Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Mini-Review Article

Assessment of the Roles of Magnesium and Zinc in Clinical Disorders

Author(s): David Calderón Guzmán, Norma Osnaya Brizuela, Maribel Ortiz Herrera, Armando Valenzuela Peraza, Ernestina Hernández Garcia, Gerardo Barragán Mejía and Hugo Juarez Olguin*

Volume 20, Issue 4, 2023

Published on: 27 November, 2023

Page: [505 - 513] Pages: 9

DOI: 10.2174/0115672026275688231108184457

Price: $65

Abstract

The ability and facility of magnesium (Mg2+) and zinc (Zn2+) to interact with phosphate ions confer them the characteristics of essential trace elements. Trace elements are extremely necessary for the basic nucleic acid chemistry of cells of all known living organisms. More than 300 enzymes require zinc and magnesium ions for their catalytic actions, including all the enzymes involved in the synthesis of ATP. In addition, enzymes such as isomerases, oxidoreductases, lyases, transferases, ligases and hydrolases that use other nucleotides to synthesize DNA and RNA require magnesium and zinc. These nucleotides may trigger oxidative damage or important changes against free radicals. In the same way, nucleotides may play an important role in the pathophysiology of degenerative diseases, including in some clinical disorders, where vascular risk factors, oxidative stress and inflammation work to destabilize the patients` homeostatic equilibrium. Indeed, reduced levels of zinc and magnesium may lead to inadequate amount of antioxidant enzymes, and thus, acts as an important contributing factor for the induction of oxidative stress leading to cellular or tissue dysfunction. Hence, the development of zinc or magnesium enzyme inhibitors could be a novel opportunity for the treatment of some human disorders. Therefore, the objective of the present work was to assess the clinical benefits of zinc and magnesium in human health and their effects in some clinical disorders.

« Previous
[1]
Irlam JH, Visser MM, Rollins NN, Siegfried N. Micronutrient supplementation in children and adults with HIV infection. Cochrane Database Syst Rev 2010; 8(12): CD003650.
[PMID: 21154354]
[2]
Food and nutrition aboard (FNA), National Research Council Recommended Dietary Allowances. (10th ed.), Washington, D.C.: National Academy press 1989.
[3]
Baltaci AK, Yuce K, Mogulkoc R. Zinc metabolism and metallothioneins. Biol Trace Elem Res 2018; 183(1): 22-31.
[http://dx.doi.org/10.1007/s12011-017-1119-7] [PMID: 28812260]
[4]
To PK, Do MH, Cho JH, Jung C. Growth modulatory role of zinc in prostate cancer and application to cancer therapeutics. Int J Mol Sci 2020; 21(8): 2991.
[http://dx.doi.org/10.3390/ijms21082991] [PMID: 32340289]
[5]
Qiu M, Shentu Y, Zeng J, et al. Zinc mediates the neuronal activity–dependent anti-apoptotic effect. PLoS One 2017; 12(8): e0182150.
[http://dx.doi.org/10.1371/journal.pone.0182150] [PMID: 28787459]
[6]
Doboszewska U. Wlaź P, Nowak G, Radziwoń-Zaleska M, Cui R, Młyniec K. Zinc in the monoaminergic theory of depression: Its relationship to neural plasticity. Neural Plast 2017; 2017: 1-18.
[http://dx.doi.org/10.1155/2017/3682752] [PMID: 28299207]
[7]
Curr Neuropharmacol 2015; 3(4): 505-13.
[http://dx.doi.org/10.2174/1570159X13666150115220617] [PMID: 26412070]
[8]
Sharaf MS, Stevens D, Kamunde C. Zinc and calcium alter the relationship between mitochondrial respiration, ROS and membrane potential in rainbow trout (Oncorhynchus mykiss) liver mitochondria. Aquat Toxicol 2017; 189: 170-83.
[http://dx.doi.org/10.1016/j.aquatox.2017.06.005] [PMID: 28646724]
[9]
Li D, Stovall DB, Wang W, Sui G. Advances of zinc signaling studies in prostate cancer. Int J Mol Sci 2020; 21(2): 667.
[http://dx.doi.org/10.3390/ijms21020667] [PMID: 31963946]
[10]
Ariaee N, Farid R, Shabestari F, Shabestari M, Jabbari Azad F. Trace elements status in sera of patients with allergic asthma. Rep Biochem Mol Biol 2016; 5(1): 20-5.
[PMID: 28070530]
[11]
Xie F, Zhang X, Xie L. Prognostic value of serum zinc levels in patients with acute HC/zinc chloride smoke inhalation. Medicine (Baltimore) 2017; 96(39): e8156.
[http://dx.doi.org/10.1097/MD.0000000000008156] [PMID: 28953660]
[12]
Zanganeh N, Siahpoushi E, Kheiripour N, Kazemi S, Goodarzi MT, Alikhani MY. Brucellosis causes alteration in trace elements and oxidative stress factors. Biol Trace Elem Res 2018; 182(2): 204-8.
[http://dx.doi.org/10.1007/s12011-017-1102-3] [PMID: 28735383]
[13]
Samadieh H, Mohammadi GR, Maleki M, Borji H, Azizzadeh M, Heidarpour M. Relationships between oxidative stress, liver, and erythrocyte injury, trace elements and parasite burden in sheep naturally infected with Dicrocoelium dendriticum. Iran J Parasitol 2017; 12(1): 46-55.
[PMID: 28761460]
[14]
Granero R, Pardo-Garrido A, Carpio-Toro IL, Ramírez-Coronel AA, Martínez-Suárez PC, Reivan-Ortiz GG. The role of iron and zinc in the treatment of ADHD among children and adolescents: A systematic review of randomized clinical trials. Nutrients 2021; 13(11): 4059.
[http://dx.doi.org/10.3390/nu13114059] [PMID: 34836314]
[15]
Santos HO, Teixeira FJ, Schoenfeld BJ. Dietary vs. pharmacological doses of zinc: A clinical review. Clin Nutr 2020; 39(5): 1345-53.
[http://dx.doi.org/10.1016/j.clnu.2019.06.024] [PMID: 31303527]
[16]
Glutsch V, Hamm H, Goebeler M. Zinc and skin: an update. J Dtsch Dermatol Ges 2019; 17(6): 589-96.
[http://dx.doi.org/10.1111/ddg.13811] [PMID: 30873720]
[17]
Grüngreiff K, Gottstein T, Reinhold D, Blindauer CA. Albumin substitution in decompensated liver cirrhosis: Don’t forget zinc. Nutrients 2021; 13(11): 4011.
[http://dx.doi.org/10.3390/nu13114011] [PMID: 34836265]
[18]
Blasiak J, Pawlowska E, Chojnacki J, Szczepanska J, Chojnacki C, Kaarniranta K. Zinc and autophagy in age-related macular degeneration. Int J Mol Sci 2020; 21(14): 4994.
[http://dx.doi.org/10.3390/ijms21144994] [PMID: 32679798]
[19]
Xu Y, Xiao G, Liu L, Lang M. Zinc transporters in Alzheimer’s disease. Mol Brain 2019; 12(1): 106.
[http://dx.doi.org/10.1186/s13041-019-0528-2] [PMID: 31818314]
[20]
Eljaoudi R, Elomri N, Laamarti M, et al. Antioxidants status in type 2 diabetic patients in Morocco. Turk J Med Sci 2017; 47(3): 782-8.
[http://dx.doi.org/10.3906/sag-1512-110] [PMID: 28618722]
[21]
Mishra S, Mishra B. Study of lipid peroxidation, nitric oxide end product, and trace element status in type 2 diabetes mellitus with and without complications. Int J Appl Basic Med Res 2017; 7(2): 88-93.
[http://dx.doi.org/10.4103/2229-516X.205813] [PMID: 28584737]
[22]
Pan J, Huang X, Li Y, et al. Zinc protects against cadmium-induced toxicity by regulating oxidative stress, ions homeostasis and protein synthesis. Chemosphere 2017; 188: 265-73.
[http://dx.doi.org/10.1016/j.chemosphere.2017.08.106] [PMID: 28886561]
[23]
Slepchenko KG, Lu Q, Li YV. Cross talk between increased intracellular zinc (Zn 2+) and accumulation of reactive oxygen species in chemical ischemia. Am J Physiol Cell Physiol 2017; 313(4): C448-59.
[http://dx.doi.org/10.1152/ajpcell.00048.2017] [PMID: 28747335]
[24]
Jafari F, Mohammadi H, Amani R. The effect of zinc supplementation on brain derived neurotrophic factor: A meta-analysis. J Trace Elem Med Biol 2021; 66: 126753.
[http://dx.doi.org/10.1016/j.jtemb.2021.126753] [PMID: 33831797]
[25]
Elitt CM, Fahrni CJ, Rosenberg PA. Zinc homeostasis and zinc signaling in white matter development and injury. Neurosci Lett 2019; 707: 134247.
[http://dx.doi.org/10.1016/j.neulet.2019.05.001]
[26]
Keshavarz P, Nobakht M, Gh BF, Mirhafez SR, et al. Alterations in lipid profile, zinc and copper levels and superoxide dismutase activities in normal pregnancy and preeclampsia. Am J Med Sci 2017; 353(6): 552-8.
[http://dx.doi.org/10.1016/j.amjms.2017.03.022] [PMID: 28641718]
[27]
Bahi GA, Boyvin L, Méité S, et al. Assessments of serum copper and zinc concentration, and the Cu/Zn ratio determination in patients with multidrug resistant pulmonary tuberculosis (MDR-TB) in Côte d’Ivoire. BMC Infect Dis 2017; 17(1): 257.
[http://dx.doi.org/10.1186/s12879-017-2343-7] [PMID: 28399817]
[28]
Kim B, Lee WW. Regulatory role of zinc in immune cell signaling. Mol Cells 2021; 44(5): 335-41.
[http://dx.doi.org/10.14348/molcells.2021.0061] [PMID: 33986184]
[29]
Alsufiani HM, Alkhanbashi AS, Laswad NAB, et al. Zinc deficiency and supplementation in autism spectrum disorder and Phelan-McDermid síndrome. J Neurosci Res 2022; 100(4): 970-8.
[http://dx.doi.org/10.1002/jnr.25019] [PMID: 35114017]
[30]
Baj J, Flieger W, Flieger M, et al. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci Biobehav Rev 2021; 129: 117-32.
[http://dx.doi.org/10.1016/j.neubiorev.2021.07.029] [PMID: 34339708]
[31]
Giuliano CA, Berti AD, Kale-Pradhan PB, et al. Clinical outcomes of zinc supplementation among COVID-19 patients. Curr Drug Saf 2022; 17(4): 366-9.
[http://dx.doi.org/10.2174/1574886317666220317115023] [PMID: 35301954]
[32]
Vogel-González M, Talló-Parra M, Herrera-Fernández V, et al. Low zinc levels at admission associates with poor clinical outcomes in SARS-CoV-2 infection. Nutrients 2021; 13(2): 562.
[http://dx.doi.org/10.3390/nu13020562] [PMID: 33572045]
[33]
Dent A, Selvaratnam R. Measuring magnesium – Physiological, clinical and analytical perspectives. Clin Biochem 2022; 105-106: 1-15.
[http://dx.doi.org/10.1016/j.clinbiochem.2022.04.001] [PMID: 35381264]
[34]
Botturi A, Ciappolino V, Delvecchio G, Boscutti A, Viscardi B, Brambilla P. The role and the effect of magnesium in mental disorders: A systematic review. Nutrients 2020; 12(6): 1661.
[http://dx.doi.org/10.3390/nu12061661] [PMID: 32503201]
[35]
Barbagallo M, Veronese N, Dominguez LJ. Magnesium in aging, health and diseases. Nutrients 2021; 13(2): 463.
[http://dx.doi.org/10.3390/nu13020463] [PMID: 33573164]
[36]
Crisponi G, Fanni D, Nurchi VM, et al. The potential clinical properties of magnesium. Curr Med Chem 2021; 28(35): 7295-311.
[http://dx.doi.org/10.2174/0929867327999201116195343] [PMID: 33200694]
[37]
Domitrz I, Cegielska J. Magnesium as an important factor in the pathogenesis and treatment of migraine—from theory to practice. Nutrients 2022; 14(5): 1089.
[http://dx.doi.org/10.3390/nu14051089] [PMID: 35268064]
[38]
Morel V, Pickering ME, Goubayon J, Djobo M, Macian N, Pickering G. Magnesium for pain treatment in 2021? State of the art. Nutrients 2021; 13(5): 1397.
[http://dx.doi.org/10.3390/nu13051397] [PMID: 33919346]
[39]
Gommers LMM, Hoenderop JGJ, de Baaij JHF. Mechanisms of proton pump inhibitor‐induced hypomagnesemia. Acta Physiol (Oxf) 2022; 235(4): e13846.
[http://dx.doi.org/10.1111/apha.13846] [PMID: 35652564]
[40]
Garrison SR, Korownyk CS, Kolber MR, et al. Magnesium for skeletal muscle cramps. Cochrane Database Syst Rev 2020; 9(9): CD009402.
[http://dx.doi.org/10.1002/14651858.CD009402] [PMID: 32956536]
[41]
Costello RB, Nielsen F. Interpreting magnesium status to enhance clinical care. Curr Opin Clin Nutr Metab Care 2017; 20(6): 504-11.
[http://dx.doi.org/10.1097/MCO.0000000000000410] [PMID: 28806179]
[42]
Maier JA, Pickering G, Giacomoni E, Cazzaniga A, Pellegrino P. Headaches and magnesium: Mechanisms, bioavailability, therapeutic efficacy and potential advantage of magnesium pidolate. Nutrients 2020; 12(9): 2660.
[http://dx.doi.org/10.3390/nu12092660] [PMID: 32878232]
[43]
Van Laecke S. Hypomagnesemia and hypermagnesemia. Acta Clin Belg 2019; 74(1): 41-7.
[http://dx.doi.org/10.1080/17843286.2018.1516173] [PMID: 30220246]
[44]
Liamis G, Hoorn EJ, Florentin M, Milionis H. An overview of diagnosis and management of drug‐induced hypomagnesemia. Pharmacol Res Perspect 2021; 9(4): e00829.
[http://dx.doi.org/10.1002/prp2.829] [PMID: 34278747]
[45]
Muñoz-Castañeda J, Pendón-Ruiz de Mier M, Rodríguez M, Rodríguez-Ortiz M. Magnesium replacement to protect cardiovascular and kidney damage? Lack of prospective clinical trials. Int J Mol Sci 2018; 19(3): 664.
[http://dx.doi.org/10.3390/ijms19030664] [PMID: 29495444]
[46]
Boulis M, Boulis M, Clauw D. Magnesium and fibromyalgia: A literature review. J Prim Care Community Health 2021; •••: 12.
[http://dx.doi.org/10.1177/21501327211038433] [PMID: 34392734]
[47]
Dominguez LJ, Veronese N, Barbagallo M. Magnesium and hypertension in old age. Nutrients 2020; 13(1): 139.
[http://dx.doi.org/10.3390/nu13010139] [PMID: 33396570]
[48]
Cao Y, Zhen S, Taylor A, Appleton S, Atlantis E, Shi Z. Magnesium intake and sleep disorder symptoms: findings from the Jiangsu nutrition study of chinese adults at five-year follow-up. Nutrients 2018; 10(10): 1354.
[http://dx.doi.org/10.3390/nu10101354] [PMID: 30248967]
[49]
Jadidi A, Rezaei Ashtiani A, Khanmohamadi Hezaveh A, Aghaepour SM. Therapeutic effects of magnesium and vitamin B6 in alleviating the symptoms of restless legs syndrome: a randomized controlled clinical trial. BMC Complement Med Ther 2022; 23(1): 1.
[http://dx.doi.org/10.1186/s12906-022-03814-8] [PMID: 36587225]
[50]
Bullarbo M, Mattson H, Broman AK, Ödman N, Nielsen TF. Magnesium supplementation and blood pressure in pregnancy: A double-blind randomized multicenter study. J Pregnancy 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/4843159] [PMID: 30002931]
[51]
Hyde NK, Brennan-Olsen SL, Wark JD, Hosking SM, Pasco JA. Maternal dietary nutrient intake during pregnancy and offspring linear growth and bone: The vitamin D in pregnancy cohort study. Calcif Tissue Int 2017; 100(1): 47-54.
[http://dx.doi.org/10.1007/s00223-016-0199-2] [PMID: 27807601]
[52]
Rosner JY, Gupta M, McGill M, et al. Magnesium deficiency during pregnancy in mice impairs placental size and function. Placenta 2016; 39: 87-93.
[http://dx.doi.org/10.1016/j.placenta.2016.01.009] [PMID: 26992680]
[53]
Karamanli H, Kizilirmak D, Akgedik R, Bilgi M. Serum levels of magnesium and their relationship with CRP in patients with OSA. Sleep Breath 2016.
[PMID: 27600660]
[54]
Zheltova AA, Kharitonova MV, Iezhitsa IN, Spasov AA. Magnesium deficiency and oxidative stress: An update. Biomedicine (Taipei) 2016; 6(4): 20.
[http://dx.doi.org/10.7603/s40681-016-0020-6] [PMID: 27854048]
[55]
Mostafavi E, Nargesi AA, Asbagh FA, et al. Abdominal obesity and gestational diabetes: the interactive role of magnesium. Magnes Res 2015; 28(4): 116-25.
[http://dx.doi.org/10.1684/mrh.2015.0392] [PMID: 26878251]
[56]
Petrović J, Stanić D, Dmitrašinović G, et al. Magnesium supplementation diminishes peripheral blood lymphocyte DNA oxidative damage in athletes and sedentary young man. Oxid Med Cell Longev 2016; 2016: 1-7.
[http://dx.doi.org/10.1155/2016/2019643] [PMID: 27042258]
[57]
Lötscher J, Martí i Líndez AA, Kirchhammer N, et al. Magnesium sensing via LFA-1 regulates CD8+ T cell effector function. Cell 2022; 185(4): 585-602.e29.
[http://dx.doi.org/10.1016/j.cell.2021.12.039] [PMID: 35051368]
[58]
Zhang LW, Warrington JP. Magnesium sulfate prevents placental ischemia-induced increases in brain water content and cerebrospinal fluid cytokines in pregnant rats. Front Neurosci 2016; 10: 561.
[http://dx.doi.org/10.3389/fnins.2016.00561] [PMID: 28008305]
[59]
Feldhaus I, LeFevre AE, Rai C, et al. Optimizing treatment for the prevention of pre-eclampsia/eclampsia in Nepal: is calcium supplementation during pregnancy cost-effective? Cost Eff Resour Alloc 2016; 14(1): 13.
[http://dx.doi.org/10.1186/s12962-016-0062-3] [PMID: 28035193]
[60]
Bar J, Ben-Haroush A, Feldberg D, Hod M. The pharmacologic approach to the prevention of preeclampsia: from antiplatelet, antithrombosis and antioxidant therapy to anticonvulsants. Curr Med Chem Cardiovasc Hematol Agents 2005; 3(3): 181-5.
[http://dx.doi.org/10.2174/1568016054368214] [PMID: 15974882]
[61]
Asemi Z, Karamali M, Jamilian M, et al. Retracted: Magnesium supplementation affects metabolic status and pregnancy outcomes in gestational diabetes: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 2015; 102(1): 222-9.
[http://dx.doi.org/10.3945/ajcn.114.098616] [PMID: 26016859]
[62]
Sentilhes L, Sénat MV, Ancel PY, et al. Prevention of spontaneous preterm birth: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). Eur J Obstet Gynecol Reprod Biol 2017; 210: 217-24.
[http://dx.doi.org/10.1016/j.ejogrb.2016.12.035] [PMID: 28068594]
[63]
Brown RS. Magnesium sulfate: Another cause of a solute diuresis. Am J Kidney Dis 2016; 69(4): 550-1.
[http://dx.doi.org/10.1053/j.ajkd.2016.09.028] [PMID: 28049556]
[64]
Sentilhes L, Sénat MV, Ancel PY, et al. [Prevention of spontaneous preterm birth (excluding preterm premature rupture of membranes): Guidelines for clinical practice-Text of the Guidelines (short text) J Gynecol Obstet Biol Reprod (Paris) 2016; 45(10): 1446-56.
[http://dx.doi.org/10.1016/j.jgyn.2016.09.011] [PMID: 27836377]
[65]
Williamson RD, McCarthy C, Kenny LC, O’Keeffe GW. Magnesium sulphate prevents lipopolysaccharide-induced cell death in an in vitro model of the human placenta. Pregnancy Hypertens 2016; 6(4): 356-60.
[http://dx.doi.org/10.1016/j.preghy.2016.08.237] [PMID: 27939482]
[66]
Spencer RN, Carr DJ, David AL. Treatment of poor placentation and the prevention of associated adverse outcomes – what does the future hold? Prenat Diagn 2014; 34(7): 677-84.
[http://dx.doi.org/10.1002/pd.4401] [PMID: 24799349]
[67]
Yang H, Kim TH, Lee GS, Hong EJ, Jeung EB. Comparing the expression patterns of placental magnesium/phosphorus-transporting channels between healthy and preeclamptic pregnancies. Mol Reprod Dev 2014; 81(9): 851-60.
[http://dx.doi.org/10.1002/mrd.22353] [PMID: 25155868]
[68]
Weinberger B, Nisar S, Anwar M, Ostfeld B, Hegyi T. Lipid peroxidation in cord blood and neonatal outcome. Pediatr Int 2006; 48(5): 479-83.
[http://dx.doi.org/10.1111/j.1442-200X.2006.02257.x] [PMID: 16970786]
[69]
Negi R, Pande D, Karki K, Kumar A, Khanna RS, Khanna HD. Trace elements and antioxidant enzymes associated with oxidative stress in the pre-eclamptic/eclamptic mothers during fetal circulation. Clin Nutr 2012; 31(6): 946-50.
[http://dx.doi.org/10.1016/j.clnu.2012.04.005] [PMID: 22560448]
[70]
Maulik D, Qayyum I, Powell SR, Karantza M, Prakash Mishra O, Delivoria-Papadopoulos M. Post-hypoxic magnesium decreases nuclear oxidative damage in the fetal guinea pig brain. Brain Res 2001; 890(1): 130-6.
[http://dx.doi.org/10.1016/S0006-8993(00)03153-X] [PMID: 11164775]
[71]
Jafari F, Tarrahi MJ, Farhang A, Amani R. Effect of zinc supplementation on quality of life and sleep quality in young women with premenstrual syndrome: a randomized, double-blind, placebo-controlled trial. Arch Gynecol Obstet 2020; 302(3): 657-64.
[http://dx.doi.org/10.1007/s00404-020-05628-w] [PMID: 32514756]
[72]
de Sousa Rocha V, Della Rosa FB, Ruano R, Zugaib M, Colli C. Association between magnesium status, oxidative stress and inflammation in preeclampsia: A case–control study. Clin Nutr 2015; 34(6): 1166-71.
[http://dx.doi.org/10.1016/j.clnu.2014.12.001] [PMID: 25559945]
[73]
Abad C, Vargas FR, Zoltan T, et al. Magnesium sulfate affords protection against oxidative damage during severe preeclampsia. Placenta 2015; 36(2): 179-85.
[http://dx.doi.org/10.1016/j.placenta.2014.11.008] [PMID: 25486968]
[74]
Franěk T, Kotaška K, Průša R. Manganese and selenium concentrations in cerebrospinal fluid of seriously ill children. J Clin Lab Anal 2017; 31(6): e22122.
[http://dx.doi.org/10.1002/jcla.22122] [PMID: 28205254]
[75]
Rehou S, Shahrokhi S, Natanson R, Stanojcic M, Jeschke MG. Antioxidant and trace element supplementation reduce the inflammatory response in critically ill burn patients. J Burn Care Res 2017; 39(1): 1-9.
[http://dx.doi.org/10.1097/BCR.0000000000000607] [PMID: 28877128]
[76]
Shayganfard M. Are essential trace elements effective in modulation of mental disorders? Update and perspectives. Biol Trace Elem Res 2022; 200(3): 1032-59.
[http://dx.doi.org/10.1007/s12011-021-02733-y] [PMID: 33904124]
[77]
Shi L, Cao H, Luo J, et al. Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in Duck. Ecotoxicol Environ Saf 2017; 145: 24-31.
[http://dx.doi.org/10.1016/j.ecoenv.2017.07.006] [PMID: 28692912]
[78]
Umair M, Alfadhel M. Genetic disorders associated with metal metabolism. Cells 2019; 8(12): 1598.
[http://dx.doi.org/10.3390/cells8121598] [PMID: 31835360]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy