Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Oxford Nanopore Technology and its Application in Liquid Biopsies

Author(s): Mariya Levkova*, Trifon Chervenkov, Lyudmila Angelova and Deyan Dzenkov

Volume 24, Issue 6, 2023

Published on: 30 November, 2023

Page: [337 - 344] Pages: 8

DOI: 10.2174/0113892029286632231127055733

Price: $65

Abstract

Advanced medical technologies are transforming the future of healthcare, in particular, the screening and detection of molecular-genetic changes in patients suspected of having a neoplasm. They are based on the assumption that neoplasms release small amounts of various neoplasm- specific molecules, such as tumor DNA, called circulating DNA (cirDNA), into the extracellular space and subsequently into the blood. The detection of tumor-specific molecules and specific molecular changes in body fluids in a noninvasive or minimally invasive approach is known as “liquid biopsy.” The aim of this review is to summarize the current knowledge of the application of ONT for analyzing circulating DNA in the field of liquid biopsies among cancer patients. Databases were searched using the keywords “nanopore” and “liquid biopsy” and by applying strict inclusion criteria. This technique can be used for the detection of neoplastic disease, including metastases, guiding precision therapy, and monitoring its effects. There are many challenges, however, for the successful implementation of this technology into the clinical practice. The first one is the low amount of tumor-specific molecules in the body fluids. Secondly, a tumor molecular signature should be discriminated from benign conditions like clonal hematopoiesis of unknown significance. Oxford Nanopore Technology (ONT) is a third-generation sequencing technology that seems particularly promising to complete these tasks. It offers rapid sequencing thanks to its ability to detect changes in the density of the electric current passing through nanopores. Even though ONT still needs validation technology, it is a promising approach for early diagnosis, therapy guidance, and monitoring of different neoplasms based on analyzing the cirDNA.

Next »
Graphical Abstract

[1]
Chan, S.C.H.; Liang, J.Q. Advances in tests for colorectal cancer screening and diagnosis. Expert Rev. Mol. Diagn., 2022, 22(4), 449-460.
[http://dx.doi.org/10.1080/14737159.2022.2065197] [PMID: 35400293]
[2]
Marcozzi, A.; Jager, M.; Elferink, M.; Straver, R.; van Ginkel, J.H.; Peltenburg, B.; Chen, L.T.; Renkens, I.; van Kuik, J.; Terhaard, C.; de Bree, R.; Devriese, L.A.; Willems, S.M.; Kloosterman, W.P.; de Ridder, J. Accurate detection of circulating tumor DNA using nanopore consensus sequencing. NPJ Genom. Med., 2021, 6(1), 106.
[http://dx.doi.org/10.1038/s41525-021-00272-y] [PMID: 34887408]
[3]
Patil, S.; Augustine, D.; Sowmya, S.V.; Haragannavar, V.C.; Gujjar, N.; Yousef, A.; Kashyap, S. Nanopore sequencing technology in oral oncology: A comprehensive insight. J. Contemp. Dent. Pract., 2022, 23(2), 268-275.
[http://dx.doi.org/10.5005/jp-journals-10024-3240] [PMID: 35748459]
[4]
Bartalucci, N.; Romagnoli, S.; Vannucchi, A.M. A blood drop through the pore: Nanopore sequencing in hematology. Trends Genet., 2022, 38(6), 572-586.
[http://dx.doi.org/10.1016/j.tig.2021.11.003] [PMID: 34906378]
[5]
Lu, H.; Giordano, F.; Ning, Z. Oxford nanopore minion sequencing and genome assembly. Genomics Proteomics Bioinformatics, 2016, 14(5), 265-279.
[http://dx.doi.org/10.1016/j.gpb.2016.05.004] [PMID: 27646134]
[6]
Magi, A.; Semeraro, R.; Mingrino, A.; Giusti, B.; D’Aurizio, R. Nanopore sequencing data analysis: State of the art, applications and challenges. Brief. Bioinform., 2018, 19(6), 1256-1272.
[PMID: 28637243]
[7]
Wei, G.; Hu, R.; Li, Q.; Lu, W.; Liang, H.; Nan, H.; Lu, J.; Li, J.; Zhao, Q. Oligonucleotide discrimination enabled by tannic acid- coordinated film-coated solid-state nanopores. Langmuir, 2022, 38(20), 6443-6453.
[http://dx.doi.org/10.1021/acs.langmuir.2c00638] [PMID: 35544765]
[8]
Asandei, A.; Mereuta, L.; Bucataru, I.C.; Park, Y.; Luchian, T. A single-molecule insight into the ionic strength-dependent, cationic peptide nucleic acids-oligonucleotides interactions. Chem. Asian J., 2022, 17(12), e202200261.
[http://dx.doi.org/10.1002/asia.202200261] [PMID: 35419929]
[9]
de Lannoy, C.; de Ridder, D.; Risse, J. The long reads ahead: De novo genome assembly using the MinION. F1000 Res., 2017, 6, 1083.
[http://dx.doi.org/10.12688/f1000research.12012.2] [PMID: 29375809]
[10]
Flynn, R.; Washer, S.; Jeffries, A.R.; Andrayas, A.; Shireby, G.; Kumari, M.; Schalkwyk, L.C.; Mill, J.; Hannon, E. Evaluation of nanopore sequencing for epigenetic epidemiology: A comparison with DNA methylation microarrays. Hum. Mol. Genet., 2022, 31(18), 3181-3190.
[http://dx.doi.org/10.1093/hmg/ddac112] [PMID: 35567415]
[11]
Cozzuto, L.; Delgado-Tejedor, A.; Hermoso Pulido, T.; Novoa, E.M.; Ponomarenko, J. Nanopore direct RNA sequencing data processing and analysis using masterofpores. Computational Epigenomics and Epitranscriptomics Springer, 2023, 185-205.
[http://dx.doi.org/10.1007/978-1-0716-2962-8_13]
[12]
Technologies, O.N. Product specifications., 2023. Available from: https://nanoporetech.com/products/specifications#comparison[tab] =techniques [cited 2023 13.06.2023].
[13]
Khalaf, N.; El-Serag, H.B.; Abrams, H.R.; Thrift, A.P. Burden of pancreatic cancer: From epidemiology to practice. Clin. Gastroenterol. Hepatol., 2021, 19(5), 876-884.
[http://dx.doi.org/10.1016/j.cgh.2020.02.054] [PMID: 32147593]
[14]
Hutajulu, S.H.; Prabandari, Y.S.; Bintoro, B.S.; Wiranata, J.A.; Widiastuti, M.; Suryani, N.D.; Saptari, R.G.; Taroeno-Hariadi, K.W.; Kurnianda, J.; Purwanto, I.; Hardianti, M.S.; Allsop, M.J. Delays in the presentation and diagnosis of women with breast cancer in Yogyakarta, Indonesia: A retrospective observational study. PLoS One, 2022, 17(1), e0262468.
[http://dx.doi.org/10.1371/journal.pone.0262468] [PMID: 35025941]
[15]
Chang, L.; Li, J.; Zhang, R. Liquid biopsy for early diagnosis of non-small cell lung carcinoma: recent research and detection technologies. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer , 2022, 188729.
[16]
Wadden, J.; Ravi, K.; John, V.; Babila, C.M.; Koschmann, C. Cell-free tumor DNA (cf-tDNA) liquid biopsy: Current methods and use in brain tumor immunotherapy. Front. Immunol., 2022, 13, 882452.
[http://dx.doi.org/10.3389/fimmu.2022.882452] [PMID: 35464472]
[17]
Best, M.G.; Wesseling, P.; Wurdinger, T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res., 2018, 78(13), 3407-3412.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0887] [PMID: 29921699]
[18]
Sant, M.; Bernat-Peguera, A.; Felip, E.; Margelí, M. Role of ctDNA in breast cancer. Cancers, 2022, 14(2), 310.
[http://dx.doi.org/10.3390/cancers14020310] [PMID: 35053474]
[19]
Bronkhorst, A.J.; Ungerer, V.; Diehl, F.; Anker, P.; Dor, Y.; Fleischhacker, M.; Gahan, P.B.; Hui, L.; Holdenrieder, S.; Thierry, A.R. Towards systematic nomenclature for cell-free DNA. Hum. Genet., 2021, 140(4), 565-578.
[http://dx.doi.org/10.1007/s00439-020-02227-2] [PMID: 33123832]
[20]
Mandel, P.; Metais, P. Nuclear acids in human blood plasma. C. R. Seances Soc. Biol. Fil., 1948, 142(3-4), 241-243.
[PMID: 18875018]
[21]
Sorenson, G.D.; Pribish, D.M.; Valone, F.H.; Memoli, V.A.; Bzik, D.J.; Yao, S-L. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomarkers Prev., 1994, 3(1), 67-71.
[PMID: 8118388]
[22]
Heitzer, E.; Haque, I.S.; Roberts, C.E.S.; Speicher, M.R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet., 2019, 20(2), 71-88.
[http://dx.doi.org/10.1038/s41576-018-0071-5] [PMID: 30410101]
[23]
Yamamoto, Y.; Uemura, M.; Fujita, M.; Maejima, K.; Koh, Y.; Matsushita, M.; Nakano, K.; Hayashi, Y.; Wang, C.; Ishizuya, Y.; Kinouchi, T.; Hayashi, T.; Matsuzaki, K.; Jingushi, K.; Kato, T.; Kawashima, A.; Ujike, T.; Nagahara, A.; Fujita, K.; Imamura, R.; Nakagawa, H.; Nonomura, N. Clinical significance of the mutational landscape and fragmentation of circulating tumor DNA in renal cell carcinoma. Cancer Sci., 2019, 110(2), 617-628.
[http://dx.doi.org/10.1111/cas.13906] [PMID: 30536551]
[24]
Underhill, H.R.; Kitzman, J.O.; Hellwig, S.; Welker, N.C.; Daza, R.; Baker, D.N.; Gligorich, K.M.; Rostomily, R.C.; Bronner, M.P.; Shendure, J. Fragment length of circulating tumor DNA. PLoS Genet., 2016, 12(7), e1006162.
[http://dx.doi.org/10.1371/journal.pgen.1006162] [PMID: 27428049]
[25]
Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R-D.; Knippers, R. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res., 2001, 61(4), 1659-1665.
[PMID: 11245480]
[26]
Nguyen, V.C.; Nguyen, T.H.; Phan, T.H.; Tran, T.H.T.; Pham, T.T.T.; Ho, T.D.; Nguyen, H.H.T.; Duong, M.L.; Nguyen, C.M.; Nguyen, Q.T.B.; Bach, H.P.T.; Kim, V.V.; Pham, T.A.; Nguyen, B.T.; Nguyen, T.N.V.; Huynh, L.A.K.; Tran, V.U.; Tran, T.T.T.; Nguyen, T.D.; Phu, D.T.B.; Phan, B.H.H.; Nguyen, Q.T.T.; Truong, D.K.; Do, T.T.T.; Nguyen, H.N.; Phan, M.D.; Giang, H.; Tran, L.S. Fragment length profiles of cancer mutations enhance detection of circulating tumor DNA in patients with early-stage hepatocellular carcinoma. BMC Cancer, 2023, 23(1), 233.
[http://dx.doi.org/10.1186/s12885-023-10681-0] [PMID: 36915069]
[27]
Cheng, M.L.; Pectasides, E.; Hanna, G.J.; Parsons, H.A.; Choudhury, A.D.; Oxnard, G.R. Circulating tumor DNA in advanced solid tumors: Clinical relevance and future directions. CA Cancer J. Clin., 2021, 71(2), 176-190.
[http://dx.doi.org/10.3322/caac.21650] [PMID: 33165928]
[28]
Torres, S.; González, Á.; Cunquero Tomas, A.J.; Calabuig Fariñas, S.; Ferrero, M.; Mirda, D.; Sirera, R.; Jantus-Lewintre, E.; Camps, C. A profile on cobas® EGFR mutation test v2 as companion diagnostic for first-line treatment of patients with non-small cell lung cancer. Expert Rev. Mol. Diagn., 2020, 20(6), 575-582.
[http://dx.doi.org/10.1080/14737159.2020.1724094] [PMID: 32011193]
[29]
Minervini, C.F.; Cumbo, C.; Orsini, P.; Brunetti, C.; Anelli, L.; Zagaria, A.; Minervini, A.; Casieri, P.; Coccaro, N.; Tota, G.; Impera, L.; Giordano, A.; Specchia, G.; Albano, F. TP53 gene mutation analysis in chronic lymphocytic leukemia by nanopore MinION sequencing. Diagn. Pathol., 2016, 11(1), 96.
[http://dx.doi.org/10.1186/s13000-016-0550-y] [PMID: 27724982]
[30]
Martignano, F.; Munagala, U.; Crucitta, S.; Mingrino, A.; Semeraro, R.; Del Re, M.; Petrini, I.; Magi, A.; Conticello, S.G. Nanopore sequencing from liquid biopsy: Analysis of copy number variations from cell-free DNA of lung cancer patients. Mol. Cancer, 2021, 20(1), 32.
[http://dx.doi.org/10.1186/s12943-021-01327-5] [PMID: 33579306]
[31]
Katsman, E.; Orlanski, S.; Martignano, F.; Fox-Fisher, I.; Shemer, R.; Dor, Y.; Zick, A.; Eden, A.; Petrini, I.; Conticello, S.G.; Berman, B.P. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol., 2022, 23(1), 158.
[http://dx.doi.org/10.1186/s13059-022-02710-1] [PMID: 35841107]
[32]
Yu, S.C.Y.; Deng, J.; Qiao, R.; Cheng, S.H.; Peng, W.; Lau, S.L.; Choy, L.Y.L.; Leung, T.Y.; Wong, J.; Wong, V.W.S.; Wong, G.L.H.; Jiang, P.; Chiu, R.W.K.; Chan, K.C.A.; Lo, Y.M.D. Comparison of single molecule, real-time sequencing and nanopore sequencing for analysis of the size, end-motif, and tissue-of-origin of long cell-free DNA in plasma. Clin. Chem., 2023, 69(2), 168-179.
[http://dx.doi.org/10.1093/clinchem/hvac180] [PMID: 36322427]
[33]
Dixon, K.; Shen, Y.; O’Neill, K.; Mungall, K.L.; Chan, S.; Bilobram, S.; Zhang, W.; Bezeau, M.; Sharma, A.; Fok, A.; Mungall, A.J.; Moore, R.; Bosdet, I.; Thibodeau, M.L.; Sun, S.; Yip, S.; Schrader, K.A.; Jones, S.J.M. Defining the heterogeneity of unbalanced structural variation underlying breast cancer susceptibility by nanopore genome sequencing. Eur. J. Hum. Genet., 2023, 31(5), 602-606.
[http://dx.doi.org/10.1038/s41431-023-01284-1] [PMID: 36797466]
[34]
Thibodeau, M.L.; O’Neill, K.; Dixon, K.; Reisle, C.; Mungall, K.L.; Krzywinski, M.; Shen, Y.; Lim, H.J.; Cheng, D.; Tse, K.; Wong, T.; Chuah, E.; Fok, A.; Sun, S.; Renouf, D.; Schaeffer, D.F.; Cremin, C.; Chia, S.; Young, S.; Pandoh, P.; Pleasance, S.; Pleasance, E.; Mungall, A.J.; Moore, R.; Yip, S.; Karsan, A.; Laskin, J.; Marra, M.A.; Schrader, K.A.; Jones, S.J.M. Improved structural variant interpretation for hereditary cancer susceptibility using long-read sequencing. Genet. Med., 2020, 22(11), 1892-1897.
[http://dx.doi.org/10.1038/s41436-020-0880-8] [PMID: 32624572]
[35]
Bruzek, A.K.; Ravi, K.; Muruganand, A.; Wadden, J.; Babila, C.M.; Cantor, E.; Tunkle, L.; Wierzbicki, K.; Stallard, S.; Dickson, R.P.; Wolfe, I.; Mody, R.; Schwartz, J.; Franson, A.; Robertson, P.L.; Muraszko, K.M.; Maher, C.O.; Garton, H.J.L.; Qin, T.; Koschmann, C. Electronic DNA analysis of CSF cell-free tumor DNA to quantify multi-gene molecular response in pediatric high-grade glioma. Clin. Cancer Res., 2020, 26(23), 6266-6276.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2066] [PMID: 33087334]
[36]
Sampathi, S.; Chernyavskaya, Y.; Haney, M.G.; Moore, L.H.; Snyder, I.A.; Cox, A.H.; Fuller, B.L.; Taylor, T.J.; Yan, D.; Badgett, T.C.; Blackburn, J.S. Nanopore sequencing of clonal IGH rearrangements in cell-free DNA as a biomarker for acute lymphoblastic leukemia. Front. Oncol., 2022, 12, 958673.
[http://dx.doi.org/10.3389/fonc.2022.958673] [PMID: 36591474]
[37]
Baslan, T.; Kovaka, S.; Sedlazeck, F.J.; Zhang, Y.; Wappel, R.; Tian, S.; Lowe, S.W.; Goodwin, S.; Schatz, M.C. High resolution copy number inference in cancer using short-molecule nanopore sequencing. Nucleic Acids Research, 2021, 49(21), e124.
[http://dx.doi.org/10.1093/nar/gkab812]
[38]
Euskirchen, P.; Bielle, F.; Labreche, K.; Kloosterman, W.P.; Rosenberg, S.; Daniau, M.; Schmitt, C.; Masliah-Planchon, J.; Bourdeaut, F.; Dehais, C.; Marie, Y.; Delattre, J.Y.; Idbaih, A. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol., 2017, 134(5), 691-703.
[http://dx.doi.org/10.1007/s00401-017-1743-5] [PMID: 28638988]
[39]
Czmil, A.; Wronski, M.; Czmil, S.; Sochacka-Pietal, M.; Cmil, M.; Gawor, J.; Wołkowicz, T.; Plewczynski, D.; Strzalka, D.; Pietal, M. NanoForms: An integrated server for processing, analysis and assembly of raw sequencing data of microbial genomes, from Oxford Nanopore technology. PeerJ, 2022, 10, e13056.
[http://dx.doi.org/10.7717/peerj.13056] [PMID: 35368340]
[40]
Reddy, S.; Hung, L.H.; Sala-Torra, O.; Radich, J.P.; Yeung, C.C.S.; Yeung, K.Y. A graphical, interactive and GPU-enabled workflow to process long-read sequencing data. BMC Genomics, 2021, 22(1), 626.
[http://dx.doi.org/10.1186/s12864-021-07927-1] [PMID: 34425749]
[41]
Adewale, B.A. Will long-read sequencing technologies replace short-read sequencing technologies in the next 10 years? Afr. J. Lab. Med., 2020, 9(1), 1340.
[http://dx.doi.org/10.4102/ajlm.v9i1.1340] [PMID: 33354530]
[42]
Eisenstein, M. Illumina faces short-read rivals. Nat. Biotechnol., 2023, 41(1), 3-5.
[http://dx.doi.org/10.1038/s41587-022-01632-4] [PMID: 36653497]
[43]
You, Y.; Clark, M.B.; Shim, H. NanoSplicer: Accurate identification of splice junctions using oxford nanopore sequencing. Bioinformatics, 2022, 38(15), 3741-3748.
[http://dx.doi.org/10.1093/bioinformatics/btac359] [PMID: 35639973]
[44]
Hu, T.; Chitnis, N.; Monos, D. &; Dinh, A. (2021) Next-generation sequencing technologies: An overview. Hum. Immunol, 82(11), 801-811.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy