Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Research Article

Tofacitinib Citrate-loaded Nanoparticle Gel for the Treatment of Alopecia Areata: Response Surface Design, Formulation and In vitro-in Vivo Characterization

Author(s): Mounika Kuchukuntla*, Venkatesan Palanivel and Ananthula Madhubabu

Volume 17, Issue 4, 2023

Published on: 22 November, 2023

Page: [314 - 331] Pages: 18

DOI: 10.2174/0126673878264814231106094853

Price: $65

Abstract

Objective: The purpose of this research was to optimize the design and construction of nanoparticle gel (TFN-NPs) loaded with tofacitinib citrate (TFN) using poly lactic co glycolic acid (PLGA).

Method: PLGA (A) as the polymer, polyvinyl alcohol (PVA) (B) as the stabilizer and stirring speed (C) as independent variables were used. TFN-NPs were prepared using single emulsion-solvent evaporation. Box Behnken Design (BBD) was used to determine the optimal component ratio of TFN-NPs based on point prediction.

Results: The entrapment efficiency, particle size, and cumulative drug release of the best-composed TFN-NPs were, respectively, 79.82±0.9%, 236.19±5.07 nm, and 82.31±1.23%; the PDI, zeta potential, and drug loading were, respectively, 0.297±0.21, -30.21±0.94mV, and 69.81±0.16%. Gel formulation employing Carbopol as a gelling polymer was then developed using the optimal TFN-NPs mixture. Gel characterization, drug release, permeation studies, irritation, and pharmacokinetic studies were also conducted. Further solid state and morphology were evaluated using FTIR, DSC, XRD, SEM, TEM, and AFM on the developed topical gel formulation (TFN-NPG) and TFN-NPs. The release and permeation investigations indicated that TFN was slowly released (38.42±2.87%) and had significantly enhanced penetration into the epidermal membrane of mice. The cumulative irritation score of 0.33 determined during testing suggested little discomfort. The generated nanogels are stable and have a high drug penetration profile over the skin, as shown by the findings. When compared to both pure TFN solutions, TFN-NPs and TFN-NPG demonstrated superior pharmacokinetic properties.

Conclusion: Based on the results, the NPs and NPG formulations were depicted to enhance the activity of TFN compared to the free drug solution. TFN could be a safe and effective treatment for Alopecia areata. The tofacitinib citrate NPG could be a clinically translatable, safer topical formulation for managing Alopecia areata.

Graphical Abstract

[1]
Barahmani N, Schabath MB, Duvic M. History of atopy or autoimmunity increases risk of alopecia areata. J Am Acad Dermatol 2009; 61(4): 581-91.
[http://dx.doi.org/10.1016/j.jaad.2009.04.031] [PMID: 19608295]
[2]
McDonagh AJG, Tazi-Ahnini R. Epidemiology and genetics of alopecia areata. Clin Exp Dermatol 2002; 27(5): 405-9.
[http://dx.doi.org/10.1046/j.1365-2230.2002.01077.x] [PMID: 12190641]
[3]
Goh C, Finkel M, Christos PJ, Sinha AA. Profile of 513 patients with alopecia areata: Associations of disease subtypes with atopy, autoimmune disease and positive family history. J Eur Acad Dermatol Venereol 2006; 20(9): 1055-60.
[http://dx.doi.org/10.1111/j.1468-3083.2006.01676.x] [PMID: 16987257]
[4]
Jain A, Kesharwani P, Garg NK, et al. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf B Biointerfaces 2015; 134: 47-58.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.027] [PMID: 26142628]
[5]
Bapat RA, Chaubal TV, Dharmadhikari S, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm 2020; 586: 119596.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119596] [PMID: 32622805]
[6]
Pandey D, Kesharwani P, Jain D. Entrapment of drug-sorbate complex in submicron emulsion: A potential approach to improve antimicrobial activity in bacterial corneal infection. J Drug Deliv Sci Technol 2019; 49: 455-62.
[http://dx.doi.org/10.1016/j.jddst.2018.12.006]
[7]
Shukla R, Singh A, Pardhi V, Kashyap K, Dubey SK, Dandela R. Dendrimerbased nanoparticulate delivery system for Cancer therapyIn: Polymeric Nanoparticles as a Promising Tool for Anticancer Therapeutics Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics. 2019; pp. 233-55.
[8]
Jaya GM, Prashant K, Mohini C, et al. Carbon Nanotubes (CNTs): A Novel Drug Delivery Tool in Brain Tumor Treatment In: Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. 2018; pp. 375-96.
[9]
Madheswaran T, Baskaran R, Yoo BK, Kesharwani P. In vitro and in vivo skin distribution of 5α-Reductase inhibitors loaded into liquid crystalline nanoparticles. J Pharm Sci 2017; 106(11): 3385-94.
[http://dx.doi.org/10.1016/j.xphs.2017.06.016] [PMID: 28652158]
[10]
Kesharwani P, Mohd CIMA, Namita G. Dendrimers in targeting and delivery of drugs.In: Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. 2017; pp. 363-88.
[11]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39(2): 268-307.
[12]
Pena-Rodríguez E, Mata-Ventosa A, Garcia-Vega L, Pérez-Torras S, Fernández-Campos F. The physicochemical, biopharmaceutical, and in vitro efficacy properties of freeze-dried dexamethasone-loaded lipomers. Pharmaceutics 2021; 13(8): 1322.
[http://dx.doi.org/10.3390/pharmaceutics13081322] [PMID: 34452283]
[13]
Fang CL, Aljuffali IA, Li YC, Fang JY. Delivery and targeting of nanoparticles into hair follicles. Ther Deliv 2014; 5(9): 991-1006.
[http://dx.doi.org/10.4155/tde.14.61] [PMID: 25375342]
[14]
Wosicka H, Cal K. Targeting to the hair follicles: Current status and potential. J Dermatol Sci 2010; 57(2): 83-9.
[http://dx.doi.org/10.1016/j.jdermsci.2009.12.005] [PMID: 20060268]
[15]
Scott LJ. Tofacitinib: A review of its use in adult patients with rheumatoid arthritis. Drugs 2013; 73(8): 857-74.
[http://dx.doi.org/10.1007/s40265-013-0065-8] [PMID: 23716132]
[16]
Harnett J, Curtis JR, Gerber R, Gruben D, Koenig A. Initial experience with tofacitinib in clinical practice: Treatment patterns and costs of tofacitinib administered as monotherapy or in combination with conventional synthetic DMARDs in 2 US health care claims databases. Clin Ther 2016; 38(6): 1451-63.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.038] [PMID: 27112534]
[17]
Tanaka Y. Current concepts in the management of rheumatoid arthritis. Korean J Intern Med 2016; 31(2): 210-8.
[http://dx.doi.org/10.3904/kjim.2015.137] [PMID: 26932398]
[18]
2018- Study of tofacitinib in refractory dermatomyositis. Bethesda (MD): U.S. National Library of Medicine 2018.
[19]
2017-Tofacitinib for the treatment of alopecia areata and its variants.Bethesda (MD): U.S. National Library of Medicine 2017.
[20]
Evaluation of tofacitinib in early diffuse cutaneous system sclerosis (dcSSc) (TOFA-SSc). Bethesda (MD): U.S. National Library of Medicine 2018.
[21]
Kudlacz E, Conklyn M, Andresen C, Whitney-Pickett C, Changelian P. The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia. Eur J Pharmacol 2008; 582(1-3): 154-61.
[http://dx.doi.org/10.1016/j.ejphar.2007.12.024] [PMID: 18242596]
[22]
Dhillon S. Tofacitinib: A review in rheumatoid arthritis. Drugs 2017; 77(18): 1987-2001.
[http://dx.doi.org/10.1007/s40265-017-0835-9] [PMID: 29139090]
[23]
Fleischmann R. A review of tofacitinib efficacy in rheumatoid arthritis patients who have had an inadequate response or intolerance to methotrexate. Expert Opin Pharmacother 2017; 18(14): 1525-33.
[http://dx.doi.org/10.1080/14656566.2017.1370453] [PMID: 28829236]
[24]
Pfizer Inc XELJANZ® (tofacitinib) tablets for oral administration: US prescribing information Available from: http://labeling. pfizer.com/ShowLabeling.aspx?id=959 (Accessed on: March 11,2013).
[25]
Mease P, Hall S, FitzGerald O, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med 2017; 377(16): 1537-50.
[http://dx.doi.org/10.1056/NEJMoa1615975] [PMID: 29045212]
[26]
Sandborn WJ, Ghosh S, Panes J, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med 2012; 367(7): 616-24.
[http://dx.doi.org/10.1056/NEJMoa1112168] [PMID: 22894574]
[27]
Cutolo M. Marianna meroni. Clinical utility of the oral JAK inhibitor tofacitinib in the treatment of rheumatoid arthritis. J Inflamm Res 2013; 6: 129-37.
[http://dx.doi.org/10.2147/JIR.S35901] [PMID: 24453498]
[28]
Younis US, Vallorz E, Addison KJ, Ledford JG, Myrdal PB. Preformulation and evaluation of tofacitinib as a therapeutic treatment for asthma. AAPS PharmSciTech 2019; 20(5): 167.
[http://dx.doi.org/10.1208/s12249-019-1377-0] [PMID: 30993508]
[29]
Khalil NM, Nascimento TCF, Casa DM, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces 2013; 101: 353-60.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.024]
[30]
Akl MA, Kartal-Hodzic A, Oksanen T, et al. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J Drug Deliv Sci Technol 2016; 32: 10-20.
[http://dx.doi.org/10.1016/j.jddst.2016.01.007]
[31]
Unnisa A, Chettupalli AK, Al Hagbani T, et al. Development of dapagliflozin solid lipid nanoparticles as a novel carrier for oral delivery: Statistical design, optimization, in-vitro and in-vivo characterization, and evaluation. Pharmaceuticals 2022; 15(5): 568.
[http://dx.doi.org/10.3390/ph15050568] [PMID: 35631394]
[32]
Amarachinta PR, Sharma G, Samed N, Chettupalli AK, Alle M, Kim JC. Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensive effect. J Nanobiotechnology 2021; 19: 1-15.
[33]
Chettupalli AK, Ananthula M, Amarachinta PR, Bakshi V, Yata VK. Design, formulation, in-vitro and ex-vivo evaluation of atazanavir loaded cubosomal gel. Biointerface Res Appl Chem •••; 11(4): 12037-54.
[34]
Kumar AC, Krishna RG, Venkanna CK, Rafi S. Formulation and characterization of itraconazole ethosomal gel for topical application. JBio Innov 2017; 6: 55-64.
[35]
Kumar AC, Prathap M, Venketeswararao P, Babu AS, Babu RN, Shanthi MS. Development of Itraconazole Immediate Release Pellets by using HPMC loaded in gelatin capsules. International Journal of Biological and Pharmaceutical Research 2012; 3(7): 904-5.
[36]
Kanakagiri D, Chettupalli AK. Development of a transdermal delivery system for tacrine. South Asian Res J Pharm Sci 2022; 4(1): 6-16.
[http://dx.doi.org/10.36346/sarjps.2022.v04i01.002]
[37]
Dandamudi SP, Chettupalli AK, Dargakrishna SP, Nerella M, Amara RR, Yata VK. Response surface method for the simultaneous estimation of atorvastatin and olmesartan. Trends in Sciences 2022; 19(18): 5799.
[http://dx.doi.org/10.48048/tis.2022.5799]
[38]
Battineni JK, Amarachinta PR, Kumar A. Anti-microbial and diuretic activity of mirabilis jalapa (LINN). J Xi'an Shiyou Univ 64(7): 94-110.
[39]
Chettupalli AK, Amara RR, Amarachinta PR, Manda RM, Garige BSR, Yata VK. Formulation and evaluation of poly herbal liqui-solid compact for its anti-inflammatory effect. Biointerface Res Appl Chem 2021; 12: 3883-99.
[40]
Karavana SY, Güneri P, Ertan G. Benzydamine hydrochloride buccal bioadhesive gels designed for oral ulcers: Preparation, rheological, textural, mucoadhesive and release properties. Pharm Dev Technol 2009; 14(6): 623-31.
[http://dx.doi.org/10.3109/10837450902882351] [PMID: 19883251]
[41]
Pons M, Fiszman SM. Instrumental texture profile analysis with particular reference to gelled systems. J Texture Stud 1996; 27(6): 597-624.
[http://dx.doi.org/10.1111/j.1745-4603.1996.tb00996.x]
[42]
Jahangir MA, Imam SS, Muheem A, et al. Nanocrystals: Characterization overview, applications in drug delivery, and their toxicity concerns. J Pharm Innov 2020; 17: 237-48.
[43]
Jahangir MA, Jain P, Verma R, et al. Transdermal nutraceuticals delivery system for CNS Disease. CNS Neurol Disord Tar 2022; 21(10): 977-93.
[44]
Alshehri S, Imam SS. Formulation and evaluation of butenafine loaded PLGA-nanoparticulate laden chitosan nano gel. Drug Deliv 2021; 28(1): 2348-60.
[http://dx.doi.org/10.1080/10717544.2021.1995078] [PMID: 34747275]
[45]
Rodrigo MJ, Garcia-Herranz D, Aragón-Navas A, et al. Long-term corticosteroid-induced chronic glaucoma model produced by intracameral injection of dexamethasone-loaded PLGA microspheres. Drug Deliv 2021; 28(1): 2427-46.
[http://dx.doi.org/10.1080/10717544.2021.1998245] [PMID: 34763590]
[46]
Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med 2015; 8(10): 19670-81.
[PMID: 26770631]
[47]
Sharma D, Maheshwari D, Philip G, et al. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation. BioMed Res Int 2014; 2014: 1-14.
[http://dx.doi.org/10.1155/2014/156010] [PMID: 25126544]
[48]
Elsewedy HS, Dhubiab BEA, Mahdy MA, Elnahas HM. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Deliv 2020; 27(1): 1134-46.
[http://dx.doi.org/10.1080/10717544.2020.1797237] [PMID: 32729331]
[49]
Elsayed SI, Girgis GN, El-Dahan MS. Formulation and evaluation of pravastatin sodium-loaded PLGA nanoparticles: in vitro–in vivo studies assessment. Int J Nanomedicine 2023; 18: 721-42.
[50]
Ahmed T, Aljaeid B. A potential in situ gel formulation loaded with novel fabricated poly(lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole. Int J Nanomedicine 2017; 12: 1863-75.
[http://dx.doi.org/10.2147/IJN.S131850] [PMID: 28331311]
[51]
Beg S, Dhiman S, Sharma T, et al. Stimuli responsive in situ gelling systems loaded with PLGA nanoparticles of moxifloxacin hydrochloride for effective treatment of periodontitis. AAPS PharmSciTech 2020; 21(3): 76.
[http://dx.doi.org/10.1208/s12249-019-1613-7] [PMID: 31970603]
[52]
Roque LV, Dias IS, Cruz N, et al. Design of finasteride-loaded nanoparticles for potential treatment of alopecia. Skin Pharmacol Physiol 2017; 30(4): 197-204.
[http://dx.doi.org/10.1159/000475473] [PMID: 28689207]
[53]
Rizg WY, Hosny KM, Elgebaly SS, et al. Preparation and optimization of garlic oil/apple cider vinegar nanoemulsion loaded with minoxidil to treat alopecia. Pharmaceutics 2021; 13(12): 2150.
[http://dx.doi.org/10.3390/pharmaceutics13122150] [PMID: 34959435]
[54]
Guadalupe Abrego, Helen A, Eliana BS. Biopharmaceutical profile of hydrogels containing pranoprofen-loaded PLGA nanoparticles for skin administration: in vitro, ex vivo and in vivo characterization. Int J Pharm 2021; 501(1-2): 350-61.
[55]
Ahmed TA, El-Say KM, Mahmoud MF, Samy AM, Badawi AA. Miconazole nitrate oral disintegrating tablets: In vivo performance and stability study. AAPS PharmSciTech 2012; 13(3): 760-71.
[http://dx.doi.org/10.1208/s12249-012-9798-z] [PMID: 22585373]
[56]
Hui Y, Huang NH, Ebbert L, et al. Pharmacokinetic comparisons of tail-bleeding with cannula- or retro-orbital bleeding techniques in rats using six marketed drugs. J Pharmacol Toxicol Methods 2007; 56(2): 256-64.
[http://dx.doi.org/10.1016/j.vascn.2007.05.006] [PMID: 17618130]
[57]
Anutra K, Kumsorn B, Rojanasthien N. Bioequivalence study of generic finasteride in healthy male volunteers. Chiang Mai Med Bull 2003; 42(4): 131-7.
[58]
Abrego G, Alvarado H, Souto EB, et al. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. Eur J Pharm Biopharm 2015; 95(Pt B): 261-70.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.026] [PMID: 25681744]
[59]
Sayiner O, Arisoy S, Comoglu T, Ozbay FG, Esendagli G. Development and in vitro evaluation of temozolomide-loaded PLGA nanoparticles in a thermoreversible hydrogel system for local administration in glioblastoma multiforme. J Drug Deliv Sci Technol 2020; 57: 101627.
[http://dx.doi.org/10.1016/j.jddst.2020.101627]
[60]
Sadozai SK, Khan SA, Baseer A, Ullah R, Zeb A, Schneider M. In vitro, ex vivo, and in vivo evaluation of nanoparticle-based topical formulation against candida albicans infection. Front Pharmacol 2022; 13: 909851.
[http://dx.doi.org/10.3389/fphar.2022.909851] [PMID: 35873577]
[61]
Shkodra-Pula B, Grune C, Traeger A, et al. Effect of surfactant on the size and stability of PLGA nanoparticles encapsulating a protein kinase C inhibitor. Int J Pharm 2019; 566: 756-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.072] [PMID: 31175987]
[62]
Rizwan K, Muhammad A, Sarfaraz K, Jiménez AN, Park DR, Yeom IT. The influence of ionic and nonionic surfactants on the colloidal stability and removal of CuO nanoparticles from water by chemical coagulation. Int J Environ Res Public Health 2019; 16: 1260.
[63]
Kim QH, Jhe W. Interfacial thermodynamics of spherical nanodroplets: molecular understanding of surface tension via a hydrogen bond network. Nanoscale 2020; 12(36): 18701-9.
[http://dx.doi.org/10.1039/D0NR04533K] [PMID: 32970091]
[64]
Pradhan S, Hedberg J, Blomberg E, Wold S, Odnevall Wallinder I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J Nanopart Res 2016; 18(9): 285.
[http://dx.doi.org/10.1007/s11051-016-3597-5] [PMID: 27774036]
[65]
Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA, et al. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Advances 2020; 10(8): 4218-31.
[http://dx.doi.org/10.1039/C9RA10857B] [PMID: 35495261]
[66]
Bhatt P, Verma A, Al-Abassi F, Anwar F, Kumar V, Panda B. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet-1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease. Int J Nanomedicine 2017; 12: 8749-68.
[http://dx.doi.org/10.2147/IJN.S144545] [PMID: 29263666]
[67]
Mudalige T, Qu H, Van Haute D, Ansar SM, Paredes A, Ingle T. Characterization of nanomaterials.In: Nanomaterials for Food Applications. Amsterdam, The Netherlands: Elsevier 2019; pp. 313-53.
[http://dx.doi.org/10.1016/B978-0-12-814130-4.00011-7]
[68]
Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J Pharm Sci 2016; 11(3): 404-16.
[http://dx.doi.org/10.1016/j.ajps.2015.09.004]
[69]
Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: Systematic study of particle size and drug content. Int J Pharm 2007; 336(2): 367-75.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.061] [PMID: 17207944]
[70]
Español L, Larrea A, Andreu V, et al. Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: Drug delivery and cytotoxicity assays. RSC Adv 2016; 6(112): 111060-9.
[http://dx.doi.org/10.1039/C6RA23620K]
[71]
Kızılbey K. Optimization of rutin-loaded plga nanoparticles synthesized by single-emulsion solvent evaporation method. ACS Omega 2019; 4(1): 555-62.
[http://dx.doi.org/10.1021/acsomega.8b02767]
[72]
Ray S, Mishra A, Mandal TK, Sa B, Chakraborty J. Optimization of the process parameters for the fabrication of a polymer coated layered double hydroxide-methotrexate nanohybrid for the possible treatment of osteosarcoma. RSC Adv 2015; 5(124): 102574-92.
[http://dx.doi.org/10.1039/C5RA15859A]
[73]
Liu D, Pan H, He F, et al. Effect of particle size on oral absorption of carvedilol nanosuspensions: In vitro and in vivo evaluation. Int J Nanomedicine 2015; 10: 6425-34.
[http://dx.doi.org/10.2147/IJN.S87143] [PMID: 26508852]
[74]
Akhter MH, Ahmad A, Ali J, Mohan G. Formulation and development of CoQ10-loaded s-SNEDDS for enhancement of oral bioavailability. J Pharm Innov 2014; 9(2): 121-31.
[http://dx.doi.org/10.1007/s12247-014-9179-0]
[75]
Md S, Alhakamy NA, Neamatallah T, et al. Development, characterization, and evaluation of α-mangostin-loaded polymeric nanoparticle gel for topical therapy in skin cancer. Gels 2021; 7(4): 230.
[http://dx.doi.org/10.3390/gels7040230] [PMID: 34842729]
[76]
Dilawar N, Ur-Rehman T, Shah KU, Fatima H, Alhodaib A. Development and evaluation of plga nanoparticle-loaded organogel for the transdermal delivery of risperidone. Gels 2022; 8(11): 709.
[http://dx.doi.org/10.3390/gels8110709] [PMID: 36354616]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy