Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Antitumor Activity of a Lectin Purified from Punica granatum Pulps against Ehrlich Ascites Carcinoma (EAC) Cells

Author(s): Md Nurujjaman, Tanjila Mashhoor, Tasfik Ul Haque Pronoy, Abdul Auwal, Md Robiul Hasan, Shaikh Shohidul Islam, Imtiaj Hasan, A.K.M. Asaduzzaman, Md Belal Uddin, Syed Rashel Kabir* and Farhadul Islam*

Volume 24, Issue 3, 2024

Published on: 30 November, 2023

Page: [193 - 202] Pages: 10

DOI: 10.2174/0118715206269394231124093423

Price: $65

Abstract

Background: Lectins are carbohydrate-binding proteins with various pharmacological activities, such as antimicrobial, antidiabetic, antioxidant, and anticancer. Punica granatum fruit extract has traditional uses, however, the anti-cancer activity of purified lectin isolated from P. granatum pulp is yet to be reported.

Objective: The goals of this study are purification, characterization of the lectin from P. granatum, and examination of the purified lectin's anticancer potential.

Methods: Diethylaminoethyl (DEAE) ion-exchange chromatography was used to purify the lectin, and SDSPAGE was used to check the purity and homogeneity of the lectin. Spectrometric and chemical analysis were used to characterize the lectin. The anticancer activity of the lectin was examined using in vivo and in vitro functional assays.

Results: A lectin, designated as PgL of 28.0 ± 1.0 kDa molecular mass, was isolated and purified from the pulps of P. granatum and the lectin contains 40% sugar. Also, it is a bivalent ion-dependent lectin and lost its 75% activity in the presence of urea (8M). The lectin agglutinated blood cells of humans and rats, and sugar molecules such as 4-nitrophenyl-α-D-manopyranoside and 2- nitrophenyl -β- D-glucopyranoside inhibited PgL’s hemagglutination activity. At pH ranges of 6.0-8.0 and temperature ranges of 30°C -80°C, PgL exhibited the highest agglutination activity. In vitro MTT assay showed that PgL inhibited Ehrlich ascites carcinoma (EAC) cell growth in a dose-dependent manner. PgL exhibited 39 % and 58.52 % growth inhibition of EAC cells in the mice model at 1.5 and 3.0 mg/kg/day (i.p.), respectively. In addition, PgL significantly increased the survival time (32.0 % and 49.3 %) of EAC-bearing mice at 1.5 and 3.0 mg/kg/day doses (i.p.), respectively, in comparison to untreated EAC-bearing animals (p < 0.01). Also, PgL reduced the tumor weight of EAC-bearing mice (66.6 versus 39.13%; p < 0.01) at the dose of 3.0 mg/kg/day treatment. Furthermore, supplementation of PgL restored the haematological parameters toward normal levels deteriorated in EAC-bearing animals by the toxicity of EAC cells.

Conclusion: The results indicated that the purified lectin has anticancer activity and has the potential to be developed as an effective chemotherapy agent.

Graphical Abstract

[1]
Narayanan, V.; Bobbili, K.B.; Sivaji, N.; Jayaprakash, N.G.; Suguna, K.; Surolia, A.; Sekhar, A. Structure and carbohydrate recognition by the nonmitogenic lectin horcolin. Biochemistry, 2022, 61(6), 464-478.
[http://dx.doi.org/10.1021/acs.biochem.1c00778] [PMID: 35225598]
[2]
Zhang, S.; Chen, K.Y.; Zou, X. Carbohydrate-protein interactions: Advances and challenges. Commun. Inf. Syst., 2021, 21(1), 147-163.
[http://dx.doi.org/10.4310/CIS.2021.v21.n1.a7] [PMID: 34366717]
[3]
Shetty, K.N.; Bhat, G.G.; Inamdar, S.R.; Swamy, B.M.; Suguna, K. Crystal structure of a β-prism II lectin from Remusatia vivipara. Glycobiology, 2012, 22(1), 56-69.
[http://dx.doi.org/10.1093/glycob/cwr100] [PMID: 21788359]
[4]
Doores, K.J. The HIV glycan shield as a target for broadly neutralizing antibodies. FEBS J., 2015, 282(24), 4679-4691.
[http://dx.doi.org/10.1111/febs.13530] [PMID: 26411545]
[5]
Jayaprakash, N.G.; Singh, A.; Vivek, R.; Yadav, S.; Pathak, S.; Trivedi, J.; Jayaraman, N.; Nandi, D.; Mitra, D.; Surolia, A. The barley lectin, horcolin, binds high-mannose glycans in a multivalent fashion, enabling high-affinity, specific inhibition of cellular HIV infection. J. Biol. Chem., 2020, 295(34), 12111-12129.
[http://dx.doi.org/10.1074/jbc.RA120.013100] [PMID: 32636304]
[6]
Li, Y.; Liu, D.; Wang, Y.; Su, W.; Liu, G.; Dong, W. The importance of glycans of viral and host proteins in enveloped virus infection. Front. Immunol., 2021, 12, 638573.
[http://dx.doi.org/10.3389/fimmu.2021.638573] [PMID: 33995356]
[7]
Cao, Y.; Park, S.J. Im, W. A systematic analysis of protein–carbohydrate interactions in the Protein Data Bank. Glycobiology, 2021, 31(2), 126-136.
[http://dx.doi.org/10.1093/glycob/cwaa062] [PMID: 32614943]
[8]
Cheung, A.H.K.; Wong, J.H.; Ng, T.B. Musa acuminata (Del Monte banana) lectin is a fructose-binding lectin with cytokine-inducing activity. Phytomedicine, 2009, 16(6-7), 594-600.
[http://dx.doi.org/10.1016/j.phymed.2008.12.016] [PMID: 19195858]
[9]
Raja, S.B.; Murali, M.R.; Kumar, N.K.; Devaraj, S.N. Isolation and partial characterisation of a novel lectin from Aegle marmelos fruit and its effect on adherence and invasion of Shigellae to HT29 cells. PLoS One, 2011, 6(1), e16231.
[http://dx.doi.org/10.1371/journal.pone.0016231] [PMID: 21283697]
[10]
Fu, L.; Zhou, C.; Yao, S.; Yu, J.; Liu, B.; Bao, J. Plant lectins: Targeting programmed cell death pathways as antitumor agents. Int. J. Biochem. Cell Biol., 2011, 43(10), 1442-1449.
[http://dx.doi.org/10.1016/j.biocel.2011.07.004] [PMID: 21798364]
[11]
Liu, B.; Bian, H.; Bao, J. Plant lectins: Potential antineoplastic drugs from bench to clinic. Cancer Lett., 2010, 287(1), 1-12.
[http://dx.doi.org/10.1016/j.canlet.2009.05.013] [PMID: 19487073]
[12]
Maphetu, N.; Unuofin, J.O.; Masuku, N.P.; Olisah, C.; Lebelo, S.L. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed. Pharmacother., 2022, 153, 113256.
[http://dx.doi.org/10.1016/j.biopha.2022.113256] [PMID: 36076615]
[13]
Dai, Z.; Nair, V.; Khan, M.; Ciolino, H.P. Pomegranate extract inhibits the proliferation and viability of MMTV-Wnt-1 mouse mammary cancer stem cells in vitro. Oncol. Rep., 2010, 24(4), 1087-1091.
[PMID: 20811693]
[14]
Naz, S.; Siddiqi, R.; Ahmad, S.; Rasool, S.A.; Sayeed, S.A. Antibacterial activity directed isolation of compounds from Punica granatum. J. Food Sci., 2007, 72(9), M341-M345.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00533.x] [PMID: 18034726]
[15]
Al-Zoreky, N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol., 2009, 134(3), 244-248.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.002] [PMID: 19632734]
[16]
Haghayeghi, K.; Shetty, K.; Labbé, R. Inhibition of foodborne pathogens by pomegranate juice. J. Med. Food, 2013, 16(5), 467-470.
[http://dx.doi.org/10.1089/jmf.2012.0233] [PMID: 23631498]
[17]
Kabir, S.R.; Islam, J.; Ahamed, M.S.; Alam, M.T. Asparagus racemosus and Geodorum densiflorum lectins induce apoptosis in cancer cells by altering proteins and genes expression. Int. J. Biol. Macromol., 2021, 191, 646-656.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.101] [PMID: 34582909]
[18]
Silva, P.M.; Napoleão, T.H.; Silva, L.C.P.B.B.; Fortes, D.T.O.; Lima, T.A.; Zingali, R.B.; Pontual, E.V.; Araújo, J.M.; Medeiros, P.L.; Rodrigues, C.G.; Gomes, F.S.; Paiva, P.M.G. The juicy sarcotesta of Punica granatum contains a lectin that affects growth, survival as well as adherence and invasive capacities of human pathogenic bacteria. J. Funct. Foods, 2016, 27, 695-702.
[http://dx.doi.org/10.1016/j.jff.2016.10.015]
[19]
Argondizzo, A.P.C.; Rocha-de-Souza, C.M.; de Almeida Santiago, M.; Galler, R.; Reis, J.N.; Medeiros, M.A. Pneumococcal Predictive Proteins Selected by Microbial Genomic Approach Are Serotype Cross-Reactive and Bind to Host Extracellular Matrix Proteins. Appl. Biochem. Biotechnol., 2017, 182(4), 1518-1539.
[http://dx.doi.org/10.1007/s12010-017-2415-6] [PMID: 28211009]
[20]
Kumar, A. Kumar, R.R.; Chaturvedi, V.; Kayastha, A.M. α-Amylase purified and characterized from fenugreek (Trigonella foenum-graecum) showed substantial anti-biofilm activity against Staphylococcus aureus MTCC740. Int. J. Biol. Macromol., 2023, 252, 126442.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126442] [PMID: 37611683]
[21]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[22]
Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[23]
Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugar and related substances. Anal. Chem., 1956, 28(3), 350-356.
[http://dx.doi.org/10.1021/ac60111a017]
[24]
Rashel, K. S.; Amir, H, M.; Abu Zubair, M.; Jahangir Alom, M.; Farhadul, I, M.; Anowar Hossain, M.; Kimura, Y. A new lectin from the tuberous rhizome of Kaempferia rotunda: Isolation, characterization, antibacterial and antiproliferative activities. Protein Pept. Lett., 2011, 18(11), 1140-1149. a
[http://dx.doi.org/10.2174/092986611797200896] [PMID: 21707523]
[25]
Rashel, K.S.; Farhadul, I.M.; Jahangir, A.M.; Abu Zubair, M.; Absar, N. Purification, characterizations of a snake guard seeds lectin with antitumor activity against Ehrlich ascites carcinoma cells in vivo in mice. Protein Pept. Lett., 2012, 19(3), 360-368.
[http://dx.doi.org/10.2174/092986612799363154] [PMID: 22185504]
[26]
Kabir, S.R.; Islam, F.; Asaduzzaman, A.K.M. Biogenic silver/silver chloride nanoparticles inhibit human cancer cells proliferation in vitro and Ehrlich ascites carcinoma cells growth in vivo. Sci. Rep., 2022, 12(1), 8909.
[http://dx.doi.org/10.1038/s41598-022-12974-z] [PMID: 35618812]
[27]
Kabir, S.R.; Nabi, M.M.; Haque, A.; Zaman, R.U.; Mahmud, Z.H.; Reza, M.A. Pea lectin inhibits growth of Ehrlich ascites carcinoma cells by inducing apoptosis and G2/M cell cycle arrest in vivo in mice. Phytomedicine, 2013, 20(14), 1288-1296.
[http://dx.doi.org/10.1016/j.phymed.2013.06.010] [PMID: 23867650]
[28]
Finney, D.J. Probit Analysis; Cambridge University Press: London, 1971.
[29]
Islam, F.; Ghosh, S.; Khanam, J.A. Antiproliferative and hepatoprotective activity of metabolites from Corynebacterium xerosis against Ehrlich Ascites Carcinoma cells. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S284-S292.
[http://dx.doi.org/10.12980/APJTB.4.2014C1283] [PMID: 25183099]
[30]
Islam, F.; Khanam, J.A.; Khatun, M.; Zuberi, N.; Khatun, L.; Kabir, S.R.; Reza, M.A.; Ali, M.M.; Rabbi, M.A.; Gopalan, V.; Lam, A.K.Y. A p-menth-1-ene-4,7-diol (EC-1) from Eucalyptus camaldulensis Dhnh. triggers apoptosis and cell cycle changes in Ehrlich ascites carcinoma cells. Phytother. Res., 2015, 29(4), 573-581.
[http://dx.doi.org/10.1002/ptr.5288] [PMID: 25583285]
[31]
Wu, J.; Wang, X.; Huang, Y.; Zhang, Y.; Su, S.; Shou, H.; Wang, H.; Zhang, J.; Wang, B. Targeted glycan degradation potentiates cellular immunotherapy for solid tumors. Proc. Natl. Acad. Sci. USA, 2023, 120(38), e2300366120.
[http://dx.doi.org/10.1073/pnas.2300366120] [PMID: 37695897]
[32]
Villegas-Coronado, D.; Soto-Guzman, J.A.; Martínez-Soto, J.M.; Teran-Saavedra, N.G.; Guzman-Partida, A.M.; Vazquez-Moreno, L.; Villalba-Villalba, A.G.; Maldonado, A.; Lagarda-Diaz, I. Antiproliferative potential of Olneya tesota PF2 lectin in human acute monocytic leukemia cells. Chem. Biodivers., 2023, 20(7), e202300051.
[http://dx.doi.org/10.1002/cbdv.202300051] [PMID: 37358490]
[33]
Yousefi, M.H.; Afkhami, H.; Akbari, A.; Honari, H. Expression, purification, characterization, and cytotoxic evaluation of the ML1-STxB fusion protein. Arch. Microbiol., 2023, 205(6), 220.
[http://dx.doi.org/10.1007/s00203-023-03563-3] [PMID: 37148384]
[34]
Adamcová, A.; Laursen, K.H.; Ballin, N.Z. Lectin activity in commonly consumed plant-based foods: Calling for method harmonization and risk assessment. Foods, 2021, 10(11), 2796.
[http://dx.doi.org/10.3390/foods10112796] [PMID: 34829077]
[35]
Nasi, A.; Picariello, G.; Ferranti, P. Proteomic approaches to study structure, functions and toxicity of legume seeds lectins. Perspectives for the assessment of food quality and safety. J. Proteomics, 2009, 72(3), 527-538.
[http://dx.doi.org/10.1016/j.jprot.2009.02.001] [PMID: 19217948]
[36]
Mantzoukas, S.; Korbou, G.; Magita, A.; Eliopoulos, P.A.; Poulas, K. Leguminous seeds powder diet reduces the survival and development of the khapra beetle, Trogoderma granarium everts (Coleoptera: dermestidae). Biology (Basel), 2020, 9(8), 204.
[http://dx.doi.org/10.3390/biology9080204] [PMID: 32756491]
[37]
Pramod, S.N.; Venkatesh, Y.P. Utility of pentose colorimetric assay for the purification of potato lectin, an arabinose-rich glycoprotein. Glycoconj. J., 2006, 23(7-8), 481-488.
[http://dx.doi.org/10.1007/s10719-006-6217-2] [PMID: 17006640]
[38]
Moreira, R.A.; Gavada, B.S. Lectin from Canavalia brasiliensis (MART.). Isolation, characterization and behavior during germination. Biol. Plant., 1984, 26(2), 113-120.
[http://dx.doi.org/10.1007/BF02902274]
[39]
Suseelan, K.N.; Bhagwath, A.; Pandey, R.; Gopalakrishna, T. Characterization of Con C, a lectin from Canavalia cathartica Thouars seeds. Food Chem., 2007, 104(2), 528-535.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.064]
[40]
Kaur, M.; Singh, K.; Rup, P.J.; Kamboj, S.S.; Saxena, A.K.; Sharma, M.; Bhagat, M.; Sood, S.K.; Singh, J. A tuber lectin from Arisaema jacquemontii Blume with anti-insect and anti-proliferative properties. J. Biochem. Mol. Biol., 2006, 39(4), 432-440.
[PMID: 16889688]
[41]
Suseelan, K.N.; Mitra, R.; Pandey, R.; Sainis, K.B.; Krishna, T.G. Purification and characterization of a lectin from wild sunflower (Helianthus tuberosus L.) tubers. Arch. Biochem. Biophys., 2002, 407(2), 241-247.
[http://dx.doi.org/10.1016/S0003-9861(02)00517-9] [PMID: 12413497]
[42]
Kabir, S.R.; Zubair, M.A.; Nurujjaman, M.; Haque, M.A.; Hasan, I.; Islam, M.F.; Hossain, M.T.; Hossain, M.A.; Rakib, M.A.; Alam, M.T.; Shaha, R.K.; Hossain, M.T.; Kimura, Y.; Absar, N. Purification and characterization of a Ca2+-dependent novel lectin from Nymphaea nouchali tuber with antiproliferative activities. Biosci. Rep., 2011, 31(6), 465-475. b
[http://dx.doi.org/10.1042/BSR20100126] [PMID: 21291421]
[43]
Mondal, S.; Das, S.; Swamy, M.J. Macromolecular crowding significantly affects the conformational features and carbohydrate binding properties of CIA17, a PP2-type lectin from Coccinia indica. Biochemistry, 2022, 61(21), 2344-2357.
[http://dx.doi.org/10.1021/acs.biochem.2c00389] [PMID: 36200563]
[44]
Sivakamavalli, J.; Park, K.; Kwak, I.S.; Vaseeharan, B. Purification and partial characterization of carbohydrate-recognition protein C-type lectin from Hemifusus pugilinus. Carbohydr. Res., 2021, 499, 108224.
[http://dx.doi.org/10.1016/j.carres.2020.108224] [PMID: 33450477]
[45]
Mondal, S.; Swamy, M.J. Purification, biochemical/biophysical characterization and chitooligosaccharide binding to BGL24, a new PP2-type phloem exudate lectin from bottle gourd (Lagenaria siceraria). Int. J. Biol. Macromol., 2020, 164, 3656-3666.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.246] [PMID: 32890565]
[46]
Clement, F.; Venkatesh, Y.P. Dietary garlic (Allium sativum) lectins, ASA I and ASA II, are highly stable and immunogenic. Int. Immunopharmacol., 2010, 10(10), 1161-1169.
[http://dx.doi.org/10.1016/j.intimp.2010.06.022] [PMID: 20615490]
[47]
Lin, P.; Ye, X.; Ng, T.B. Purification of melibiose-binding lectins from two cultivars of Chinese black soybeans. Acta Biochim. Biophys. Sin. (Shanghai), 2008, 40(12), 1029-1038.
[http://dx.doi.org/10.1111/j.1745-7270.2008.00488.x] [PMID: 19089301]
[48]
Sharma, A.; Ng, T.B.; Wong, J.H.; Lin, P. Purification and Characterization of a Lectin from Phaseolus vulgaris cv. (Anasazi Beans). J. Biomed. Biotechnol., 2009, 2009, 929568.
[49]
Nelson, D.L.; Cox, M.N. Lehninger Principles of Biochemistry: The three dimentional structures of proteins; Macmillan Worth Publishers: New York, USA, 2001, pp. 159-202.
[50]
Mandal, K.; Chakrabarti, B.; Thomson, J.; Siezen, R.J. Structure and stability of gamma-crystallins. Denaturation and proteolysis behavior. J. Biol. Chem., 1987, 262(17), 8096-8102.
[http://dx.doi.org/10.1016/S0021-9258(18)47533-3] [PMID: 3298226]
[51]
Seifert, M.H.J.; Georgescu, J.; Ksiazek, D.; Smialowski, P.; Rehm, T.; Steipe, B.; Holak, T.A. Backbone dynamics of green fluorescent protein and the effect of histidine 148 substitution. Biochemistry, 2003, 42(9), 2500-2512.
[http://dx.doi.org/10.1021/bi026481b] [PMID: 12614144]
[52]
Ito, J.; Sugawara, S.; Tatsuta, T.; Hosono, M.; Sato, M. Catfish egg lectin enhances the cytotoxicity of sunitinib on Gb3-expressing renal cancer cells. Biomedicines, 2023, 11(8), 2317.
[http://dx.doi.org/10.3390/biomedicines11082317] [PMID: 37626813]
[53]
Lee, J.H.; Lee, S.B.; Kim, H.; Shin, J.M.; Yoon, M.; An, H.S.; Han, J.W. Anticancer activity of mannose-specific lectin, BPL2, from marine green alga Bryopsis plumosa. Mar. Drugs, 2022, 20(12), 776.
[http://dx.doi.org/10.3390/md20120776] [PMID: 36547923]
[54]
Huldani, H.; Rashid, A.I.; Turaev, K.N.; Opulencia, M.J.C.; Abdelbasset, W.K.; Bokov, D.O.; Mustafa, Y.F.; Al-Gazally, M.E.; Hammid, A.T.; Kadhim, M.M.; Ahmadi, S.H. Concanavalin A as a promising lectin-based anti-cancer agent: The molecular mechanisms and therapeutic potential. Cell Commun. Signal., 2022, 20(1), 167.
[http://dx.doi.org/10.1186/s12964-022-00972-7] [PMID: 36289525]
[55]
Kheeree, N.; Sangvanich, P.; Puthong, S.; Karnchanatat, A. Antifungal and antiproliferative activities of lectin from the rhizomes of Curcuma amarissima Roscoe. Appl. Biochem. Biotechnol., 2010, 162(3), 912-925.
[http://dx.doi.org/10.1007/s12010-009-8804-8] [PMID: 19838861]
[56]
Kenoth, R.; Sreekumar, A.K.; Sukanya, A.; Prabu, A.A.; Kamlekar, R.K. Interaction of sugar stabilised silver nanoparticles with Momordica charantia seed lectin, a type II ribosome inactivating protein. Glycoconj. J., 2023, 40(2), 179-189.
[http://dx.doi.org/10.1007/s10719-023-10107-w] [PMID: 36800135]
[57]
Jiang, H.; Wen, X.; Zhang, X.; Zhang, B. Concanavalin A inhibits human liver cancer cell migration by regulating F actin redistribution and assembly via MAPK signaling pathway. Oncol. Lett., 2022, 24(5), 405.
[http://dx.doi.org/10.3892/ol.2022.13525] [PMID: 36276493]
[58]
Yan, Q.; Zhu, L.; Kumar, N.; Jiang, Z.; Huang, L. Characterisation of a novel monomeric lectin (AML) from Astragalus membranaceus with anti-proliferative activity. Food Chem., 2010, 122(3), 589-595.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.015]
[59]
Wang, H.; Gao, J.; Ng, T.B. A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochem. Biophys. Res. Commun., 2000, 275(3), 810-816.
[http://dx.doi.org/10.1006/bbrc.2000.3373] [PMID: 10973803]
[60]
Ryva, B.; Zhang, K.; Asthana, A.; Wong, D.; Vicioso, Y.; Parameswaran, R. Wheat germ agglutinin as a potential therapeutic agent for leukemia. Front. Oncol., 2019, 9, 100.
[http://dx.doi.org/10.3389/fonc.2019.00100] [PMID: 30847305]
[61]
Lei, H.Y.; Chang, C.P. Lectin of concanavalin a as an anti-hepatoma therapeutic agent. J. Biomed. Sci., 2009, 16(1), 10.
[62]
Ahmed, H.; Chatterjee, B.P.; Debnath, A.K. Interaction and in vivo growth inhibition of Ehrlich ascites tumor cells by jacalin. J. Biosci., 1988, 13(4), 419-424.
[http://dx.doi.org/10.1007/BF02703454]
[63]
Siddika, A.; Das, P.K.; Asha, S.Y.; Aktar, S.; Tareq, A.R.M.; Siddika, A.; Rakib, A.; Islam, F.; Khanam, J.A. Antiproliferative activity and apoptotic efficiency of Syzygium cumini bark methanolic extract against EAC cells in vivo. Anticancer. Agents Med. Chem., 2021, 21(6), 782-792.
[http://dx.doi.org/10.2174/1871520620666200811122137] [PMID: 32781964]
[64]
Hinge, A.; Bajaj, M.; Limaye, L.; Surolia, A.; Kale, V. Oral administration of insulin receptor-interacting lectins leads to an enhancement in the hematopoietic stem and progenitor cell pool of mice. Stem Cells Dev., 2010, 19(2), 163-174. a
[http://dx.doi.org/10.1089/scd.2009.0128] [PMID: 19580456]
[65]
Hinge, A.S.; Limaye, L.S.; Surolia, A.; Kale, V.P. In vitro protection of umbilical cord blood–derived primitive hematopoietic stem progenitor cell pool by mannose‐specific lectins via antioxidant mechanisms. Transfusion, 2010, 50(8), 1815-1826. b
[http://dx.doi.org/10.1111/j.1537-2995.2010.02647.x] [PMID: 20412533]
[66]
Timoshenko, A.V.; Lan, Y.; Gabius, H.J.; Lala, P.K. Immunotherapy of C3H/HeJ mammary adenocarcinoma with interleukin-2, mistletoe lectin or their combination. Eur. J. Cancer, 2001, 37(15), 1910-1920.
[http://dx.doi.org/10.1016/S0959-8049(01)00156-3] [PMID: 11576848]
[67]
Timoshenko, A.V.; Gorudko, I.; Gabius, H.J. Lectins from Medicinal Plants: Bioeffectors with Diverse Activities. Phytochemicals – Biosynthesis, Function and Application. Recent Advances in Phytochemistry; Jetter, R., Ed.; Springer: Cham, 2014, p. 44.
[http://dx.doi.org/10.1007/978-3-319-04045-5_3]
[68]
Khanam, J.A.; Islam, M.F.; Jesmin, M.; Ali, M.M. Antineoplastic activity of acetone semicarbazone (ASC) against Ehrlich ascites carcinoma (EAC) bearing mice. J. Natl. Sci. Found. Sri Lanka, 2010, 38(4), 225-231.
[http://dx.doi.org/10.4038/jnsfsr.v38i4.2649]
[69]
Islam, F.; Raihan, O.; Chowdhury, D.; Khatun, M.; Zuberi, N.; Khatun, L.; Brishti, A.; Bahar, E. Apoptotic and antioxidant activities of methanol extract of Mussaenda roxburghii leaves. Pak. J. Pharm. Sci., 2015, 28(6), 2027-2034.
[PMID: 26639496]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy