Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Prediction of Human Microbe-Drug Association based on Layer Attention Graph Convolutional Network

Author(s): Jia Qu*, Jie Ni, Tong-Guang Ni, Ze-Kang Bian and Jiu-Zhen Liang

Volume 31, Issue 31, 2024

Published on: 22 November, 2023

Page: [5097 - 5109] Pages: 13

DOI: 10.2174/0109298673249941231108091326

Price: $65

Abstract

Human microbes are closely associated with a variety of complex diseases and have emerged as drug targets. Identification of microbe-related drugs is becoming a key issue in drug development and precision medicine. It can also provide guidance for solving the increasingly serious problem of drug resistance enhancement in viruses.

Methods: In this paper, we have proposed a novel model of layer attention graph convolutional network for microbe-drug association prediction. First, multiple biological data have been integrated into a heterogeneous network. Then, the heterogeneous network has been incorporated into a graph convolutional network to determine the embedded microbe and drug. Finally, the microbe-drug association scores have been obtained by decoding the embedding of microbe and drug based on the layer attention mechanism.

Results: To evaluate the performance of our proposed model, leave-one-out crossvalidation (LOOCV) and 5-fold cross-validation have been implemented on the two datasets of aBiofilm and MDAD. As a result, based on the aBiofilm dataset, our proposed model has attained areas under the curve (AUC) of 0.9178 and 0.9022 on global LOOCV and local LOOCV, respectively. Based on aBiofilm dataset, the proposed model has attained an AUC value of 0.9018 and 0.8902 on global LOOCV and local LOOCV, respectively. In addition, the average AUC and standard deviation of the proposed model for 5- fold cross-validation on the aBiofilm and MDAD datasets were 0.9141±6.8556e-04 and 0.8982±7.5868e-04, respectively. Also, two kinds of case studies have been further conducted to evaluate the proposed models.

Conclusion: Traditional methods for microbe-drug association prediction are timeconsuming and laborious. Therefore, the computational model proposed was used to predict new microbe-drug associations. Several evaluation results have shown the proposed model to achieve satisfactory results and that it can play a role in drug development and precision medicine.

« Previous
[1]
Graves, J.L. Principles and Applications of Antimicrobial Nanomaterials; Graves, J.L., Ed.; Elsevier, 2022, pp. 87-101.
[http://dx.doi.org/10.1016/B978-0-12-822105-1.00003-2]
[2]
Morozumi, S.; Ueda, M.; Okahashi, N.; Arita, M. Structures and functions of the gut microbial lipidome. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2022, 1867(3), 159110.
[http://dx.doi.org/10.1016/j.bbalip.2021.159110] [PMID: 34995792]
[3]
Sommer, F.; Bäckhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol., 2013, 11(4), 227-238.
[http://dx.doi.org/10.1038/nrmicro2974] [PMID: 23435359]
[4]
Marsland, B.J.; Gollwitzer, E.S. Host–microorganism interactions in lung diseases. Nat. Rev. Immunol., 2014, 14(12), 827-835.
[http://dx.doi.org/10.1038/nri3769] [PMID: 25421702]
[5]
Seo, D.O.; Holtzman, D.M. Gut microbiota: From the forgotten organ to a potential key player in the pathology of Alzheimer’s Disease. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(7), 1232-1241.
[http://dx.doi.org/10.1093/gerona/glz262] [PMID: 31738402]
[6]
Ventura, M.; O’Flaherty, S.; Claesson, M.J.; Turroni, F.; Klaenhammer, T.R.; van Sinderen, D.; O’Toole, P.W. Genome-scale analyses of health-promoting bacteria. Probiogenomics. Nat. Rev. Microbiol., 2009, 7(1), 61-71.
[http://dx.doi.org/10.1038/nrmicro2047] [PMID: 19029955]
[7]
Shock, T.; Badang, L.; Ferguson, B.; Martinez-Guryn, K. The interplay between diet, gut microbes, and host epigenetics in health and disease. J. Nutr. Biochem., 2021, 95, 108631.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108631] [PMID: 33789148]
[8]
Sun, J.; Chang, E.B. Exploring gut microbes in human health and disease: Pushing the envelope. Genes Dis., 2014, 1(2), 132-139.
[http://dx.doi.org/10.1016/j.gendis.2014.08.001] [PMID: 25642449]
[9]
Zhu, W.; Romano, K.A.; Li, L.; Buffa, J.A.; Sangwan, N.; Prakash, P.; Tittle, A.N.; Li, X.S.; Fu, X.; Androjna, C.; DiDonato, A.J.; Brinson, K.; Trapp, B.D.; Fischbach, M.A.; Rey, F.E.; Hajjar, A.M.; DiDonato, J.A.; Hazen, S.L. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe, 2021, 29(7), 1199-1208.e5.
[http://dx.doi.org/10.1016/j.chom.2021.05.002] [PMID: 34139173]
[10]
Healey, R.D.; Saied, E.M.; Cong, X.; Karsai, G.; Gabellier, L.; Saint-Paul, J.; Del Nero, E.; Jeannot, S.; Drapeau, M.; Fontanel, S.; Maurel, D.; Basu, S.; Leyrat, C.; Golebiowski, J.; Bossis, G.; Bechara, C.; Hornemann, T.; Arenz, C.; Granier, S. Discovery and mechanism of action of small molecule inhibitors of ceramidases**. Angew. Chem. Int. Ed., 2022, 61(2), e202109967.
[http://dx.doi.org/10.1002/anie.202109967] [PMID: 34668624]
[11]
Crunkhorn, S. Understanding PI3K inhibitor mechanism of action. Nat. Rev. Drug Discov., 2021, 20(11), 816.
[PMID: 34611334]
[12]
Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; Schlitzer, A.; Ginhoux, F.; Apetoh, L.; Chachaty, E.; Woerther, P.L.; Eberl, G.; Bérard, M.; Ecobichon, C.; Clermont, D.; Bizet, C.; Gaboriau-Routhiau, V.; Cerf-Bensussan, N.; Opolon, P.; Yessaad, N.; Vivier, E.; Ryffel, B.; Elson, C.O.; Doré, J.; Kroemer, G.; Lepage, P.; Boneca, I.G.; Ghiringhelli, F.; Zitvogel, L. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 2013, 342(6161), 971-976.
[http://dx.doi.org/10.1126/science.1240537] [PMID: 24264990]
[13]
Viaud, S.; Daillère, R.; Yamazaki, T.; Lepage, P.; Boneca, I.; Goldszmid, R.; Trinchieri, G.; Zitvogel, L. Why should we need the gut microbiota to respond to cancer therapies? OncoImmunology, 2014, 3(1), e27574.
[http://dx.doi.org/10.4161/onci.27574] [PMID: 24800167]
[14]
Larrosa, M.; Yañéz-Gascón, M.J.; Selma, M.V.; González-Sarrías, A.; Toti, S.; Cerón, J.J.; Tomás-Barberán, F.; Dolara, P.; Espín, J.C. Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J. Agric. Food Chem., 2009, 57(6), 2211-2220.
[http://dx.doi.org/10.1021/jf803638d] [PMID: 19228061]
[15]
van Sorge, N.M.; Cole, J.N.; Kuipers, K.; Henningham, A.; Aziz, R.K.; Kasirer-Friede, A.; Lin, L.; Berends, E.T.M.; Davies, M.R.; Dougan, G.; Zhang, F.; Dahesh, S.; Shaw, L.; Gin, J.; Cunningham, M.; Merriman, J.A.; Hütter, J.; Lepenies, B.; Rooijakkers, S.H.M.; Malley, R.; Walker, M.J.; Shattil, S.J.; Schlievert, P.M.; Choudhury, B.; Nizet, V. The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe, 2014, 15(6), 729-740.
[http://dx.doi.org/10.1016/j.chom.2014.05.009] [PMID: 24922575]
[16]
Jackson, M.A.; Goodrich, J.K.; Maxan, M.E.; Freedberg, D.E.; Abrams, J.A.; Poole, A.C.; Sutter, J.L.; Welter, D.; Ley, R.E.; Bell, J.T.; Spector, T.D.; Steves, C.J. Proton pump inhibitors alter the composition of the gut microbiota. Gut, 2016, 65(5), 749-756.
[http://dx.doi.org/10.1136/gutjnl-2015-310861] [PMID: 26719299]
[17]
Bauer, P.V.; Duca, F.A.; Waise, T.M.Z.; Dranse, H.J.; Rasmussen, B.A.; Puri, A.; Rasti, M.; O’Brien, C.A.; Lam, T.K.T. Lactobacillus gasseri in the upper small intestine impacts an ACSL3-dependent fatty acid-sensing pathway regulating whole-body glucose homeostasis. Cell Metab., 2018, 27(3), 572-587.e6.
[http://dx.doi.org/10.1016/j.cmet.2018.01.013] [PMID: 29514066]
[18]
Kurita, A.; Kado, S.; Matsumoto, T.; Asakawa, N.; Kaneda, N.; Kato, I.; Uchida, K.; Onoue, M.; Yokokura, T. Streptomycin alleviates irinotecan-induced delayed-onset diarrhea in rats by a mechanism other than inhibition of β-glucuronidase activity in intestinal lumen. Cancer Chemother. Pharmacol., 2011, 67(1), 201-213.
[http://dx.doi.org/10.1007/s00280-010-1310-4] [PMID: 20354702]
[19]
Stringer, A.M.; Gibson, R.J.; Logan, R.M.; Bowen, J.M.; Yeoh, A.S.J.; Keefe, D.M.K. Faecal microflora and β-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer Biol. Ther., 2008, 7(12), 1919-1925.
[http://dx.doi.org/10.4161/cbt.7.12.6940] [PMID: 18927500]
[20]
Lee, H.J.; Zhang, H.; Orlovich, D.A.; Fawcett, J.P. The influence of probiotic treatment on sulfasalazine metabolism in rat. Xenobiotica, 2012, 42(8), 791-797.
[http://dx.doi.org/10.3109/00498254.2012.660508] [PMID: 22348441]
[21]
Lam, K.N.; Alexander, M.; Turnbaugh, P.J. Precision medicine goes microscopic: Engineering the microbiome to improve drug outcomes. Cell Host Microbe, 2019, 26(1), 22-34.
[http://dx.doi.org/10.1016/j.chom.2019.06.011] [PMID: 31295421]
[22]
Long, Y.; Wu, M.; Kwoh, C.K.; Luo, J.; Li, X. Predicting human microbe–drug associations via graph convolutional network with conditional random field. Bioinformatics, 2020, 36(19), 4918-4927.
[http://dx.doi.org/10.1093/bioinformatics/btaa598] [PMID: 32597948]
[23]
Torsvik, V.; Øvreås, L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol., 2002, 5(3), 240-245.
[http://dx.doi.org/10.1016/S1369-5274(02)00324-7] [PMID: 12057676]
[24]
Yelin, I.; Snitser, O.; Novich, G.; Katz, R.; Tal, O.; Parizade, M.; Chodick, G.; Koren, G.; Shalev, V.; Kishony, R. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat. Med., 2019, 25(7), 1143-1152.
[http://dx.doi.org/10.1038/s41591-019-0503-6] [PMID: 31273328]
[25]
Long, Y.; Luo, J. Association mining to identify microbe drug interactions based on heterogeneous network embedding representation. IEEE J. Biomed. Health Inform., 2021, 25(1), 266-275.
[http://dx.doi.org/10.1109/JBHI.2020.2998906] [PMID: 32750918]
[26]
Long, Y.; Wu, M.; Liu, Y.; Kwoh, C.K.; Luo, J.; Li, X. Ensembling graph attention networks for human microbe–drug association prediction. Bioinformatics, 2020, 36(Suppl. 2), i779-i786.
[http://dx.doi.org/10.1093/bioinformatics/btaa891] [PMID: 33381844]
[27]
Deng, L.; Huang, Y.; Liu, X.; Liu, H. Graph2MDA: A multi-modal variational graph embedding model for predicting microbe-drug associations. Bioinformatics, 2022, 38(4), 1118-1125.
[28]
Meng, Y.; Jin, M.; Tang, X.; Xu, J. Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study. Appl. Soft Comput., 2021, 103, 107135.
[http://dx.doi.org/10.1016/j.asoc.2021.107135] [PMID: 33519322]
[29]
K, D.; A S, J.; Liu, Y. A deep learning ensemble approach to prioritize antiviral drugs against novel coronavirus SARS-CoV-2 for COVID-19 drug repurposing. Appl. Soft Comput., 2021, 113, 107945.
[http://dx.doi.org/10.1016/j.asoc.2021.107945] [PMID: 34630000]
[30]
Rajput, A.; Thakur, A.; Sharma, S.; Kumar, M. aBiofilm: A resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res., 2018, 46(D1), D894-D900.
[http://dx.doi.org/10.1093/nar/gkx1157] [PMID: 29156005]
[31]
Sun, Y.Z.; Zhang, D.H.; Cai, S.B.; Ming, Z.; Li, J.Q.; Chen, X. MDAD: A special resource for microbe-drug associations. Front. Cell. Infect. Microbiol., 2018, 8, 424.
[http://dx.doi.org/10.3389/fcimb.2018.00424] [PMID: 30581775]
[32]
Hattori, M.; Tanaka, N.; Kanehisa, M.; Goto, S. Simcomp/Subcomp: Chemical structure search servers for network analyses. Nucleic Acids Res., 2010, 38(Web Server issue), W652-656.
[33]
Kuhn, M.; Campillos, M.; Letunic, I.; Jensen, L.J.; Bork, P. A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol., 2010, 6(1), 343.
[http://dx.doi.org/10.1038/msb.2009.98] [PMID: 20087340]
[34]
Gottlieb, A.; Stein, G.Y.; Ruppin, E.; Sharan, R. PREDICT: A method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol., 2011, 7(1), 496.
[http://dx.doi.org/10.1038/msb.2011.26] [PMID: 21654673]
[35]
van Laarhoven, T.; Nabuurs, S.B.; Marchiori, E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics, 2011, 27(21), 3036-3043.
[http://dx.doi.org/10.1093/bioinformatics/btr500] [PMID: 21893517]
[36]
Chen, X.; Huang, Y.A.; You, Z.H.; Yan, G.Y.; Wang, X.S. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics, 2017, 33(5), 733-739.
[http://dx.doi.org/10.1093/bioinformatics/btw715] [PMID: 28025197]
[37]
Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H.; Deng, L.; Liu, Y.; Zhang, Y.; Dai, Q. WBSMDA: Within and between score for MiRNA-disease association prediction. Sci. Rep., 2016, 6(1), 21106.
[http://dx.doi.org/10.1038/srep21106] [PMID: 26880032]
[38]
Chen, X.; Yan, G.Y. Novel human lncRNA–disease association inference based on lncRNA expression profiles. Bioinformatics, 2013, 29(20), 2617-2624.
[http://dx.doi.org/10.1093/bioinformatics/btt426] [PMID: 24002109]
[39]
Huang, Y.; Hu, P.; Chan, K.C.C.; You, Z.H. Graph convolution for predicting associations between miRNA and drug resistance. Bioinformatics, 2020, 36(3), 851-858.
[http://dx.doi.org/10.1093/bioinformatics/btz621] [PMID: 31397851]
[40]
Chen, X.; Yin, J.; Qu, J.; Huang, L. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction. PLOS Comput. Biol., 2018, 14(8), e1006418.
[http://dx.doi.org/10.1371/journal.pcbi.1006418] [PMID: 30142158]
[41]
Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H.; Huang, Y.A.; Yan, G.Y. HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction. Oncotarget, 2016, 7(40), 65257-65269.
[http://dx.doi.org/10.18632/oncotarget.11251] [PMID: 27533456]
[42]
Chen, X.; Wang, L.; Qu, J.; Guan, N.N.; Li, J.Q. Predicting miRNA–disease association based on inductive matrix completion. Bioinformatics, 2018, 34(24), 4256-4265.
[http://dx.doi.org/10.1093/bioinformatics/bty503] [PMID: 29939227]
[43]
Davis, R.; Markham, A.; Balfour, J.A. Ciprofloxacin. Drugs, 1996, 51(6), 1019-1074.
[http://dx.doi.org/10.2165/00003495-199651060-00010] [PMID: 8736621]
[44]
Zhang, G.F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem., 2018, 146, 599-612.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.078] [PMID: 29407984]
[45]
Maheshwari, M.; Yaser, N.H.; Naz, S.; Fatima, M.; Ahmad, I. Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources. J. Glob. Antimicrob. Resist., 2016, 5, 22-25.
[http://dx.doi.org/10.1016/j.jgar.2016.01.008] [PMID: 27436461]
[46]
Price, L.B.; Vogler, A.; Pearson, T.; Busch, J.D.; Schupp, J.M.; Keim, P. In vitro selection and characterization of Bacillus anthracis mutants with high-level resistance to ciprofloxacin. Antimicrob. Agents Chemother., 2003, 47(7), 2362-2365.
[http://dx.doi.org/10.1128/AAC.47.7.2362-2365.2003] [PMID: 12821500]
[47]
Keating, G.M.; Scott, L.J. Moxifloxacin. Drugs, 2004, 64(20), 2347-2377.
[http://dx.doi.org/10.2165/00003495-200464200-00006] [PMID: 15456331]
[48]
Tulkens, P.M.; Arvis, P.; Kruesmann, F. Moxifloxacin safety. Drugs R D., 2012, 12(2), 71-100.
[http://dx.doi.org/10.2165/11634300-000000000-00000] [PMID: 22715866]
[49]
Nguyen, T.K.; Argudín, M.A.; Deplano, A.; Nhung, P.H.; Nguyen, H.A.; Tulkens, P.M.; Dodemont, M.; Van Bambeke, F. Antibiotic resistance, biofilm formation, and intracellular survival as possible determinants of persistent or recurrent infections by Staphylococcus aureus in a vietnamese tertiary hospital: Focus on bacterial response to moxifloxacin. Microb. Drug Resist., 2020, 26(6), 537-544.
[http://dx.doi.org/10.1089/mdr.2019.0282] [PMID: 31825276]
[50]
Tapal, A.; Tiku, P.K. Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chem., 2012, 130(4), 960-965.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.025]
[51]
Lestari, M.L.A.D.; Indrayanto, G. Curcumin. Profiles Drug Subst. Excip. Relat. Methodol., 2014, 39, 113-204.
[http://dx.doi.org/10.1016/B978-0-12-800173-8.00003-9] [PMID: 24794906]
[52]
Koboziev, I.; Scoggin, S.; Gong, X.; Mirzaei, P.; Zabet-Moghaddam, M.; Yosofvand, M.; Moussa, H.; Jones-Hall, Y.; Moustaid-Moussa, N. Effects of curcumin in a mouse model of very high fat diet-induced obesity. Biomolecules, 2020, 10(10), 1368.
[http://dx.doi.org/10.3390/biom10101368] [PMID: 32992936]
[53]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[54]
Wang, X.; Ye, T.; Chen, W.J.; Lv, Y.; Hao, Z.; Chen, J.; Zhao, J.Y.; Wang, H.P.; Cai, Y.K. Structural shift of gut microbiota during chemo-preventive effects of epigallocatechin gallate on colorectal carcinogenesis in mice. World J. Gastroenterol., 2017, 23(46), 8128-8139.
[http://dx.doi.org/10.3748/wjg.v23.i46.8128] [PMID: 29290650]
[55]
Wan, M.L.Y.; Ling, K.H.; Wang, M.F.; El-Nezami, H. Green tea polyphenol epigallocatechin‐3‐gallate improves epithelial barrier function by inducing the production of antimicrobial peptide pBD‐1 and pBD‐2 in monolayers of porcine intestinal epithelial IPEC‐J2 cells. Mol. Nutr. Food Res., 2016, 60(5), 1048-1058.
[http://dx.doi.org/10.1002/mnfr.201500992] [PMID: 26991948]
[56]
Cai, S.; Xie, L.W.; Xu, J.Y.; Zhou, H.; Yang, C.; Tang, L.F.; Tian, Y.; Li, M. (-)-Epigallocatechin-3-Gallate (EGCG) modulates the composition of the gut microbiota to protect against radiation-induced intestinal injury in mice. Front. Oncol., 2022, 12, 848107.
[http://dx.doi.org/10.3389/fonc.2022.848107] [PMID: 35480105]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy