Abstract
This study incorporates the assembly of development methodologies of microwave-activated protocol involving transition metal catalysts for the synthesis of numerous biologically important heterocycles during the past few years. Herein, it highlights the potential of transition metal salts as catalysts in multicomponent reactions performed under microwave conditions for the formation of oxygen, nitrogen, and sulphur-containing bioactive heterocycle moieties. Microwaveactivated organic synthesis has been well-utilized as an alternative to conventional methodology in pharmaceutical companies due to its potential to significantly improve the rate and consequently diminish the time span of the synthetic process. The traditional methods involving transition metal catalysts for synthesizing bioactive heterocyclic molecules are prolonged and, thus, difficult to meet the requirements for the timely supply of these important compounds. In our review, our main focus is on integrating such synthetic strategies involving transition metal catalysis with a microwaveactivated multicomponent approach for developing bioactive heterocycles.
Graphical Abstract
[http://dx.doi.org/10.1021/cr078399y] [PMID: 18543878];
(b) Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. Chem. Rev., 2009, 109(9), 4140-4182.
[http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022];
(c) Candeias, N.R.; Branco, L.C.; Gois, P.M.P.; Afonso, C.A.M.; Trindade, A.F. More sustainable approaches for the synthesis of N-based heterocycles. Chem. Rev., 2009, 109(6), 2703-2802.
[http://dx.doi.org/10.1021/cr800462w] [PMID: 19385653]
[http://dx.doi.org/10.1016/0040-4020(95)00662-R];
(b) Varma, R.S. Solvent-free organic syntheses. Green Chem., 1999, 1(1), 43-55.
[http://dx.doi.org/10.1039/a808223e];
(c) Perreux, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 2001, 57(45), 9199-9223.
[http://dx.doi.org/10.1016/S0040-4020(01)00905-X];
(d) Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis-a review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1];
(e) Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j] [PMID: 18648680];
(f) Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655]
[http://dx.doi.org/10.1038/421571a] [PMID: 12571563];
(b) Kappe, C.O.; Dallinger, D.; Murphree, S.S., Eds.;]; Practical MW synthesis for organic chemists: Strategies, instruments and protocols. Wiley-VCH: Weinheim, Germany, 2009; Strauss, C.R.; Clark, J.; Duncan, M., Eds.; , Eds.; Wiley-VCH: Weinheim, Germany, 2009.
[http://dx.doi.org/10.1002/9780470988305.ch17]
[http://dx.doi.org/10.1071/C98156]
[http://dx.doi.org/10.1038/nrd1926] [PMID: 16374514]
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[http://dx.doi.org/10.1016/j.ddtec.2005.05.002]
(b) Tsuji, J. Palladium in organic synthesis; Springer: New York, 2005.
(b) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/9783527619405]
[http://dx.doi.org/10.1007/128_046];
(b) Wang, K.U.; Wang, J.X. Wiley-VCH: Weinheim, Germany,; , 2013.
[http://dx.doi.org/10.1021/cr100346g] [PMID: 21391570]
[http://dx.doi.org/10.1021/ar010074v] [PMID: 12234201]
[http://dx.doi.org/10.1002/3527601775.ch11]
[http://dx.doi.org/10.1021/jo9612990]
[http://dx.doi.org/10.2174/0929867023369989] [PMID: 12052166];
(b) Santagada, V.; Frecentese, F.; Perissutti, E.; Fiorino, F.; Severino, B.; Caliendo, G. Microwave assisted synthesis: A new technology in drug discovery. Mini Rev. Med. Chem., 2009, 9(3), 340-358.
[http://dx.doi.org/10.2174/1389557510909030340] [PMID: 19275727];
(c) Appukkuttan, P.; Van der Eycken, E. Recent developments in microwave‐assisted, transition‐metal‐catalysed C–C and C–N bond‐forming reactions. Eur. J. Org. Chem., 2008, 2008(7), 1133-1155.
[http://dx.doi.org/10.1002/ejoc.200701056];
(d) Bai, L.; Wang, J. Environmentally friendly suzuki Aryl-Aryl cross-coupling reaction. Curr. Org. Chem., 2005, 9(6), 535-553.
[http://dx.doi.org/10.2174/1385272053544407]
[http://dx.doi.org/10.1001/jama.1993.03500150078030] [PMID: 8464128]
[http://dx.doi.org/10.1021/jm01240a021] [PMID: 14056431]
[PMID: 20112166]
[PMID: 9713155]
[http://dx.doi.org/10.1136/bmj.2.5363.965] [PMID: 14056924]
[http://dx.doi.org/10.2174/138955707780619626] [PMID: 17504183]
[http://dx.doi.org/10.4103/0975-7406.80765] [PMID: 21687347]
[http://dx.doi.org/10.1080/17518253.2012.733032]
[http://dx.doi.org/10.1039/C1CC15238F] [PMID: 22031184]
[http://dx.doi.org/10.1021/ol071079g] [PMID: 17608431]
[http://dx.doi.org/10.1002/ejoc.200801175]
[http://dx.doi.org/10.1021/acs.joc.5b00670] [PMID: 25996648]
[http://dx.doi.org/10.1021/ol1008729] [PMID: 20481446]
[http://dx.doi.org/10.1002/chem.200700177] [PMID: 17508369]
[http://dx.doi.org/10.1016/j.tetlet.2014.02.023]
[http://dx.doi.org/10.1002/anie.201400426]
[http://dx.doi.org/10.1039/C4RA02581D]
[http://dx.doi.org/10.1021/ol501459e] [PMID: 24956126]
[http://dx.doi.org/10.1021/acs.joc.5b00307] [PMID: 25716755]
[http://dx.doi.org/10.1039/C4RA02865A]
[http://dx.doi.org/10.1002/chem.201304509] [PMID: 24532455]
[http://dx.doi.org/10.1021/ol4023722] [PMID: 24047440]
[http://dx.doi.org/10.1039/c1ob06153d] [PMID: 22024934]
[http://dx.doi.org/10.1016/j.tetlet.2013.07.073]
[http://dx.doi.org/10.1021/ol303314x] [PMID: 23268775]
[http://dx.doi.org/10.1016/j.tetlet.2011.08.070]
[http://dx.doi.org/10.1021/ja908883n] [PMID: 20041710]
[http://dx.doi.org/10.1021/ol502072k] [PMID: 25115644]
[http://dx.doi.org/10.1021/jo300494a] [PMID: 22494334]
[http://dx.doi.org/10.1002/adsc.201100881]
[http://dx.doi.org/10.1021/jo502400h] [PMID: 25575042]
[http://dx.doi.org/10.1055/s-0033-1339195]
[http://dx.doi.org/10.1055/s-0033-1340283]
[http://dx.doi.org/10.1021/acs.joc.5b02429] [PMID: 26872395]
[http://dx.doi.org/10.1021/acs.orglett.7b02339] [PMID: 28876944]
[http://dx.doi.org/10.1021/acs.joc.7b03272] [PMID: 29570285]
[http://dx.doi.org/10.1021/acsomega.8b00805] [PMID: 31458764]
[http://dx.doi.org/10.1039/D0OB02312D] [PMID: 33565553]
[http://dx.doi.org/10.1002/ejoc.202200479]
[http://dx.doi.org/10.1039/D1OB01970H] [PMID: 34812461]
[http://dx.doi.org/10.1080/10406638.2021.1913425]
[http://dx.doi.org/10.1039/C8DT01232F] [PMID: 29767654]
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2046:AID-ANIE2046>3.0.CO;2-L]
[http://dx.doi.org/10.1016/S0040-4020(02)00076-5]
[http://dx.doi.org/10.1021/ol802800s] [PMID: 19117489]
[http://dx.doi.org/10.1021/cc100068a] [PMID: 20831265]
[http://dx.doi.org/10.1021/jo701599g] [PMID: 17975927]
[http://dx.doi.org/10.1021/jo502802k] [PMID: 25836742]
[http://dx.doi.org/10.1021/acs.orglett.5b01271] [PMID: 26047063]
[http://dx.doi.org/10.1021/jo0708487] [PMID: 17602595]
[http://dx.doi.org/10.1016/j.tetlet.2009.01.047]
[http://dx.doi.org/10.1021/ol901043q] [PMID: 19580257]
[http://dx.doi.org/10.1021/acs.joc.5b00738] [PMID: 26024048]
[http://dx.doi.org/10.1021/ol500587m] [PMID: 24720556];
(b) Seth, K.; Nautiyal, M.; Purohit, P.; Parikh, N.; Chakraborti, A.K. Palladium catalyzed C sp2 –H activation for direct aryl hydroxylation: The unprecedented role of 1,4-dioxane as a source of hydroxyl radicals. Chem. Commun., 2015, 51(1), 191-194.
[http://dx.doi.org/10.1039/C4CC06864E];
(c) Pipaliya, B.V.; Chakraborti, A.K. Cross-dehydrogenative coupling of heterocyclic scaffolds with unfunctionalized aroyl surrogates by Palladium(II) catalyzed C(sp2)-H Aroylation through organocatalytic dioxygen activation. J. Org. Chem., 2017, 82(7), 3767-3780.
[http://dx.doi.org/10.1021/acs.joc.7b00226] [PMID: 28299930]
[http://dx.doi.org/10.1071/CH08193]
[http://dx.doi.org/10.1021/jo702145d] [PMID: 18376860]
[http://dx.doi.org/10.1002/adsc.201400457]
[http://dx.doi.org/10.1002/adsc.201300245]
[http://dx.doi.org/10.1021/acs.joc.7b01548] [PMID: 28846411]
[http://dx.doi.org/10.1016/j.ejmech.2016.03.060] [PMID: 27061982];
(b) Shah, P.; Dhameliya, T.M.; Bansal, R.; Nautiyal, M.; Kommi, D.N.; Jadhavar, P.S.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. N-Arylalkylbenzo[d]thiazole-2-carboxamides as anti-mycobacterial agents: Design, new methods of synthesis and biological evaluation. MedChemComm, 2014, 5(10), 1489-1495.
[http://dx.doi.org/10.1039/C4MD00224E]
[http://dx.doi.org/10.1055/s-0033-1338508]
[http://dx.doi.org/10.1021/ol4025259] [PMID: 24134806]
[http://dx.doi.org/10.1039/C6CC01149G] [PMID: 26997503]
[http://dx.doi.org/10.1021/acs.joc.2c00671] [PMID: 35765119]
[http://dx.doi.org/10.31024/ajpp.2019.5.6.17]
[http://dx.doi.org/10.1021/acscombsci.5b00034] [PMID: 25961783]
[http://dx.doi.org/10.1002/anie.201106734]
[http://dx.doi.org/10.1021/ol501165h] [PMID: 24820009]
[http://dx.doi.org/10.17344/acsi.2016.3153] [PMID: 28621402]