Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Design, Molecular Modeling, MD Simulations, Essential Dynamics, ADMET, DFT, Synthesis, Anti-proliferative, and Apoptotic Evaluations of a New Anti-VEGFR-2 Nicotinamide Analogue

Author(s): Ibrahim H. Eissa, Eslam B. Elkaeed*, Hazem Elkady, Reda G. Yousef, Bshra A. Alsfouk, Heba S.A. Elzahabi, Ibrahim M. Ibrahim, Ahmed M. Metwaly* and Dalal Z. Husein

Volume 29, Issue 36, 2023

Published on: 29 November, 2023

Page: [2902 - 2920] Pages: 19

DOI: 10.2174/0113816128274870231102114858

Price: $65

Abstract

Objectives: This study aims to design and evaluate (in silico and in vitro) a new nicotinamide derivative as an inhibitor of VEGFR-2, a major mediator of angiogenesis

Methods: The following in silico studies were performed; DFT calculations, molecular modelling, MD simulations, MM-GBSA, PLIP, and PCAT studies. The compound's in silico (ADMET) analysis was also conducted. Subsequently, the compound ((E)-N-(4-(1-(2-(4-(4-Chlorobenzamido)benzoyl)hydrazono)ethyl) phenyl)nicotinamide) was successfully synthesized and designated as compound X. In vitro, VEGFR-2 inhibition and cytotoxicity of compound X against HCT-116 and A549 cancer cell lines and normal Vero cell lines were conducted. Apoptosis induction and migration assay of HCT-116 cell lines after treatment with compound X were also evaluated.

Results: DFT calculations assigned stability and reactivity of compound X. Molecular docking and MD simulations indicated its excellent binding against VEGFR-2. Furthermore, MM-GBSA analysis, PLIP experiments, and PCAT studies confirmed compound X’s correct binding with optimal dynamics and energy. ADMET analysis expressed its general likeness and safety. The in vitro assays demonstrated that compound X effectively inhibited VEGFR-2, with an IC50 value of 0.319 ± 0.013 μM and displayed cytotoxicity against HCT-116 and A549 cancer cell lines, with IC50 values of 57.93 and 78.82 μM, respectively. Importantly, compound X exhibited minimal toxicity towards the non-cancerous Vero cell lines, (IC50 = 164.12 μM). Additionally, compound X significantly induced apoptosis of HCT-116 cell lines and inhibited their potential to migrate and heal.

Conclusion: In summary, the presented study has identified compound X as a promising candidate for the development of a novel apoptotic lead anticancer drug.

« Previous
[1]
Hassan GS. Synthesis and antitumor activity of certain new thiazolo[2,3-b]quinazoline and thiazolo[3,2-a]pyrimidine analogs. Med Chem Res 2014; 23(1): 388-401.
[http://dx.doi.org/10.1007/s00044-013-0649-6]
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res 2008; 68(21): 8643-53.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6611] [PMID: 18974103]
[4]
Fidler IJ, Ellis LM. Chemotherapeutic drugs-more really is not better. Nat Med 2000; 6(5): 500-2.
[http://dx.doi.org/10.1038/74969] [PMID: 10802697]
[5]
Elrazaz EZ, Serya RAT, Ismail NSM, Albohy A, Abou El Ella DA, Abouzid KAM. Discovery of potent thieno[2,3-d]pyrimidine VEGFR-2 inhibitors: Design, synthesis and enzyme inhibitory evaluation supported by molecular dynamics simulations. Bioorg Chem 2021; 113: 105019.
[http://dx.doi.org/10.1016/j.bioorg.2021.105019] [PMID: 34091286]
[6]
Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag 2006; 2(3): 213-9.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[7]
Modi SJ, Kulkarni VM. Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: Medicinal chemistry perspective. Med Drug Discov 2019; 2: 100009.
[http://dx.doi.org/10.1016/j.medidd.2019.100009]
[8]
Karami E, Azizi P, Behdani M, Kazemi-Lomedasht F. Efficient inhibition of pathologic angiogenesis using combination therapy of anti-Epcam and Anti-VEGFR2 nanobodies. Curr Pharm Des 2023; 29(13): 1059-66.
[http://dx.doi.org/10.2174/1381612829666230420083431] [PMID: 37078346]
[9]
Kumari R, Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J Biomol Struct Dyn 2022; 40(20): 9833-47.
[http://dx.doi.org/10.1080/07391102.2021.1936179] [PMID: 34096457]
[10]
Kumari R, Rathi R, Pathak SR, Dalal V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J Mol Struct 2022; 1255: 132476.
[http://dx.doi.org/10.1016/j.molstruc.2022.132476]
[11]
Chhina A, Trehan K, Saini M, et al. Revolutionizing pharmaceutical industry: The radical impact of artificial intelligence and machine learning. Curr Pharm Des 2023; 29(21): 1645-58.
[http://dx.doi.org/10.2174/1381612829666230807161421] [PMID: 37550904]
[12]
Amiri P, Hakemi-Vala M, Nazarian A, Barneh F, Pooshang Bagheri K. In silico and in vitro assessment of antibacterial activity, LPS binding affinity, and toxicity of the GKY25 peptide. Curr Pharm Des 2023; 29(26): 2101-9.
[http://dx.doi.org/10.2174/1381612829666230905143544] [PMID: 37670702]
[13]
Zhang YC, Gao WC, Chen WJ, Pang DX, Mo DY, Yang M. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Fei Jin Sheng formula in the treatment of lung cancer. Curr Pharm Des 2023; 29(14): 1121-34.
[http://dx.doi.org/10.2174/1381612829666230503164755] [PMID: 37138492]
[14]
Kumari N, Dalal V, Kumar P, Rath SN. Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. J Biomol Struct Dyn 2022; 40(6): 2395-406.
[http://dx.doi.org/10.1080/07391102.2020.1839558] [PMID: 33103598]
[15]
Sumathi S, Suganya K, Swathi K, et al. A review on deep learning-driven drug discovery: Strategies, tools and applications. Curr Pharm Des 2023; 29(13): 1013-25.
[http://dx.doi.org/10.2174/1381612829666230412084137] [PMID: 37055908]
[16]
Fabris M, Nascimento-Júnior NM, Bispo MLF, Camargo PG. Computational strategies targeting inhibition of Helicobacter pylori and Cryptococcus neoformans ureases. Curr Pharm Des 2023; 29(10): 777-92.
[http://dx.doi.org/10.2174/1381612829666230329122902] [PMID: 36999428]
[17]
Sano N, Yoshino H, Sato Y, Honma H, Cordonier CEJ, Kashiwakura I. Cytotoxic activity of unique synthesized five-membered heterocyclic compounds coordinated with tiopronin monovalent. Curr Pharm Des 2023; 29(12): 957-65.
[http://dx.doi.org/10.2174/1381612829666230407094658] [PMID: 37032505]
[18]
Taghour MS, Elkady H, Eldehna WM, et al. Design and synthesis of thiazolidine-2,4-diones hybrids with 1,2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: In-vitro anticancer evaluation and in-silico studies. J Enzyme Inhib Med Chem 2022; 37(1): 1903-17.
[http://dx.doi.org/10.1080/14756366.2022.2085693] [PMID: 35801403]
[19]
Taghour MS, Elkady H, Eldehna WM, et al. Design, synthesis, anti-proliferative evaluation, docking, and MD simulations studies of new thiazolidine-2,4-diones targeting VEGFR-2 and apoptosis pathway. PLoS One 2022; 17(9): e0272362.
[http://dx.doi.org/10.1371/journal.pone.0272362] [PMID: 36149902]
[20]
Elkaeed EB, Yousef RG, Elkady H, et al. In silico, in vitro VEGFR-2 inhibition, and anticancer activity of a 3-(hydrazonomethyl) naphthalene-2-ol derivative. J Biomol Struct Dyn 2023; 41(16): 7986-8001.
[PMID: 36184591]
[21]
Elkaeed EB, Yousef RG, Elkady H, et al. The assessment of anticancer and VEGFR-2 inhibitory activities of a new 1H-Indole derivative: In silico and in vitro approaches. Processes 2022; 10(7): 1391.
[http://dx.doi.org/10.3390/pr10071391]
[22]
Eissa IH, Yousef RG, Elkady H, et al. Design, semi-synthesis, anti-cancer assessment, docking, MD simulation, and DFT studies of novel theobromine-based derivatives as VEGFR-2 inhibitors and apoptosis inducers. Comput Biol Chem 2023; 107: 107953.
[http://dx.doi.org/10.1016/j.compbiolchem.2023.107953] [PMID: 37673011]
[23]
Mahdy HA, Elkady H, Taghour MS, et al. New theobromine derivatives inhibiting VEGFR-2: Design, synthesis, antiproliferative, docking and molecular dynamics simulations. Future Med Chem 2023; 15(14): 1233-50.
[http://dx.doi.org/10.4155/fmc-2023-0089] [PMID: 37466069]
[24]
Elkaeed EB, Yousef RG, Elkady H, et al. Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: In vitro anticancer and VEGFR-2 inhibitory effects. Molecules 2022; 27(14): 4606.
[http://dx.doi.org/10.3390/molecules27144606] [PMID: 35889478]
[25]
Yousef RG, Elwan A, Gobaara IMM, et al. Anti-cancer and immunomodulatory evaluation of new nicotinamide derivatives as potential VEGFR-2 inhibitors and apoptosis inducers: In vitro and in silico studies. J Enzyme Inhib Med Chem 2022; 37(1): 2206-22.
[http://dx.doi.org/10.1080/14756366.2022.2110868] [PMID: 35980113]
[26]
Yousef RG, Elkady H, Elkaeed EB, et al. (E)-N-(3-(1-(2-(4-(2,2,2-Trifluoroacetamido)benzoyl)hydrazono)ethyl)phenyl)nicotinamide: A novel pyridine derivative for inhibiting vascular endothelial growth factor receptor-2: Synthesis, computational, and anticancer studies. Molecules 2022; 27(22): 7719.
[http://dx.doi.org/10.3390/molecules27227719] [PMID: 36431818]
[27]
Taghour MS, Elkady H, Eldehna WM, et al. Discovery of new quinoline and isatine derivatives as potential VEGFR-2 inhibitors: Design, synthesis, antiproliferative, docking and MD simulation studies. J Biomol Struct Dyn 2023; 1-16.
[http://dx.doi.org/10.1080/07391102.2022.2164356] [PMID: 36617888]
[28]
Elkaeed EB, Taghour MS, Mahdy HA, et al. New quinoline and isatin derivatives as apoptotic VEGFR-2 inhibitors: Design, synthesis, anti-proliferative activity, docking, ADMET, toxicity, and MD simulation studies. J Enzyme Inhib Med Chem 2022; 37(1): 2191-205.
[http://dx.doi.org/10.1080/14756366.2022.2110869] [PMID: 35975321]
[29]
Ran F, Li W, Qin Y, et al. Inhibition of vascular smooth muscle and cancer cell proliferation by new VEGFR inhibitors and their immunomodulator effect: Design, synthesis, and biological evaluation. Oxid Med Cell Longev 2021; 2021: 1-21.
[http://dx.doi.org/10.1155/2021/8321400] [PMID: 34745424]
[30]
Alanazi MM, Elkady H, Alsaif NA, et al. New quinoxaline-based VEGFR-2 inhibitors: Design, synthesis, and antiproliferative evaluation with in silico docking, ADMET, toxicity, and DFT studies. RSC Advances 2021; 11(48): 30315-28.
[http://dx.doi.org/10.1039/D1RA05925D] [PMID: 35493991]
[31]
Elwan A, Abdallah AE, Mahdy HA, et al. Modified benzoxazole-based VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, and anti-proliferative evaluation. Molecules 2022; 27(15): 5047.
[http://dx.doi.org/10.3390/molecules27155047] [PMID: 35956997]
[32]
Elkaeed EB, Yousef RG, Khalifa MM, et al. Discovery of new VEGFR-2 inhibitors: Design, synthesis, anti-proliferative evaluation, docking, and MD simulation studies. Molecules 2022; 27(19): 6203.
[http://dx.doi.org/10.3390/molecules27196203] [PMID: 36234734]
[33]
Elkaeed EB, Eissa IH, Elkady H, et al. A multistage in silico study of natural potential inhibitors targeting SARS-CoV-2 main protease. Int J Mol Sci 2022; 23(15): 8407.
[http://dx.doi.org/10.3390/ijms23158407] [PMID: 35955547]
[34]
Elkaeed EB, Youssef FS, Eissa IH, et al. Multi-step in silico discovery of natural drugs against COVID-19 targeting main protease. Int J Mol Sci 2022; 23(13): 6912.
[http://dx.doi.org/10.3390/ijms23136912] [PMID: 35805916]
[35]
Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015; 1-2: 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[36]
Brooks BR, Brooks CL III, Mackerell AD Jr, et al. CHARMM: The biomolecular simulation program. J Comput Chem 2009; 30(10): 1545-614.
[http://dx.doi.org/10.1002/jcc.21287] [PMID: 19444816]
[37]
Jo S, Cheng X, Islam SM, et al. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing non-standard residues. Adv Protein Chem Struct Biol 2014; 96: 235-65.
[http://dx.doi.org/10.1016/bs.apcsb.2014.06.002] [PMID: 25443960]
[38]
Tuccinardi T. What is the current value of MM/PBSA and MM/GBSA methods in drug discovery? Expert Opin Drug Discov 2021; 16(11): 1233-7.
[http://dx.doi.org/10.1080/17460441.2021.1942836] [PMID: 34165011]
[39]
Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 2021; 17(10): 6281-91.
[http://dx.doi.org/10.1021/acs.jctc.1c00645] [PMID: 34586825]
[40]
Amadei A, Linssen ABM, Berendsen HJC. Essential dynamics of proteins. Proteins 1993; 17(4): 412-25.
[http://dx.doi.org/10.1002/prot.340170408] [PMID: 8108382]
[41]
Papaleo E, Mereghetti P, Fantucci P, Grandori R, De Gioia L. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. J Mol Graph Model 2009; 27(8): 889-99.
[http://dx.doi.org/10.1016/j.jmgm.2009.01.006] [PMID: 19264523]
[42]
Eissa IH, Elkady H, Alsfouk AA, et al. New apoptotic anti-triple-negative breast cancer theobromine derivative inhibiting EGFRWT and EGFR(T790M): In silico and in vitro evaluation. Mol Divers 2023; 1-21.
[http://dx.doi.org/10.1007/s11030-023-10644-4]
[43]
Biovia DS. Discovery studio modeling environment 2017.
[44]
Alley MC, Scudiero DA, Monks A, et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 1988; 48(3): 589-601.
[45]
Van de Loosdrecht A, Beelen R. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 1994; 174(1-2): 311-20.
[46]
Wlodkowic D, Skommer J, Darzynkiewicz ZJ, Skommer J. Flow cytometry-based apoptosis detection. Methods Mol Biol 2009; 559: 19-32.
[47]
Rodriguez LG, Wu X, Guan J-LJCMDM. Wound-healing assay. In: Cell Migration. 2005; pp. 23-9.
[48]
Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM. An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr 2014; 8(5): 440-51.
[49]
Schleder GR, Padilha AC, Acosta CM, Costa M. From DFT to machine learning: Recent approaches to materials science-a review. J Phys Mater 2019; 2(3): 032001.
[50]
Reveles JU. Geometry optimization in density functional methods. J Comput Chem 2004; 25: 1109-16.
[51]
Wong MWJCPL. Vibrational frequency prediction using density functional theory. Chem Phys Lett 1996; 256(4-5): 391-9.
[http://dx.doi.org/10.1016/0009-2614(96)00483-6]
[52]
Bursch M, Mewes JM, Hansen A, Grimme SJACIE. Best-practice DFT protocols for basic molecular computational chemistry. Angew Chem Int Ed Engl 2022; 61: e202205735.
[53]
Durant JL. Evaluation of transition state properties by density functional theory. Chem Phys Lett 1996; 256(6): 595-602.
[54]
Kesari P, Pratap S, Dhankhar P, et al. Structural characterization and in-silico analysis of Momordica charantia 7S globulin for stability and ACE inhibition. Sci Rep 2020; 10(1): 1160.
[http://dx.doi.org/10.1038/s41598-020-58138-9] [PMID: 31980708]
[55]
Gupta DN, Dalal V, Savita BK, et al. In-silico screening and identification of potential inhibitors against 2Cys peroxiredoxin of Candidatus Liberibacter asiaticus. J Biomol Struct Dyn 2022; 40(19): 8725-39.
[http://dx.doi.org/10.1080/07391102.2021.1916597] [PMID: 33939584]
[56]
Husein DZ, Hassanien R, Khamis M. Cadmium oxide nanoparticles/graphene composite: Synthesis, theoretical insights into reactivity and adsorption study. RSC Advances 2021; 11(43): 27027-41.
[http://dx.doi.org/10.1039/D1RA04754J] [PMID: 35480026]
[57]
Wang T, Husein DZ. Novel synthesis of multicomponent porous nano-hybrid composite, theoretical investigation using DFT and dye adsorption applications: Disposing of waste with waste. Environ Sci Pollut Res Int 2022; 30(4): 8928-55.
[http://dx.doi.org/10.1007/s11356-022-20050-2] [PMID: 35460480]
[58]
Armaković S, Armaković SJ, Šetrajčić JP, Jaćimovski SK, Holodkov V. Sumanene and its adsorption properties towards CO, CO2 and NH3 molecules. J Mol Model 2014; 20(4): 2170.
[http://dx.doi.org/10.1007/s00894-014-2170-3] [PMID: 24633773]
[59]
Liu X, Shi D, Zhou S, Liu H, Liu H. Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 2018; 13(1): 23-37.
[60]
De Vivo M, Masetti M, Bottegoni G. Role of molecular dynamics and related methods in drug discovery. J Med Chem 2016; 59(9): 4035-61.
[61]
Rastelli G, Rio AD, Degliesposti G. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 2010; 31(4): 797-810.
[62]
Sgobba M, Caporuscio F, Anighoro A, Portioli C. Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. Eur J Med Chem 2012; 58: 431-0.
[63]
Sun H, Li Y, Tian S, Xu L, Hou TJPCCP. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 2014; 16(31): 16719-29.
[64]
Sun H, Li Y, Shen M, et al. Assessing the performance of MM/ PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/ PBSA rescoring. Phys Chem Chem Phys 2014; 16(40): 22035-45.
[http://dx.doi.org/10.1039/C4CP03179B] [PMID: 25205360]
[65]
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 2015; 10(5): 449-61.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[66]
Ferreira LLG, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discov Today 2019; 24(5): 1157-65.
[http://dx.doi.org/10.1016/j.drudis.2019.03.015] [PMID: 30890362]
[67]
Chuang KV, Gunsalus LM, Keiser MJ. Learning molecular representations for medicinal chemistry: Miniperspective. J Med Chem 2020; 63(16): 8705-22.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00385] [PMID: 32366098]
[68]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 1997; 23: 3-25. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[69]
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[70]
Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A review of the important role of CYP2D6 in pharmacogenomics. Genes 2020; 11(11): 1295.
[http://dx.doi.org/10.3390/genes11111295] [PMID: 33143137]
[71]
Norinder U, Bergström CAS. Prediction of ADMET properties. ChemMedChem 2006; 1(9): 920-37.
[http://dx.doi.org/10.1002/cmdc.200600155] [PMID: 16952133]
[72]
Bohnert T, Gan LS. Plasma protein binding: From discovery to development. J Pharm Sci 2013; 102(9): 2953-94.
[http://dx.doi.org/10.1002/jps.23614] [PMID: 23798314]
[73]
Idakwo G, Luttrell J, Chen M, et al. A review on machine learning methods for in silico toxicity prediction. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2018; 36(4): 169-91.
[http://dx.doi.org/10.1080/10590501.2018.1537118] [PMID: 30628866]
[74]
Kruhlak NL, Benz RD, Zhou H, Colatsky TJ. (Q)SAR modeling and safety assessment in regulatory review. Clin Pharmacol Ther 2012; 91(3): 529-34.
[http://dx.doi.org/10.1038/clpt.2011.300] [PMID: 22258468]
[75]
El-Zahabi MA, Sakr H, El-Adl K, et al. Design, synthesis, and biological evaluation of new challenging thalidomide analogs as potential anticancer immunomodulatory agents. Bioorg Chem 2020; 104: 104218.
[http://dx.doi.org/10.1016/j.bioorg.2020.104218] [PMID: 32932121]
[76]
Li X, Jiang Y, Peterson YK, et al. Design of hydrazide-bearing HDACIs based on panobinostat and their p53 and FLT3-ITD dependency in antileukemia activity. J Med Chem 2020; 63(10): 5501-25.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00442] [PMID: 32321249]
[77]
El-Adl K, El-Helby AGA, Sakr H, Elwan A. [1,2,4]triazolo[4,3-a]quinoxaline and [1,2,4]triazolo[4,3-a]quinoxaline-1-thiol-derived DNA intercalators: Design, synthesis, molecular docking, in silico ADMET profiles and anti-proliferative evaluations. New J Chem 2021; 45(2): 881-97.
[http://dx.doi.org/10.1039/D0NJ02990D]
[78]
Saha N, Usami T, Suzuki Y. A double staining flow cytometric assay for the detection of steroid induced apoptotic leucocytes in common carp (Cyprinus carpio). Dev Comp Immunol 2003; 27(5): 351-63.
[http://dx.doi.org/10.1016/S0145-305X(02)00116-7] [PMID: 12631518]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy