Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Meta-Analysis

Evidence of Clinical Efficacy and Pharmacological Mechanisms of Resveratrol in the Treatment of Alzheimer’s Disease

Author(s): Sian Jin, Xuefeng Guan* and Dongyu Min*

Volume 20, Issue 8, 2023

Published on: 01 December, 2023

Page: [588 - 602] Pages: 15

DOI: 10.2174/0115672050272577231120060909

Price: $65

Abstract

Background: To evaluate the efficacy and pharmacological mechanisms of resveratrol in Alzheimer’s disease (AD) patients.

Methods: We conducted a thorough exploration of existing randomized controlled trials concerning the treatment of Alzheimer's disease patients using resveratrol, utilizing accessible open databases. Quantitative variables were represented as a standardized mean difference (SMD), accompanied by a 95% confidence interval (CI). Additionally, we examined the potential targets and plausible pathways associated with the impact of resveratrol on Alzheimer's disease using network pharmacology techniques.

Results: Our meta-analysis comprised five trials involving 271 AD patients, of whom 139 received resveratrol treatment and 132 received placebo treatment. Compared with placebo therapy, resveratrol treatment resulted in a significant improvement in Alzheimer’s Disease Cooperative Study— Activities of Daily Living (ADAS-ADL) scores (SMD=0.51; 95% CI, 0.24 to 0.78) and cerebrospinal fluid (CSF) Aβ40 (SMD=0.84; 95% CI, 0.21 to 1.47) and plasma Aβ40 levels (SMD=0.43; 95% CI, 0.07 to 0.79). However, the improvement in the resveratrol-treated group compared with the placebo treatment group on the Mini-Mental State Examination (MMSE) score, CSF Aβ42 and plasma Aβ42 levels, and brain volume was not significant. There were no noteworthy statistical variances in the occurrence of adverse effects noted between the two groups. The outcomes of network pharmacology divulged that the principal enriched interaction pathway between resveratrol and Alzheimer's disease is primarily concentrated within the PI3K signaling pathways. Resveratrol's potential key targets for the treatment of AD include MAKP1, HRAS, EGFR, and MAPK2K1.

Conclusion: While having a high safety profile, resveratrol has efficacy in AD patients to a certain extent, and more data are required to validate the efficacy of resveratrol for the treatment of AD in the future. Suppression of the PI3K signaling pathways could hold significant importance in the treatment of AD patients using resveratrol.

« Previous
[1]
Guzman-Martinez L, Calfío C, Farias GA, Vilches C, Prieto R, Maccioni RB. New frontiers in the prevention, diagnosis, and treatment of alzheimer’s disease. J Alzheimers Dis 2021; 82(s1): S51-63.
[http://dx.doi.org/10.3233/JAD-201059] [PMID: 33523002]
[2]
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet 2021; 397(10284): 1577-90.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[3]
Breijyeh Z, Karaman R. Comprehensive review on alzheimer's disease: Causes and treatment. molecules. Basel, Switzerland 2020; 25.
[4]
Jeandet P, Bessis R, Gautheron B. The production of resveratrol (3, 5, 4′-trihydroxystilbene) by grape berries in different developmental stages. Am J Enol Vitic 1991; 42(1): 41-6.
[http://dx.doi.org/10.5344/ajev.1991.42.1.41]
[5]
Sales JM, Resurreccion AVA. Resveratrol in peanuts. Crit Rev Food Sci Nutr 2014; 54(6): 734-70.
[http://dx.doi.org/10.1080/10408398.2011.606928] [PMID: 24345046]
[6]
Lyons MM, Yu C, Toma RB, et al. Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 2003; 51(20): 5867-70.
[http://dx.doi.org/10.1021/jf034150f] [PMID: 13129286]
[7]
Burns J, Yokota T, Ashihara H, Lean MEJ, Crozier A. Plant foods and herbal sources of resveratrol. J Agric Food Chem 2002; 50(11): 3337-40.
[http://dx.doi.org/10.1021/jf0112973] [PMID: 12010007]
[8]
Tian B, Liu J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J Sci Food Agric 2020; 100(4): 1392-404.
[http://dx.doi.org/10.1002/jsfa.10152] [PMID: 31756276]
[9]
Meng T, Xiao D, Muhammed A, et al. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021; 26(1): 229.
[10]
Zhang F, Liu J, Shi JS. Anti-inflammatory activities of resveratrol in the brain: Role of resveratrol in microglial activation. Eur J Pharmacol 2010; 636(1-3): 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.043] [PMID: 20361959]
[11]
Barber TM, Kabisch S, Randeva HS, et al. Implications of resveratrol in obesity and insulin resistance a state-of-the-art review. Nutrients 2022; 14(14): 2870.
[12]
Malaguarnera L. Influence of resveratrol on the immune response. Nutrients 2019; 11(5): 946.
[13]
Breuss JM, Atanasov AG, Uhrin P. Resveratrol and its effects on the vascular system. nternational j mole sci 2019; 20
[14]
Ren B, Kwah MXY, Liu C, et al. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett 2021; 515(515): 63-72.
[http://dx.doi.org/10.1016/j.canlet.2021.05.001] [PMID: 34052324]
[15]
Sawda C, Moussa C, Turner RS. Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci 2017; 1403(1): 142-9.
[http://dx.doi.org/10.1111/nyas.13431] [PMID: 28815614]
[16]
Rahman MH, Akter R, Bhattacharya T, et al. Resveratrol and neuroprotection: Impact and its therapeutic potential in alzheimer’s disease. Front Pharmacol 2020; 11: 619024-0.
[17]
Chen JY, Zhu Q, Zhang S, et al. Resveratrol in experimental Alzheimer’s disease models: A systematic review of preclinical studies. Pharmacol Res 2019; 150: 104476-0.
[18]
Yang AJT, Bagit A, MacPherson REK. Resveratrol, metabolic dysregulation, and Alzheimer’s disease: Considerations for neurogenerative disease. Int J Mol Sci 2021; 22: 46280.
[19]
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. In: BMJ 2009; 339: 2700.
[http://dx.doi.org/10.1136/bmj.b2700]
[20]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[21]
Kueper JK, Speechley M, Montero-Odasso M. The alzheimer’s disease assessment scale–cognitive subscale (adas-cog): Modifications and responsiveness in pre-dementia populations. a narrative review. J Alzheimers Dis 2018; 63(2): 423-44.
[http://dx.doi.org/10.3233/JAD-170991] [PMID: 29660938]
[22]
Kahle-Wrobleski K, Coley N, Lepage B, Cantet C, Vellas B, Andrieu S. Understanding the complexities of functional ability in Alzheimer’s disease: More than just basic and instrumental factors. Curr Alzheimer Res 2014; 11(4): 357-66.
[http://dx.doi.org/10.2174/1567205011666140317101419] [PMID: 24635843]
[23]
Arevalo-Rodriguez I, Smailagic N, Roqué IFM, et al. Mini-mental state examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2015; 2015: Cd010783.
[24]
Thakur S, Dhapola R, Sarma P, Medhi B, Reddy DH. Neuroinflammation in alzheimer’s disease: Current progress in molecular signaling and therapeutics. Inflammation 2023; 46(1): 1-17.
[http://dx.doi.org/10.1007/s10753-022-01721-1] [PMID: 35986874]
[25]
Li C, Wang N, Zheng G, Yang L. Oral administration of resveratrol-selenium-peptide nanocomposites alleviates alzheimer’s disease-like pathogenesis by inhibiting aβ aggregation and regulating gut microbiota. ACS Appl Mater Interfaces 2021; 13(39): 46406-20.
[http://dx.doi.org/10.1021/acsami.1c14818] [PMID: 34569225]
[26]
Fonseca-Santos B, Cazarin CA, da Silva PB, et al. Intranasal in situ gelling liquid crystal for delivery of resveratrol ameliorates memory and neuroinflammation in Alzheimer’s disease. Nanomedicine 2023; 51: 102689-0.
[27]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14(14): 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[28]
Leuzy A, Cullen NC, Mattsson-Carlgren N, Hansson O. Current advances in plasma and cerebrospinal fluid biomarkers in Alzheimer’s disease. Curr Opin Neurol 2021; 34(2): 266-74.
[http://dx.doi.org/10.1097/WCO.0000000000000904] [PMID: 33470669]
[29]
Sterne JAC, Savović J, Page MJ. et al. RoB 2: A revised tool for assessing risk of bias in randomised trials In: BMJ. 2019; 366: p. 14898.
[http://dx.doi.org/10.1136/bmj.l4898]
[30]
Cramer H, Lauche R, Langhorst J, Dobos G. Yoga for depression: A systematic review and meta-analysis. Depress Anxiety 2013; 30(11): 1068-83.
[http://dx.doi.org/10.1002/da.22166] [PMID: 23922209]
[31]
Li X, Huang J, Jiang C, et al. Comparison the efficacy and safety of different neoadjuvant regimens for resectable and borderline resectable pancreatic cancer: A systematic review and network meta-analysis. Eur J Clin Pharmacol 2022; 79(3): 323-40.
[http://dx.doi.org/10.1007/s00228-022-03441-9] [PMID: 36576528]
[32]
Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 2006; 11(2): 193-206.
[http://dx.doi.org/10.1037/1082-989X.11.2.193] [PMID: 16784338]
[33]
Kim S, Chen J, Cheng T, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 2021; 49(D1): D1388-95.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[34]
Wang X, Shen Y, Wang S, et al. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 2017; 45(W1): W356-60.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[35]
Bateman A, Martin M-J, Orchard S, et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49(D1): D480-9.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[36]
Stelzer G, Rosen N, Plaschkes I, et al. The genecards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinfor 2016; 54: 30-1.
[37]
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2019; 48(D1): gkz1021.
[http://dx.doi.org/10.1093/nar/gkz1021] [PMID: 31680165]
[38]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[39]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[40]
The Gene Ontology Resource. 20 years and still GOing strong. Nucleic Acids Res 2019; 47(D1): D330-8.
[http://dx.doi.org/10.1093/nar/gky1055] [PMID: 30395331]
[41]
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353-61.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[42]
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10: 1523-0.
[43]
Blass JP, Gibson GE. Correlations of disability and biologic alterations in Alzheimer brain and test of significance by a therapeutic trial in humans. J Alzheimers Dis 2006; 9(2): 207-18.
[http://dx.doi.org/10.3233/JAD-2006-9212] [PMID: 16873967]
[44]
Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 2017; 14: 1-0.
[45]
Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015; 85(16): 1383-91.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[46]
Zhu CW, Grossman H, Neugroschl J, et al. A randomized, double‐blind, placebo‐controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Alzheimers Dement 2018; 4(1): 609-16.
[http://dx.doi.org/10.1016/j.trci.2018.09.009] [PMID: 30480082]
[47]
Gu J, Li Z, Chen H, Xu X, Li Y, Gui Y. Neuroprotective effect of trans-resveratrol in mild to moderate alzheimer disease: A randomized, double-blind trial. Neurol Ther 2021; 10(2): 905-17.
[http://dx.doi.org/10.1007/s40120-021-00271-2] [PMID: 34402024]
[48]
Agopian A, Guo Z. Structural origin of polymorphism of Alzheimer’s amyloid β-fibrils. Biochem J 2012; 447(1): 43-50.
[http://dx.doi.org/10.1042/BJ20120034] [PMID: 22823461]
[49]
Qiu T, Liu Q, Chen YX. et al. Aβ42 and Aβ40: Similarities and differences. Journal of peptide science. : an official publication of the European Peptide Society 2015; 21: pp. 522-9.
[50]
Rosenberry TL, Zhou HX, Stagg SM, et al. Oligomer formation by amyloid-β42 in a membrane-mimicking environment in alzheimer’s disease. Molecules 2022; 27(24): 8804.
[51]
Gravina SA, Ho L, Eckman CB, et al. Amyloid β protein (A β) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A β 40 or A β 42(43). J Biol Chem 1995; 270(13): 7013-6.
[http://dx.doi.org/10.1074/jbc.270.13.7013] [PMID: 7706234]
[52]
Iwatsubo T, Mann DMA, Odaka A, Suzuki N, Ihara Y. Amyloid? protein (A?) deposition: Aβ42(43) precedes Aβ40 in down Syndrome. Ann Neurol 1995; 37(3): 294-9.
[http://dx.doi.org/10.1002/ana.410370305] [PMID: 7695229]
[53]
Gu L, Guo Z. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J Neurochem 2013; 126(3): 305-11.
[http://dx.doi.org/10.1111/jnc.12202] [PMID: 23406382]
[54]
Jan A, Gokce O, Luthi-Carter R, Lashuel HA. The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity. J Biol Chem 2008; 283(42): 28176-89.
[http://dx.doi.org/10.1074/jbc.M803159200] [PMID: 18694930]
[55]
Raffaele I, Silvestro S, Mazzon E. Evidence of these molecular interactions in alzheimer’s disease. Int J Mol Sci 2023; 24: 4736.
[56]
Shi Z, Zhang K, Zhou H, et al. Increased miR-34c mediates synaptic deficits by targeting synaptotagmin 1 through ROS-JNK-p53 pathway in Alzheimer’s Disease. Aging Cell 2020; 19: e13125-0.
[57]
Deng Y, Zhang J, Sun X, et al. miR-132 improves the cognitive function of rats with Alzheimer’s disease by inhibiting the MAPK1 signal pathway. Exp Ther Med 2020; 20: 159.
[58]
Qu W, Jeong A, Zhong R, Thieschafer JS, Gram A, Li L. Deletion of small GTPase H-Ras rescues memory deficits and reduces amyloid plaque-associated dendritic spine loss in transgenic alzheimer’s mice. Mol Neurobiol 2023; 60(2): 495-511.
[http://dx.doi.org/10.1007/s12035-022-03082-0] [PMID: 36287323]
[59]
Jayaswamy PK, Vijaykrishnaraj M, Patil P, et al. Implicative role of epidermal growth factor receptor and its associated signaling partners in the pathogenesis of Alzheimer’s disease. Ageing Res Rev 2023; 83: 101791.
[60]
Han C, Yang Y, Guan Q, et al. New mechanism of nerve injury in Alzheimer’s disease: β‐amyloid‐induced neuronal pyroptosis. J Cell Mol Med 2020; 24(14): 8078-90.
[http://dx.doi.org/10.1111/jcmm.15439] [PMID: 32521573]
[61]
Ghafouri-Fard S, Bahroudi Z, Shoorei H, et al. Disease-associated regulation of gene expression by resveratrol: Special focus on the PI3K/AKT signaling pathway. Cancer Cell Int 2022; 22: 298-0.
[62]
Zhang Y, Yuan D, Guo J, et al. Integrated LC-MS/MS method and network pharmacology for exploring the characterization and mechanism of neuroprotective effect of Vitis amurensis Rupr. wine polyphenol. J Food Biochem 2022; 46(10): e14316.
[http://dx.doi.org/10.1111/jfbc.14316] [PMID: 35848530]
[63]
Liu Y, Wu H, Zhang F, et al. Resveratrol upregulates miR-455-5p to antagonize cisplatin ototoxicity via modulating the PTEN-PI3K-AKT axis. Biochemistry and Cell Biology Biochimie et Biologie Cellulaire 2021; 99: 385-95.
[64]
Shang M, Ni L, Shan X, et al. MTHFD2 reprograms macrophage polarization by inhibiting PTEN. Cell Rep 2023; 42: 112481-0.
[65]
Ghavami S, Shojaei S, Yeganeh B, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2014; 112(112): 24-49.
[http://dx.doi.org/10.1016/j.pneurobio.2013.10.004] [PMID: 24211851]
[66]
Hou Y, Wang K, Wan W, Cheng Y, Pu X, Ye X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis 2018; 5(3): 245-55.
[http://dx.doi.org/10.1016/j.gendis.2018.06.001] [PMID: 30320189]
[67]
Abozaid OAR, Sallam MW, El-Sonbaty S, Aziza S, Emad B, Ahmed ESA. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of alzheimer’s disease by regulating sirt1/miRNA-134/GSK3β expression. Biol Trace Elem Res 2022; 200(12): 5104-14.
[http://dx.doi.org/10.1007/s12011-021-03073-7] [PMID: 35059981]
[68]
Pang S, Li S, Cheng H, et al. Discovery of an evodiamine derivative for PI3K/AKT/GSK3β pathway activation and AD pathology improvement in mouse models. Front Mol Neurosci 2022; 15: 1025066.
[69]
Kanters S. Fixed- and random-effects models. Methods Mol Biol 2022; 2345(2345): 41-65.
[http://dx.doi.org/10.1007/978-1-0716-1566-9_3] [PMID: 34550583]
[70]
Borenstein M, Higgins JP. Meta-analysis and subgroups. Prevent Sci: Official J Soc Prevent Res 2013; 14: 134-43.
[http://dx.doi.org/10.1007/s11121-013-0377-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy