Abstract
Aim: To explore an exosome-relevant molecular classification in lung adenocarcinoma (LUAD).
Background: Exosome genes or relevant non-coding RNAs are regulators of cancer treatment and prognosis, but their function in LUAD has not yet been determined.
Objective: Unraveling a molecular classification applying exosome-related RNA networks for LUAD prognosis evaluation.
Methods: MicroRNA sequencing data (miRNAs-seq) and RNA sequencing data (RNA- seq) were derived from The Cancer Genome Atlas (TCGA). The ConsensusCluster- Plus package was used for molecular typing in LUAD based on 121 Exosome-related genes. Then, a limma package was conducted to explore differentially expressed mRNAs (DEmRNAs), differentially expressed miRNAs (DEmiRNAs) and differentially expressed lncRNAs (DElncRNAs) in molecular typing for constructing an Exosome-driven competing endogenous RNA network (ceRNA). Dominant miRNAs, as well as target mRNAs, were identified by COX modeling and Kaplan-Meier survival analysis.
Results: Two Exosome-associated molecular clusters classified in LUAD. The C2 cluster favored high clinicopathology and showed a trend toward poor prognosis. 29 lncRNA- miRNA and 12 miRNA-mRNA interaction pairs were identified. The hsa-miR-429 was the pivotal miRNA in the network that affected the prognosis of LUAD. According to the interaction relationship and LUAD prognostic role, SNHG6-hsa- miR-429-CHRDL1/CCNA2 was identified. SNHG6-hsa-miR-429-CHRDL1 exerts oncogenic effects, and SNHG6-hsa-miR-429- CCNA2 exerts pro-oncogenic effects.
Conclusion: Overall, our study identified an Exosome-driven ceRNA network in LUAD, and the SNHG6-hsa-miR-429-CHRDL1/CCNA2 axis could be a new therapeutic target for LUAD and our study provides new insights into the molecular mechanisms of LUAD.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[http://dx.doi.org/10.1016/j.ebiom.2019.05.046] [PMID: 31147293]
[http://dx.doi.org/10.32604/oncologie.2022.022121]
[http://dx.doi.org/10.3389/fcell.2020.00550] [PMID: 32719796]
[http://dx.doi.org/10.1016/j.bbcan.2019.04.004] [PMID: 31047959]
[http://dx.doi.org/10.32604/oncologie.2022.020993]
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[http://dx.doi.org/10.1186/s12943-021-01312-y] [PMID: 33504342]
[http://dx.doi.org/10.1016/j.canlet.2021.10.029] [PMID: 34715254]
[http://dx.doi.org/10.1016/j.drup.2022.100915] [PMID: 36641841]
[http://dx.doi.org/10.1016/j.biocel.2022.106317] [PMID: 36283586]
[http://dx.doi.org/10.3390/ijms19051310] [PMID: 29702599]
[http://dx.doi.org/10.3390/ijms20225758] [PMID: 31744051]
[http://dx.doi.org/10.1016/j.gene.2017.12.036] [PMID: 29273554]
[http://dx.doi.org/10.1186/s12938-021-00952-x] [PMID: 34819106]
[http://dx.doi.org/10.3389/fonc.2020.554759] [PMID: 33042838]
[http://dx.doi.org/10.1002/imt2.36]
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[http://dx.doi.org/10.1007/s11831-023-09964-3]
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[http://dx.doi.org/10.18637/jss.v039.i05] [PMID: 27065756]
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[http://dx.doi.org/10.1093/bioinformatics/btz210] [PMID: 30903160]
[http://dx.doi.org/10.1093/bioinformatics/btu049] [PMID: 24478339]
[http://dx.doi.org/10.32604/oncologie.2022.022116]
[http://dx.doi.org/10.1016/j.bbrc.2014.05.084] [PMID: 24866238]
[http://dx.doi.org/10.1007/s10528-022-10285-6] [PMID: 36104590]
[http://dx.doi.org/10.1002/tox.23532] [PMID: 35426242]
[http://dx.doi.org/10.1016/j.biopha.2018.08.099] [PMID: 30257360]
[http://dx.doi.org/10.21037/tlcr.2020.01.20] [PMID: 32420061]
[http://dx.doi.org/10.1038/s41598-021-03166-2] [PMID: 34880385]
[http://dx.doi.org/10.18632/aging.203814] [PMID: 35021154]
[http://dx.doi.org/10.1007/s11030-023-10648-0] [PMID: 37058176]
[http://dx.doi.org/10.1080/07391102.2023.2209673] [PMID: 37154501]