Chem. Commun., 2015, 51(1), 191-194.
[http://dx.doi.org/10.1039/C4CC06864E];
(c) Pipaliya, B.V.; Chakraborti, A.K. Cross-dehydrogenative coupling of heterocyclic scaffolds with unfunctionalized aroyl surrogates by Palladium(II) catalyzed C(sp2)-H Aroylation through organocatalytic dioxygen activation. J. Org. Chem., 2017, 82(7), 3767-3780.
[http://dx.doi.org/10.1021/acs.joc.7b00226] [PMID: 28299930]
[77]
Kumar, D.; Rudrawar, S.; Chakraborti, A.K. One-pot synthesis of 2-substituted benzoxazoles directly from carboxylic acids. Aust. J. Chem., 2008, 61(11), 881-887.
[http://dx.doi.org/10.1071/CH08193]
[78]
Kumar, R.; Selvam, C.; Kaur, G.; Chakraborti, A.K. Microwave-assisted direct synthesis of 2-substituted benzoxazoles from carboxylic acids under catalyst and solvent free conditions. Synlett, 2005, 9, 1401-1404.
[79]
Viirre, R.D.; Evindar, G.; Batey, R.A. Copper-catalyzed domino annulation approaches to the synthesis of benzoxazoles under microwave-accelerated and conventional thermal conditions. J. Org. Chem., 2008, 73(9), 3452-3459.
[http://dx.doi.org/10.1021/jo702145d] [PMID: 18376860]
[80]
Buxaderas, E.; Alonso, D.A.; Nájera, C. Synthesis of Dihydroisobenzofurans via palladium‐catalyzed sequential alkynylation/annulation of 2‐bromobenzyl and 2‐chlorobenzyl alcohols under microwave irradiation. Adv. Synth. Catal., 2014, 356(16), 3415-3421.
[http://dx.doi.org/10.1002/adsc.201400457]
[81]
Xia, L.; Lee, Y.R. Efficient one‐pot synthesis of multi‐substituted dihydrofurans by Ruthenium(II)‐catalyzed [3+2] cycloaddition of cyclic or acyclic diazodicarbonyl compounds with Olefins. Adv. Synth. Catal., 2013, 355(11-12), 2361-2374.
[http://dx.doi.org/10.1002/adsc.201300245]
[82]
Nicolaus, N.; Schmalz, H.G. Synthesis of novel allocolchicine analogues with a pyridine C-ring through intermolecular vollhardt diyne-nitrile cyclotrimerization. Synlett, 2010, 14, 2071-2074.
[83]
Dhameliya, T.M.; Chourasiya, S.S.; Mishra, E.; Jadhavar, P.S.; Bharatam, P.V.; Chakraborti, A.K. Rationalization of Benzazole-2-carboxylate versus Benzazine-3-one/Benzazine-2,3-dione selectivity switch during cyclocondensation of 2-Aminothiophenols/Phenols/Anilines with 1,2-Biselectrophiles in aqueous medium. J. Org. Chem., 2017, 82(19), 10077-10091.
[http://dx.doi.org/10.1021/acs.joc.7b01548] [PMID: 28846411]
[84]
(a) Pancholia, S.; Dhameliya, T.M.; Shah, P.; Jadhavar, P.S.; Sridevi, J.P.; Yogeshwari, P.; Sriram, D.; Chakraborti, A.K. Benzo[ d]thiazol-2-yl(piperazin-1-yl)methanones as new anti-mycobacterial chemotypes: Design, synthesis, biological evaluation and 3D-QSAR studies. Eur. J. Med. Chem., 2016, 116, 187-199.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.060] [PMID: 27061982];
(b) Shah, P.; Dhameliya, T.M.; Bansal, R.; Nautiyal, M.; Kommi, D.N.; Jadhavar, P.S.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. N-Arylalkylbenzo[d]thiazole-2-carboxamides as anti-mycobacterial agents: Design, new methods of synthesis and biological evaluation. MedChemComm, 2014, 5(10), 1489-1495.
[http://dx.doi.org/10.1039/C4MD00224E]
[85]
Feng, G.; Qi, C.; Wang, S.; Li, W.; Chen, F. Palladium-catalyzed, microwave-assisted synthesis of 3,4-Dihydro-3-oxo-2H-1,4-benzoxazines: An improved catalytic system and multicomponent process. Synthesis, 2013, 45(19), 2711-2718.
[http://dx.doi.org/10.1055/s-0033-1338508]
[86]
Ho, S.L.; Cho, C.S.; Sohn, H.S. Microwave-assisted copper-powder-catalyzed coupling and cyclization of β-bromo-α, β-unsaturated carboxylic acids with 1,3-diketones leading to 2H-pyran-2-ones. Synthesis, 2015, 47, 216-220.
[87]
Mestichelli, P.; Scott, M.J.; Galloway, W.R.J.D.; Selwyn, J.; Parker, J.S.; Spring, D.R. Concise copper-catalyzed synthesis of tricyclic biaryl ether-linked aza-heterocyclic ring systems. Org. Lett., 2013, 15(21), 5448-5451.
[http://dx.doi.org/10.1021/ol4025259] [PMID: 24134806]
[88]
Liu, J.; Zhou, X.; Wang, C.; Fu, W.; Chu, W.; Sun, Z. Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C–H activation/C–C cyclization under microwave irradiation. Chem. Commun., 2016, 52(29), 5152-5155.
[http://dx.doi.org/10.1039/C6CC01149G] [PMID: 26997503]
[89]
Rajput, D.; Kumar, A.; Jandial, T.; Karuppasamy, M.; Bhuvanesh, N.; Kumar, R.S.; Almansour, A.I.; Sridharan, V. Microwave-Assisted Copper(II)-catalyzed cascade cyclization of 2-Propargylamino/Oxy-Arylaldehydes and O-Phenylenediamines: Access to densely functionalized Benzo[ f]Imidazo[1,2- d][1,4]Oxazepines and Benzo[ f]Imidazo[1,2- d ][1,4] Diazepines. J. Org. Chem., 2022, 87(14), 8956-8969.
[http://dx.doi.org/10.1021/acs.joc.2c00671] [PMID: 35765119]
[90]
Ravinder, R.B.H.M.; Narsimha, S. Microwave-assisted one pot synthesis of fused [1,2,3]triazolo-pyrano[3,2-h]quinolines and theirbiological evaluation. Asian J. Pharm. Pharmacol., 2019, 5, 1202.
[http://dx.doi.org/10.31024/ajpp.2019.5.6.17]
[91]
Parikh, P.H.; Timaniya, J.B.; Patel, M.J.; Patel, K.P. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities. J. Mol. Struct., 2022, 1249.
[92]
Damani, L.A. Part B; Ellis Horwood Ltd: Chichester, UK, 1989, p. 1.
[93]
Kim, Y.S.; Kwak, S.H.; Gong, Y.D. Application of thio-ugi adducts for the preparation of Benzo[ b]thiophene and S-Heterocycle library via. copper catalyzed intramolecular C–S bond formation. ACS Comb. Sci., 2015, 17(6), 365-373.
[http://dx.doi.org/10.1021/acscombsci.5b00034] [PMID: 25961783]
[94]
Kunz, T.; Knochel, P. Synthesis of functionalized Benzo[b]thiophenes by the intramolecular Copper‐Catalyzed Carbomagnesiation of Alkynyl(aryl)thioethers. Angew. Chem. Int. Ed., 2012, 51(8), 1958-1961.
[http://dx.doi.org/10.1002/anie.201106734]
[95]
Castanheiro, T.; Donnard, M.; Gulea, M.; Suffert, J. Cyclocarbopalladation/cross-coupling cascade reactions in sulfide series: Access to sulfur heterocycles. Org. Lett., 2014, 16(11), 3060-3063.
[http://dx.doi.org/10.1021/ol501165h] [PMID: 24820009]
[96]
Srinivas, A.; Sunitha, M.; Raju, K.; Ravinder, B.; Anusha, S.; Rajasri, T.; Swapna, P.; Sushmitha, D.; Swaroopa, D.; Nikitha, G.; Govind Rao, C. Microwave-assisted synthesis of hybrid heterocycles as potential anticancer agents. Acta Chim. Slov., 2017, 64(2), 319-331.
[http://dx.doi.org/10.17344/acsi.2016.3153] [PMID: 28621402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy