Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Biomarkers and Treatment Strategies for Breast Cancer Recurrence

Author(s): Shivam Rajput, Pramod Kumar Sharma and Rishabha Malviya*

Volume 24, Issue 15, 2023

Published on: 23 November, 2023

Page: [1209 - 1220] Pages: 12

DOI: 10.2174/0113894501258059231103072025

Price: $65

Abstract

Despite recent treatment advancements, breast cancer remains a life-threatening disease. Although treatment is successful in the early stages, a significant proportion of individuals with breast cancer eventually experience a recurrence of the disease. Breast tumour recurrence poses a significant medical issue. Despite tumours being a primary cause of mortality, there remains a limited understanding of the fundamental mechanisms underlying tumour recurrence. The majority of the time, after surgery or medical treatment, this metastatic disease manifests itself after the disease is undiagnosed for a considerable amount of time. This phenomenon is commonly referred to as a relapse or recurrence. Metastatic breast cancer has the potential to recur at varying intervals, ranging from a few months to several decades following the initial diagnosis and treatment. This article aimed to summarise the primary causes of breast cancer recurrence and highlight the key issues that need to be addressed in order to effectively decrease the mortality rate among breast cancer patients. This article discusses various therapeutic approaches currently employed and emerging treatment strategies that hold the potential for the complete cure of cancer.

« Previous
Graphical Abstract

[1]
Moody SE, Perez D, Pan T, et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 2005; 8(3): 197-209.
[http://dx.doi.org/10.1016/j.ccr.2005.07.009] [PMID: 16169465]
[2]
Saphner T, Tormey DC, Gray R. Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol 1996; 14(10): 2738-46.
[http://dx.doi.org/10.1200/JCO.1996.14.10.2738] [PMID: 8874335]
[3]
Wang SY, Shamliyan T, Virnig BA, Kane R. Tumor characteristics as predictors of local recurrence after treatment of ductal carcinoma in situ: A meta-analysis. Breast Cancer Res Treat 2011; 127(1): 1-14.
[http://dx.doi.org/10.1007/s10549-011-1387-4] [PMID: 21327465]
[4]
Chacón RD, Costanzo MV. Triple-negative breast cancer. Breast Cancer Res 2010; 12(S2): S3.
[http://dx.doi.org/10.1186/bcr2574] [PMID: 21050424]
[5]
de Boer M, van Dijck JAAM, Bult P, Borm GF, Tjan-Heijnen VCG. Breast cancer prognosis and occult lymph node metastases, isolated tumor cells, and micrometastases. J Natl Cancer Inst 2010; 102(6): 410-25.
[http://dx.doi.org/10.1093/jnci/djq008] [PMID: 20190185]
[6]
Cavalli LR. Molecular markers of breast axillary lymph node metastasis. Expert Rev Mol Diagn 2009; 9(5): 441-54.
[http://dx.doi.org/10.1586/erm.09.30] [PMID: 19580429]
[7]
Ruiterkamp J, Ernst MF. The role of surgery in metastatic breast cancer. Eur J Cancer 2011; 47(S3): S6-S22.
[http://dx.doi.org/10.1016/S0959-8049(11)70142-3] [PMID: 21944030]
[8]
Fisher B, Anderson S, Redmond CK, Wolmark N, Wickerham DL, Cronin WM. Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med 1995; 333(22): 1456-61.
[http://dx.doi.org/10.1056/NEJM199511303332203] [PMID: 7477145]
[9]
van der Leij F, Elkhuizen PHM, Bartelink H, van de Vijver MJ. Predictive factors for local recurrence in breast cancer. Semin Radiat Oncol 2012; 22(2): 100-7.
[http://dx.doi.org/10.1016/j.semradonc.2011.12.001] [PMID: 22385917]
[10]
McGale P, Taylor C, Correa C, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014; 383(9935): 2127-35.
[http://dx.doi.org/10.1016/S0140-6736(14)60488-8] [PMID: 24656685]
[11]
Taylor C, Correa C, Duane FK, et al. Estimating the risks of breast cancer radiotherapy: Evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol 2017; 35(15): 1641-9.
[http://dx.doi.org/10.1200/JCO.2016.72.0722] [PMID: 28319436]
[12]
Lowery AJ, Kell MR, Glynn RW, Kerin MJ, Sweeney KJ. Locoregional recurrence after breast cancer surgery: A systematic review by receptor phenotype. Breast Cancer Res Treat 2012; 133(3): 831-41.
[http://dx.doi.org/10.1007/s10549-011-1891-6] [PMID: 22147079]
[13]
Meng X, Zhong J, Liu S, Murray M, Gonzalez-Angulo AM. A new hypothesis for the cancer mechanism. Cancer Metastasis Rev 2012; 31(1-2): 247-68.
[http://dx.doi.org/10.1007/s10555-011-9342-8] [PMID: 22179983]
[14]
McDermott SP, Wicha MS. Targeting breast cancer stem cells. Mol Oncol 2010; 4(5): 404-19.
[http://dx.doi.org/10.1016/j.molonc.2010.06.005] [PMID: 20599450]
[15]
Sanguinetti A, Bistoni G, Avenia N. Stem cells and breast cancer, where we are? A concise review of literature. G Chir 2011; 32(10): 438-46.
[PMID: 22018221]
[16]
Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 2008; 8(7): 545-54.
[http://dx.doi.org/10.1038/nrc2419] [PMID: 18511937]
[17]
Wei L, Liu TT, Wang HH, et al. Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB. Breast Cancer Res 2011; 13(5): R101.
[http://dx.doi.org/10.1186/bcr3042] [PMID: 22023707]
[18]
Ahmad A, Li Y, Bao B, Sarkar FH. Resistance and DNA repair mechanisms of cancer stem cells: potential molecular targets for therapy. DNA Repair of Cancer Stem Cells. 2012; pp. 33-52.
[http://dx.doi.org/10.1007/978-94-007-4590-2_3]
[19]
Dean M. ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 2009; 14(1): 3-9.
[http://dx.doi.org/10.1007/s10911-009-9109-9] [PMID: 19224345]
[20]
Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci 1987; 84(9): 3004-8.
[http://dx.doi.org/10.1073/pnas.84.9.3004] [PMID: 3472246]
[21]
Lou H, Dean M. Targeted therapy for cancer stem cells: The patched pathway and ABC transporters. Oncogene 2007; 26(9): 1357-60.
[http://dx.doi.org/10.1038/sj.onc.1210200] [PMID: 17322922]
[22]
Goss PE, Chambers AF. Does tumour dormancy offer a therapeutic target? Nat Rev Cancer 2010; 10(12): 871-7.
[http://dx.doi.org/10.1038/nrc2933] [PMID: 21048784]
[23]
Meng S, Tripathy D, Frenkel EP, et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 2004; 10(24): 8152-62.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1110] [PMID: 15623589]
[24]
Lianidou ES, Markou A. Circulating tumor cells in breast cancer: Detection systems, molecular characterization, and future challenges. Clin Chem 2011; 57(9): 1242-55.
[http://dx.doi.org/10.1373/clinchem.2011.165068] [PMID: 21784769]
[25]
Gewirtz DA. Autophagy, senescence and tumor dormancy in cancer therapy. Autophagy 2009; 5(8): 1232-4.
[http://dx.doi.org/10.4161/auto.5.8.9896] [PMID: 19770583]
[26]
Barkan D, Chambers AF. β1-integrin: A potential therapeutic target in the battle against cancer recurrence. Clin Cancer Res 2011; 17(23): 7219-23.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0642] [PMID: 21900388]
[27]
Barkan D, El Touny LH, Michalowski AM, et al. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 2010; 70(14): 5706-16.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2356] [PMID: 20570886]
[28]
Foley J, Nickerson NK, Nam S, et al. Riese II, EGFR signaling in breast cancer: Bad to the bone. Semin Cell Dev Biol 2010; 21: 951-60.
[http://dx.doi.org/10.1016/j.semcdb.2010.08.009]
[29]
Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: Regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 2015; 25(4): 234-40.
[http://dx.doi.org/10.1016/j.tcb.2014.12.006] [PMID: 25572304]
[30]
Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303(5663): 1483-7.
[http://dx.doi.org/10.1126/science.1094291] [PMID: 15001769]
[31]
Eyler CE, Rich JN. Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 2008; 26(17): 2839-45.
[http://dx.doi.org/10.1200/JCO.2007.15.1829] [PMID: 18539962]
[32]
Säfholm A, Leandersson K, Dejmek J, Nielsen CK, Villoutreix BO, Andersson T. A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem 2006; 281(5): 2740-9.
[http://dx.doi.org/10.1074/jbc.M508386200] [PMID: 16330545]
[33]
Paulson KE, Rieger-Christ K, McDevitt MA, et al. Alterations of the HBP1 transcriptional repressor are associated with invasive breast cancer. Cancer Res 2007; 67(13): 6136-45.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0567] [PMID: 17616670]
[34]
Debies MT, Gestl SA, Mathers JL, et al. Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16Ink4a loss. J Clin Invest 2008; 118(1): 51-63.
[http://dx.doi.org/10.1172/JCI33320] [PMID: 18060046]
[35]
Raimondi C, Gianni W, Cortesi E, Gazzaniga P. Cancer stem cells and epithelial-mesenchymal transition: Revisiting minimal residual disease. Curr Cancer Drug Targets 2010; 10(5): 496-508.
[http://dx.doi.org/10.2174/156800910791517154] [PMID: 20384575]
[36]
Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 2006; 66(17): 8319-26.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0410] [PMID: 16951136]
[37]
Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2(6): 442-54.
[http://dx.doi.org/10.1038/nrc822] [PMID: 12189386]
[38]
Wang Z, Li Y, Sarkar F. Signaling mechanism(s) of reactive oxygen species in Epithelial-Mesenchymal Transition reminiscent of cancer stem cells in tumor progression. Curr Stem Cell Res Ther 2010; 5(1): 74-80.
[http://dx.doi.org/10.2174/157488810790442813] [PMID: 19951255]
[39]
Sarkar FH, Li Y, Wang Z, Kong D. Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 2009; 64(5): 489-500.
[PMID: 19859039]
[40]
van Nes JGH, de Kruijf EM, Putter H, et al. Co-expression of SNAIL and TWIST determines prognosis in estrogen receptor–positive early breast cancer patients. Breast Cancer Res Treat 2012; 133(1): 49-59.
[http://dx.doi.org/10.1007/s10549-011-1684-y] [PMID: 21796367]
[41]
Tran DD, Corsa CAS, Biswas H, Aft RL, Longmore GD. Temporal and spatial cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence. Mol Cancer Res 2011; 9(12): 1644-57.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0371] [PMID: 22006115]
[42]
Kwon JE, Jung WH, Koo JS. Molecules involved in epithelial–mesenchymal transition and epithelial–stromal interaction in phyllodes tumors: Implications for histologic grade and prognosis. Tumour Biol 2012; 33(3): 787-98.
[http://dx.doi.org/10.1007/s13277-011-0296-9] [PMID: 22203494]
[43]
Liu T, Zhang X, Shang M, et al. Dysregulated expression of Slug, vimentin, and E-cadherin correlates with poor clinical outcome in patients with basal-like breast cancer. J Surg Oncol 2013; 107(2): 188-94.
[http://dx.doi.org/10.1002/jso.23240] [PMID: 22886823]
[44]
Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch Signaling. Science 1995; 268(5208): 225-32.
[http://dx.doi.org/10.1126/science.7716513] [PMID: 7716513]
[45]
Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC. Structural basis for autoinhibition of Notch. Nat Struct Mol Biol 2007; 14(4): 295-300.
[http://dx.doi.org/10.1038/nsmb1227] [PMID: 17401372]
[46]
Cohen B, Shimizu M, Izrailit J, et al. Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Res Treat 2010; 123(1): 113-24.
[http://dx.doi.org/10.1007/s10549-009-0621-9] [PMID: 19915977]
[47]
Kent S, Hutchinson J, Balboni A, DeCastro A, Cherukuri P, DiRenzo J. ΔNp63α promotes cellular quiescence via induction and activation of Notch3. Cell Cycle 2011; 10(18): 3111-8.
[http://dx.doi.org/10.4161/cc.10.18.17300] [PMID: 21912215]
[48]
Kondratyev M, Kreso A, Hallett RM, et al. Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer. Oncogene 2012; 31(1): 93-103.
[http://dx.doi.org/10.1038/onc.2011.212] [PMID: 21666715]
[49]
Qiu M, Peng Q, Jiang I, et al. Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells. Cancer Lett 2013; 328(2): 261-70.
[http://dx.doi.org/10.1016/j.canlet.2012.09.023] [PMID: 23041621]
[50]
Shimizu M, Cohen B, Goldvasser P, Berman H, Virtanen C, Reedijk M. Plasminogen activator uPA is a direct transcriptional target of the JAG1-Notch receptor signaling pathway in breast cancer. Cancer Res 2011; 71(1): 277-86.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2523] [PMID: 21199807]
[51]
Ahmad A, Kong D, Wang Z, Sarkar SH, Banerjee S, Sarkar FH. Down-regulation of uPA and uPAR by 3,3′-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. J Cell Biochem 2009; 108(4): 916-25.
[http://dx.doi.org/10.1002/jcb.22323] [PMID: 19693769]
[52]
Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235(4785): 177-82.
[http://dx.doi.org/10.1126/science.3798106] [PMID: 3798106]
[53]
Browne B, O’Brien N, Duffy M, Crown J, O’Donovan N. HER-2 signaling and inhibition in breast cancer. Curr Cancer Drug Targets 2009; 9(3): 419-38.
[http://dx.doi.org/10.2174/156800909788166484] [PMID: 19442060]
[54]
Pandya K, Meeke K, Clementz AG, et al. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer 2011; 105(6): 796-806.
[http://dx.doi.org/10.1038/bjc.2011.321] [PMID: 21847123]
[55]
Gangopadhyay S, Nandy A, Hor P, Mukhopadhyay A. Breast cancer stem cells: A novel therapeutic target. Clin Breast Cancer 2013; 13(1): 7-15.
[http://dx.doi.org/10.1016/j.clbc.2012.09.017] [PMID: 23127340]
[56]
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10(10): 704-14.
[http://dx.doi.org/10.1038/nrg2634] [PMID: 19763153]
[57]
Li L, Xie X, Luo J, et al. Targeted expression of miR-34a using the T-VISA system suppresses breast cancer cell growth and invasion. Mol Ther 2012; 20(12): 2326-34.
[http://dx.doi.org/10.1038/mt.2012.201] [PMID: 23032974]
[58]
Png KJ, Yoshida M, Zhang XHF, et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev 2011; 25(3): 226-31.
[http://dx.doi.org/10.1101/gad.1974211] [PMID: 21289068]
[59]
Nilsson S, Möller C, Jirström K, et al. Downregulation of miR-92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration. PLoS One 2012; 7(4): e36051.
[http://dx.doi.org/10.1371/journal.pone.0036051] [PMID: 22563438]
[60]
Zhou X, Marian C, Makambi KH, et al. MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PLoS One 2012; 7(6): e39011.
[http://dx.doi.org/10.1371/journal.pone.0039011] [PMID: 22723919]
[61]
Bronisz A, Godlewski J, Wallace JA, et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 2012; 14(2): 159-67.
[http://dx.doi.org/10.1038/ncb2396] [PMID: 22179046]
[62]
Mori , Mimori K, Yokobori T, et al. Identification of recurrence-related microRNAs in the bone marrow of breast cancer patients. Int J Oncol 2011; 38(4): 955-62.
[http://dx.doi.org/10.3892/ijo.2011.926] [PMID: 21271219]
[63]
Lyng MB, Lænkholm AV, Søkilde R, Gravgaard KH, Litman T, Ditzel HJ. Global microRNA expression profiling of high-risk ER+ breast cancers from patients receiving adjuvant tamoxifen mono-therapy: A DBCG study. PLoS One 2012; 7(5): e36170.
[http://dx.doi.org/10.1371/journal.pone.0036170] [PMID: 22623953]
[64]
Wu X, Somlo G, Yu Y, et al. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J Transl Med 2012; 10(1): 42.
[http://dx.doi.org/10.1186/1479-5876-10-42] [PMID: 22400902]
[65]
Wang H, Tan G, Dong L, et al. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS One 2012; 7(4): e34210.
[http://dx.doi.org/10.1371/journal.pone.0034210] [PMID: 22523546]
[66]
Cookson VJ, Bentley MA, Hogan BV, et al. Circulating microRNA profiles reflect the presence of breast tumours but not the profiles of microRNAs within the tumours. Cell Oncol 2012; 35(4): 301-8.
[http://dx.doi.org/10.1007/s13402-012-0089-1] [PMID: 22821209]
[67]
Ingham PW, McMahon AP. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev 2001; 15(23): 3059-87.
[http://dx.doi.org/10.1101/gad.938601] [PMID: 11731473]
[68]
Stanton BZ, Peng LF. Small-molecule modulators of the Sonic Hedgehog signaling pathway. Molecular BioSystems 2009; 6(1): 44-54.
[http://dx.doi.org/10.1039/B910196A]
[69]
Izrailit J, Reedijk M. Developmental pathways in breast cancer and breast tumor-initiating cells: Therapeutic implications. Cancer Lett 2012; 317(2): 115-26.
[http://dx.doi.org/10.1016/j.canlet.2011.11.028] [PMID: 22123293]
[70]
O’Toole SA, Machalek DA, Shearer RF, et al. Hedgehog overexpression is associated with stromal interactions and predicts for poor outcome in breast cancer. Cancer Res 2011; 71(11): 4002-14.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3738] [PMID: 21632555]
[71]
Harris LG, Pannell LK, Singh S, Samant RS, Shevde LA. Increased vascularity and spontaneous metastasis of breast cancer by hedgehog signaling mediated upregulation of cyr61. Oncogene 2012; 31(28): 3370-80.
[http://dx.doi.org/10.1038/onc.2011.496] [PMID: 22056874]
[72]
Das S, Samant RS, Shevde LA. The hedgehog pathway conditions the bone microenvironment for osteolytic metastasis of breast cancer. Int J Breast Cancer 2012; 2012: 1-9.
[http://dx.doi.org/10.1155/2012/298623] [PMID: 22295244]
[73]
Siddappa CM, Watson MA, Pillai SG, Trinkaus K, Fleming T, Aft R. Detection of disseminated tumor cells in the bone marrow of breast cancer patients using multiplex gene expression measurements identifies new therapeutic targets in patients at high risk for the development of metastatic disease. Breast Cancer Res Treat 2013; 137(1): 45-56.
[http://dx.doi.org/10.1007/s10549-012-2279-y] [PMID: 23129172]
[74]
FactSheet. Herceptin (Trastuzumab): Questions and Answers. Available from: http://www.cancer.gov/cancertopics/factsheet/therapy/herceptin
[75]
Hobday TJ, Perez EA. Molecularly targeted therapies for breast cancer. Cancer Contr 2005; 12(2): 73-81.
[http://dx.doi.org/10.1177/107327480501200202] [PMID: 15855890]
[76]
Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17(9): 2639-48.
[http://dx.doi.org/10.1200/JCO.1999.17.9.2639] [PMID: 10561337]
[77]
Cetin B, Benekli M, Turker I, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer: A multicentre study of Anatolian Society of Medical Oncology (ASMO). J Chemother 2014; 26(5): 300-5.
[http://dx.doi.org/10.1179/1973947813Y.0000000147] [PMID: 24112786]
[78]
Blum JL, O’Shaughnessy JA, Sandbach J, Savin M, Fenske E, Hawkins MJ. Weekly nanoparticle albumin paclitaxel (ABI-007) results in long-term disease control in patients with taxane-refractory metastatic breast cancer. Ann Oncol 2004; 15: 30-0.
[79]
Carmichael J, Possinger K, Phillip P, et al. Advanced breast cancer: A phase II trial with gemcitabine. J Clin Oncol 1995; 13(11): 2731-6.
[http://dx.doi.org/10.1200/JCO.1995.13.11.2731] [PMID: 7595731]
[80]
Blum JL, Jones SE, Buzdar AU, et al. Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 1999; 17(2): 485-93.
[http://dx.doi.org/10.1200/JCO.1999.17.2.485] [PMID: 10080589]
[81]
O’shaughnessy J, Tjulandin S, Davidson N, et al. ABI-007 (ABRAXANE™), a nanoparticle albumin-bound (nab) paclitaxel demonstrates superior efficacy vs taxol in MBC: A phase III trial. Proceedings from the 26th annual San Antonio Breast Cancer Symposium. 3-6.
[82]
Glück S. 22nd Annual Miami Breast Cancer Conference, Breast Cancer Online. 8
[83]
FDA, FDA Oncology Tools Product Label Details in Conventional Order for Doxorubicin. Available from: www.accessdata.fda.gov/scripts/cder/onctools/labels.cfm?GN=doxorubicin
[84]
Jones SE, Erban J, Overmoyer B, et al. Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J Clin Oncol 2005; 23(24): 5542-51.
[http://dx.doi.org/10.1200/JCO.2005.02.027] [PMID: 16110015]
[85]
Bonneterre J, Roché H, Monnier A, et al. Docetaxel vs 5-fluorouracil plus vinorelbine in metastatic breast cancer after anthracycline therapy failure. Br J Cancer 2002; 87(11): 1210-5.
[http://dx.doi.org/10.1038/sj.bjc.6600645] [PMID: 12439707]
[86]
Mavroudis D, Alexopoulos A, Malamos N, et al. Salvage treatment of metastatic breast cancer with docetaxel and carboplatin. A multicenter phase II trial. Oncology 2003; 64(3): 207-12.
[http://dx.doi.org/10.1159/000069306] [PMID: 12697959]
[87]
O’Shaughnessy J, Miles D, Vukelja S, et al. Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: Phase III trial results. J Clin Oncol 2002; 20(12): 2812-23.
[http://dx.doi.org/10.1200/JCO.2002.09.002] [PMID: 12065558]
[88]
Buzdar AU, Marcus C, Blumenschein GR, Smith TL. Early and delayed clinical cardiotoxicity of doxorubicin. Cancer 1985; 55(12): 2761-5.
[http://dx.doi.org/10.1002/1097-0142(19850615)55:12<2761::AID-CNCR2820551206>3.0.CO;2-P] [PMID: 3922612]
[89]
Perez EA, Lerzo G, Pivot X, et al. Efficacy and safety of ixabepilone (BMS-247550) in a phase II study of patients with advanced breast cancer resistant to an anthracycline, a taxane, and capecitabine. J Clin Oncol 2007; 25(23): 3407-14.
[http://dx.doi.org/10.1200/JCO.2006.09.3849] [PMID: 17606974]
[90]
Vahdat LT, Thomas E, Li R, et al. Phase III trial of ixabepilone plus capecitabine compared to capecitabine alone in patients with metastatic breast cancer (MBC) previously treated or resistant to an anthracycline and resistant to taxanes. J Clin Oncol 2007; 25(S18): 1006-6.
[http://dx.doi.org/10.1200/jco.2007.25.18_suppl.1006]
[91]
Food and Drug Administration. FDA Oncology Tools Approval Summary for Aromasin for Treatment of advance breast cancer in postmenopausal women whose disease has progressed following Nolvadex therapy Available from: http://www.accessdata.fda.gov/scripts/cder/onctools/summary.cfm?ID=170 (Accessed on: March 29, 2002).
[92]
Ch Yiannakopoulou E. Pharmacogenomics of breast cancer targeted therapy: Focus on recent patents. Recent Pat DNA Gene Seq 2012; 6(1): 33-46.
[http://dx.doi.org/10.2174/187221512799303118] [PMID: 22239682]
[93]
Khan SI, Zhao J, Khan IA, Walker LA, Dasmahapatra AK. Potential utility of natural products as regulators of breast cancer-associated aromatase promoters. Reprod Biol Endocrinol 2011; 9(1): 91.
[http://dx.doi.org/10.1186/1477-7827-9-91] [PMID: 21693041]
[94]
Dent SF, Gaspo R, Kissner M, Pritchard KI. Aromatase inhibitor therapy: Toxicities and management strategies in the treatment of postmenopausal women with hormone-sensitive early breast cancer. Breast Cancer Res Treat 2011; 126(2): 295-310.
[http://dx.doi.org/10.1007/s10549-011-1351-3] [PMID: 21249443]
[95]
Petit T, Dufour P, Tannock I. A critical evaluation of the role of aromatase inhibitors as adjuvant therapy for postmenopausal women with breast cancer. Endocr Relat Cancer 2011; 18(3): R79-89.
[http://dx.doi.org/10.1530/ERC-10-0162] [PMID: 21502311]
[96]
Ross JR, Saunders Y, Edmonds PM, Patel S, Broadley KE, Johnston SR. Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer. BMJ 2003; 327(7413): 469.
[http://dx.doi.org/10.1136/bmj.327.7413.469] [PMID: 12946966]
[97]
Hadji P, Body JJ, Aapro MS, et al. Practical guidance for the management of aromatase inhibitor-associated bone loss. Ann Oncol 2008; 19(8): 1407-16.
[http://dx.doi.org/10.1093/annonc/mdn164] [PMID: 18448451]
[98]
Coleman RE, McCloskey EV. Bisphosphonates in oncology. Bone 2011; 49,(1): 71-6.
[http://dx.doi.org/10.1016/j.bone.2011.02.003]
[99]
Aapro M, Abrahamsson PA, Body JJ, et al. Guidance on the use of bisphosphonates in solid tumours: Recommendations of an international expert panel. Ann Oncol 2008; 19(3): 420-32.
[http://dx.doi.org/10.1093/annonc/mdm442] [PMID: 17906299]
[100]
Gnant M, Hadji P. Prevention of bone metastases and management of bone health in early breast cancer. Breast Cancer Res 2010; 12(6): 216.
[http://dx.doi.org/10.1186/bcr2768] [PMID: 21172067]
[101]
Holen I, Coleman RE. Bisphosphonates as treatment of bone metastases. Curr Pharm Des 2010; 16(11): 1262-71.
[http://dx.doi.org/10.2174/138161210791034003] [PMID: 20166976]
[102]
Korde LA, Doody DR, Hsu L, Porter PL, Malone KE. Bisphosphonate use and risk of recurrence, second primary breast cancer, and breast cancer mortality in a population-based cohort of breast cancer patients. Cancer Epidemiol Biomarkers Prev 2018; 27(2): 165-73.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0556] [PMID: 29254937]
[103]
Chlebowski RT, Col N. Bisphosphonates and breast cancer incidence and recurrence. Breast Dis 2011; 33(2): 93-101.
[http://dx.doi.org/10.3233/BD-2010-0324] [PMID: 22142660]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy