Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Short Antimicrobial Peptides: Therapeutic Potential and Recent Advancements

Author(s): Lalita Sharma and Gopal Singh Bisht*

Volume 29, Issue 38, 2023

Published on: 21 November, 2023

Page: [3005 - 3017] Pages: 13

DOI: 10.2174/0113816128248959231102114334

Price: $65

conference banner
Abstract

There has been a lot of interest in antimicrobial peptides (AMPs) as potential next-generation antibiotics. They are components of the innate immune system. AMPs have broad-spectrum action and are less prone to resistance development. They show potential applications in various fields, including medicine, agriculture, and the food industry. However, despite the good activity and safety profiles, AMPs have had difficulty finding success in the clinic due to their various limitations, such as production cost, proteolytic susceptibility, and oral bioavailability. To overcome these flaws, a number of solutions have been devised, one of which is developing short antimicrobial peptides. Short antimicrobial peptides do have an advantage over longer peptides as they are more stable and do not collapse during absorption. They have generated a lot of interest because of their evolutionary success and advantageous properties, such as low molecular weight, selective targets, cell or organelles with minimal toxicity, and enormous therapeutic potential. This article provides an overview of the development of short antimicrobial peptides with an emphasis on those with ≤ 30 amino acid residues as a potential therapeutic agent to fight drug-resistant microorganisms. It also emphasizes their applications in many fields and discusses their current state in clinical trials.

Next »
[1]
Khare T, Anand U, Dey A, et al. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front Pharmacol 2021; 12: 720726.
[http://dx.doi.org/10.3389/fphar.2021.720726] [PMID: 34366872]
[2]
Datta S, Roy A. Antimicrobial peptides as potential therapeutic agents: A review. Int J Pept Res Ther 2021; 27(1): 555-77.
[http://dx.doi.org/10.1007/s10989-020-10110-x]
[3]
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415(6870): 389-95.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[4]
Koczulla AR, Bals R. Antimicrobial peptides: Current status and therapeutic potential. Drugs 2003; 63(4): 389-406.
[http://dx.doi.org/10.2165/00003495-200363040-00005] [PMID: 12558461]
[5]
Brogden KA. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3(3): 238-50.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[6]
Rahnamaeian M, Vilcinskas A. Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens. Appl Microbiol Biotechnol 2015; 99(21): 8847-55.
[http://dx.doi.org/10.1007/s00253-015-6926-1] [PMID: 26307444]
[7]
Mikut R, Ruden S, Reischl M, Breitling F, Volkmer R, Hilpert K. Improving short antimicrobial peptides despite elusive rules for activity. Biochim Biophys Acta Biomembr 2016; 1858(5): 1024-33.
[http://dx.doi.org/10.1016/j.bbamem.2015.12.013] [PMID: 26687790]
[8]
Chalisova NI, Linkova NS, Zhekalov AN, Orlova AO, Ryzhak GA, Khavinson VK. Short peptides stimulate cell regeneration in skin during aging. Adv Gerontol 2015; 5(3): 176-9.
[http://dx.doi.org/10.1134/S2079057015030054] [PMID: 25946846]
[9]
Tuteja N. Signaling through G protein coupled receptors. Plant Signal Behav 2009; 4(10): 942-7.
[http://dx.doi.org/10.4161/psb.4.10.9530] [PMID: 19826234]
[10]
Abbas M, Ovais M, Atiq A, et al. Tailoring supramolecular short peptide nanomaterials for antibacterial applications. Coord Chem Rev 2022; 460: 214481-98.
[http://dx.doi.org/10.1016/j.ccr.2022.214481]
[11]
Lee SH, Kim SJ, Lee YS, Song MD, Kim IH, Won HS. De novo generation of short antimicrobial peptides with simple amino acid composition. Regul Pept 2011; 166(1-3): 36-41.
[http://dx.doi.org/10.1016/j.regpep.2010.08.010] [PMID: 20736034]
[12]
Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006; 24(12): 1551-7.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[13]
Schagen S. Topical peptide treatments with effective anti-aging results. Cosmetics 2017; 4(2): 16-30.
[http://dx.doi.org/10.3390/cosmetics4020016]
[14]
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides-Advances in development of therapeutic applications. Life Sci 2020; 260: 118407-22.
[http://dx.doi.org/10.1016/j.lfs.2020.118407] [PMID: 32931796]
[15]
Chung CR, Jhong JH, Wang Z, et al. Characterization and identification of natural antimicrobial peptides on different organisms. Int J Mol Sci 2020; 21(3): 986-012.
[http://dx.doi.org/10.3390/ijms21030986] [PMID: 32024233]
[16]
Huang X, Li G. Antimicrobial peptides and cell-penetrating peptides: Non-antibiotic membrane-targeting strategies against bacterial infections. Infect Drug Resist 2023; 16: 1203-19.
[http://dx.doi.org/10.2147/IDR.S396566] [PMID: 36879855]
[17]
Gong H, Hu X, Zhang L, et al. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? J Colloid Interface Sci 2023; 637: 182-92.
[http://dx.doi.org/10.1016/j.jcis.2023.01.051] [PMID: 36701864]
[18]
Mittal S, Kaur S, Swami A, et al. Alkylated histidine based short cationic antifungal peptides: Synthesis, biological evaluation and mechanistic investigations. RSC Advances 2016; 6(48): 41951-61.
[http://dx.doi.org/10.1039/C6RA05883C]
[19]
Lohan S, Monga J, Chauhan CS, Bisht GS. In vitro and in vivo evaluation of small cationic abiotic lipopeptides as novel antifungal agents. Chem Biol Drug Des 2015; 86(4): 829-36.
[http://dx.doi.org/10.1111/cbdd.12558] [PMID: 25777475]
[20]
Ravichandran G, Sarkar P, Chen TW, et al. Antibacterial effect of a short peptide, VV18, from Calcineurin-A of Macrobrachium rosenbergii: Antibiofilm agent against Escherichia coli and a bacterial membrane disruptor in Pseudomonas aeruginosa. Int J Pept Res Ther 2022; 28(1): 22.
[http://dx.doi.org/10.1007/s10989-021-10332-7]
[21]
Mojsoska B, Carretero G, Larsen S, Mateiu RV, Jenssen H. Peptoids successfully inhibit the growth of gram negative E. coli causing substantial membrane damage. Sci Rep 2017; 7(1): 42332-44.
[http://dx.doi.org/10.1038/srep42332] [PMID: 28195195]
[22]
Sharma D, Choudhary M, Vashistt J, Shrivastava R, Bisht GS. Cationic antimicrobial peptide and its poly-N-substituted glycine congener: Antibacterial and antibiofilm potential against A. baumannii. Biochem Biophys Res Commun 2019; 518(3): 472-8.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.062] [PMID: 31443965]
[23]
Duclohier H. Bilayer lipid composition modulates the activity of dermaseptins, polycationic antimicrobial peptides. Eur Biophys J 2006; 35(5): 401-9.
[http://dx.doi.org/10.1007/s00249-006-0047-9] [PMID: 16477458]
[24]
Li S, Wang Y, Zhou J, Wang J, Zhang M, Chen H. Structural characterization, cytotoxicity, and the antifungal mechanism of a novel peptide extracted from garlic (Allium sativa L.). Molecules 2023; 28(7): 3098-114.
[http://dx.doi.org/10.3390/molecules28073098] [PMID: 37049861]
[25]
Datta A, Yadav V, Ghosh A, et al. Mode of action of a designed antimicrobial peptide: high potency against Cryptococcus neoformans. Biophys J 2016; 111(8): 1724-37.
[http://dx.doi.org/10.1016/j.bpj.2016.08.032] [PMID: 27760359]
[26]
Zhong C, Zhang F, Yao J, et al. Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. Biochem Pharmacol 2021; 186: 114470.
[http://dx.doi.org/10.1016/j.bcp.2021.114470] [PMID: 33610592]
[27]
Zhou W, Du Y, Li X, Yao C. Lipoic acid modified antimicrobial peptide with enhanced antimicrobial properties. Bioorg Med Chem 2020; 28(19): 115682.
[http://dx.doi.org/10.1016/j.bmc.2020.115682] [PMID: 32912428]
[28]
Elliott AG, Huang JX, Neve S, et al. An amphipathic peptide with antibiotic activity against multidrug-resistant gram-negative bacteria. Nat Commun 2020; 11(1): 3184-97.
[http://dx.doi.org/10.1038/s41467-020-16950-x] [PMID: 32576824]
[29]
Oyama LB, Olleik H, Teixeira ACN, et al. In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus. NPJ Biofilms Microbiomes 2022; 8(1): 58-72.
[http://dx.doi.org/10.1038/s41522-022-00320-0] [PMID: 35835775]
[30]
Zhang R, Yan H, Wang X, Cong H, Yu B, Shen Y. Screening of a short chain antimicrobial peptide-FWKFK and its application in wound healing. Biomater Sci 2023; 11(5): 1867-75.
[http://dx.doi.org/10.1039/D2BM01992B] [PMID: 36691757]
[31]
van der Weide H, Vermeulen-de Jongh DMC, van der Meijden A, et al. Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles. Int J Antimicrob Agents 2019; 54(2): 159-66.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.05.019] [PMID: 31173867]
[32]
PJM Brouwer C, Roscini L, Cardinali G, et al. Structure-activity relationship study of synthetic variants derived from the highly potent human antimicrobial peptide hLF (1-11). Cohesive J Microbiol Infect Dis 2018; 1(3): 1-9.
[http://dx.doi.org/10.31031/CJMI.2018.01.000512]
[33]
Dijkshoorn L, Brouwer CPJM, Bogaards SJP, Nemec A, van den Broek PJ, Nibbering PH. The synthetic N-terminal peptide of human lactoferrin, hLF(1-11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2004; 48(12): 4919-21.
[http://dx.doi.org/10.1128/AAC.48.12.4919-4921.2004] [PMID: 15561882]
[34]
Tan HH. Topical antibacterial treatments for acne vulgaris: Comparative review and guide to selection. Am J Clin Dermatol 2004; 5(2): 79-84.
[http://dx.doi.org/10.2165/00128071-200405020-00002] [PMID: 15109272]
[35]
Gottler LM, Ramamoorthy A. Structure, membrane orientation, mechanism, and function of pexiganan-a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta Biomembr 2009; 1788(8): 1680-6.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.009] [PMID: 19010301]
[36]
Zhang W, Lv Y, Yang H, et al. Sub3 inhibits mycelia growth and aflatoxin production of Aspergillus flavus. Food Biophys 2022; 17(2): 248-59.
[http://dx.doi.org/10.1007/s11483-021-09715-6]
[37]
Thery T, Shwaiki LN, O’Callaghan YC, O’Brien NM, Arendt EK. Antifungal activity of a de novo synthetic peptide and derivatives against fungal food contaminants. J Pept Sci 2019; 25(1): e3137-49.
[http://dx.doi.org/10.1002/psc.3137] [PMID: 30488526]
[38]
Yang Z, He S, Wang J, et al. Rational design of short peptide variants by using Kunitzin-RE, an amphibian-derived bioactivity peptide, for acquired potent broad-spectrum antimicrobial and improved therapeutic potential of commensalism coinfection of pathogens. J Med Chem 2019; 62(9): 4586-605.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00149] [PMID: 30958004]
[39]
Chou S, Li Q, Wu H, et al. Selective antifungal activity and fungal biofilm inhibition of tryptophan center symmetrical short peptide. Int J Mol Sci 2021; 22(15): 8231-50.
[http://dx.doi.org/10.3390/ijms22158231] [PMID: 34360998]
[40]
Aaghaz S, Sharma K, Maurya IK, et al. Anticryptococcal activity and mechanistic investigation of histidine-rich short peptides. J Mol Struct 2023; 1276: 134813-44.
[http://dx.doi.org/10.1016/j.molstruc.2022.134813]
[41]
Thundimadathil J. Cancer treatment using peptides: Current therapies and future prospects. J Amino Acids 2012; 2012: 1-13.
[http://dx.doi.org/10.1155/2012/967347] [PMID: 23316341]
[42]
Kurrikoff K, Aphkhazava D, Langel Ü. The future of peptides in cancer treatment. Curr Opin Pharmacol 2019; 47: 27-32.
[http://dx.doi.org/10.1016/j.coph.2019.01.008] [PMID: 30856511]
[43]
Sharma RD, Jain J, Khosa RL. Design, synthesis and anticancer activity of site specific short chain cationic peptide. Curr Drug Discov Technol 2020; 17(5): 631-46.
[http://dx.doi.org/10.2174/1570163816666190402121033] [PMID: 30947673]
[44]
Moghaddam MM, Barjini KA, Ramandi MF, Amani J. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World J Microbiol Biotechnol 2014; 30(5): 1533-40.
[http://dx.doi.org/10.1007/s11274-013-1575-y] [PMID: 24323118]
[45]
Fadnes B, Uhlin-Hansen L, Lindin I, Rekdal Ø. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells. BMC Cancer 2011; 11(1): 116-27.
[http://dx.doi.org/10.1186/1471-2407-11-116] [PMID: 21453492]
[46]
Jorge P, Lourenço A, Pereira MO. New trends in peptide-based anti-biofilm strategies: A review of recent achievements and bioinformatic approaches. Biofouling 2012; 28(10): 1033-61.
[http://dx.doi.org/10.1080/08927014.2012.728210] [PMID: 23016989]
[47]
Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 2012; 8(5): 1670-84.
[http://dx.doi.org/10.1016/j.actbio.2012.01.011] [PMID: 22289644]
[48]
Pontes JTC, Toledo Borges AB, Roque-Borda CA, Pavan FR. Antimicrobial peptides as an alternative for the eradication of bacterial biofilms of multi-drug resistant bacteria. Pharmaceutics 2022; 14(3): 642.
[http://dx.doi.org/10.3390/pharmaceutics14030642] [PMID: 35336016]
[49]
Abbara A, Jayasena CN, Christopoulos G, et al. Efficacy of kisspeptin-54 to trigger oocyte maturation in women at high risk of ovarian hyperstimulation syndrome (OHSS) during in vitro fertilization (IVF) therapy. J Clin Endocrinol Metab 2015; 100(9): 3322-31.
[http://dx.doi.org/10.1210/jc.2015-2332] [PMID: 26192876]
[50]
Anunthawan T, de la Fuente-Núñez C, Hancock REW, Klaynongsruang S. Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochim Biophys Acta Biomembr 2015; 1848(6): 1352-8.
[http://dx.doi.org/10.1016/j.bbamem.2015.02.021] [PMID: 25767037]
[51]
Gopal R, Lee J, Kim Y, Kim MS, Seo C, Park Y. Anti-microbial, anti-biofilm activities and cell selectivity of the NRC-16 peptide derived from witch flounder, Glyptocephalus cynoglossus. Mar Drugs 2013; 11(6): 1836-52.
[http://dx.doi.org/10.3390/md11061836] [PMID: 23760014]
[52]
De Brucker K, Delattin N, Robijns S, et al. Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation. Antimicrob Agents Chemother 2014; 58(9): 5395-404.
[http://dx.doi.org/10.1128/AAC.03045-14] [PMID: 24982087]
[53]
Harada K, Suzuki M, Kato A, Fujii K, Oka H, Ito Y. Separation of WAP-8294A components, a novel anti-methicillin-resistant Staphylococcus aureus antibiotic, using high-speed counter-current chromatography. J Chromatogr A 2001; 932(1-2): 75-81.
[http://dx.doi.org/10.1016/S0021-9673(01)01235-3] [PMID: 11695870]
[54]
Romano KP, Warrier T, Poulsen BE, et al. Mutations in pmrB confer cross-resistance between the LptD inhibitor POL7080 and colistin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63(9): e00511-19.
[http://dx.doi.org/10.1128/AAC.00511-19] [PMID: 31235628]
[55]
Bryant AP, Busby RW, Bartolini WP, et al. Linaclotide is a potent and selective guanylate cyclase C agonist that elicits pharmacological effects locally in the gastrointestinal tract. Life Sci 2010; 86(19-20): 760-5.
[http://dx.doi.org/10.1016/j.lfs.2010.03.015] [PMID: 20307554]
[56]
Fulco P, Wenzel RP. Ramoplanin: A topical lipoglycodepsipeptide antibacterial agent. Expert Rev Anti Infect Ther 2006; 4(6): 939-45.
[http://dx.doi.org/10.1586/14787210.4.6.939] [PMID: 17181409]
[57]
Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020; 24(1): 422-32.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[58]
Nicola M, Alsafi Z, Sohrabi C, et al. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int J Surg 2020; 78(4): 185-93.
[http://dx.doi.org/10.1016/j.ijsu.2020.04.018] [PMID: 32305533]
[59]
Ghosh SK, Weinberg A. Ramping up antimicrobial peptides against severe acute respiratory syndrome coronavirus-2. Front Mol Biosci 2021; 8: 620806-16.
[http://dx.doi.org/10.3389/fmolb.2021.620806] [PMID: 34235176]
[60]
Liu R, Liu Z, Peng H, et al. Bomidin: An optimized antimicrobial peptide with broad antiviral activity against enveloped viruses. Front Immunol 2022; 13: 851642-54.
[http://dx.doi.org/10.3389/fimmu.2022.851642] [PMID: 35663971]
[61]
Schütz D, Ruiz-Blanco YB, Münch J, Kirchhoff F, Sanchez-Garcia E, Müller JA. Peptide and peptide-based inhibitors of SARS- CoV-2 entry. Adv Drug Deliv Rev 2020; 167: 47-65.
[http://dx.doi.org/10.1016/j.addr.2020.11.007] [PMID: 33189768]
[62]
Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 2020; 3(9): e202000786-.
[http://dx.doi.org/10.26508/lsa.202000786] [PMID: 32703818]
[63]
Pradeep H, Najma U, Aparna HS. Milk peptides as novel multi-targeted therapeutic candidates for SARS-CoV-2. Protein J 2021; 40(3): 310-27.
[http://dx.doi.org/10.1007/s10930-021-09983-8] [PMID: 33840006]
[64]
Zhang R, Jiang X, Qiao J, et al. Antimicrobial peptide DP7 with potential activity against SARS coronavirus infections. Signal Transduct Target Ther 2021; 6(1): 140-3.
[http://dx.doi.org/10.1038/s41392-021-00551-1] [PMID: 33795636]
[65]
Wohlford-Lenane CL, Meyerholz DK, Perlman S, et al. Rhesus theta-defensin prevents death in a mouse model of severe acute respiratory syndrome coronavirus pulmonary disease. J Virol 2009; 83(21): 11385-90.
[http://dx.doi.org/10.1128/JVI.01363-09] [PMID: 19710146]
[66]
Bakovic A, Risner K, Bhalla N, et al. Brilacidin, a COVID-19 drug candidate, exhibits potent in vitro antiviral activity against SARS-CoV-2. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.10.29.352450]
[67]
Manna S, Chowdhury T, Mandal SM, Choudhury SM. Short amphiphiles or micelle peptides may help to fight against COVID-19. Curr Protein Pept Sci 2022; 23(1): 33-43.
[http://dx.doi.org/10.2174/1389203723666220127154159] [PMID: 35086446]
[68]
Fakih TM. Dermaseptin-based antiviral peptides to prevent COVID-19 through in silico molecular docking studies against SARS-CoV-2 spike protein. Pharm Sci Res 2020; 7(4): 65-70.
[http://dx.doi.org/10.7454/psr.v7i4.1079]
[69]
Mousavi Maleki MS, Rostamian M, Madanchi H. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Rev Anti Infect Ther 2021; 19(10): 1205-17.
[http://dx.doi.org/10.1080/14787210.2021.1912593] [PMID: 33844613]
[70]
Ekanayake A, Rajapaksha AU, Hewawasam C, et al. Environmental challenges of COVID-19 pandemic: Resilience and sustainability – A review. Environ Res 2023; 216(Pt 2): 114496-512.
[http://dx.doi.org/10.1016/j.envres.2022.114496] [PMID: 36257453]
[71]
Rani P, Kapoor B, Gulati M, Atanasov AG, Alzahrani Q, Gupta R. Antimicrobial peptides: A plausible approach for COVID-19 treatment. Expert Opin Drug Discov 2022; 17(5): 473-87.
[http://dx.doi.org/10.1080/17460441.2022.2050693] [PMID: 35255763]
[72]
Chia LY, Kumar PV, Maki MAA, Ravichandran G, Thilagar S. A review: The antiviral activity of cyclic peptides. Int J Pept Res Ther 2022; 29(1): 7-34.
[http://dx.doi.org/10.1007/s10989-022-10478-y] [PMID: 36471676]
[73]
Moradi M, Golmohammadi R, Najafi A, Moosazadeh Moghaddam M, Fasihi-Ramandi M, Mirnejad R. A contemporary review on the important role of in silico approaches for managing different aspects of COVID-19 crisis. Inf Med Unlocked 2022; 28: 100862-71.
[http://dx.doi.org/10.1016/j.imu.2022.100862] [PMID: 35079621]
[74]
Yang ZR. Biological applications of support vector machines. Brief Bioinform 2004; 5(4): 328-38.
[http://dx.doi.org/10.1093/bib/5.4.328] [PMID: 15606969]
[75]
Pirtskhalava M, Gabrielian A, Cruz P, et al. DBAASP v.2: An enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 2016; 44(D1): D1104-12.
[http://dx.doi.org/10.1093/nar/gkv1174] [PMID: 26578581]
[76]
Agostini F, Cirillo D, Livi CM, Delli Ponti R, Tartaglia GG. cc SOL omics: A webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli. Bioinformatics 2014; 30(20): 2975-7.
[http://dx.doi.org/10.1093/bioinformatics/btu420] [PMID: 24990610]
[77]
Smialowski P, Doose G, Torkler P, Kaufmann S, Frishman D. PROSO II-A new method for protein solubility prediction. FEBS J 2012; 279(12): 2192-200.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08603.x] [PMID: 22536855]
[78]
Ge R, Feng G, Jing X, Zhang R, Wang P, Wu Q. Enacp: An ensemble learning model for identification of anticancer peptides. Front Genet 2020; 11: 760-72.
[http://dx.doi.org/10.3389/fgene.2020.00760] [PMID: 32903636]
[79]
Terziyski Z, Terziyska M, Deseva I, et al. PepLab platform: Database and software tools for analysis of food-derived bioactive peptides. Appl Sci 2023; 13(2): 961-71.
[http://dx.doi.org/10.3390/app13020961]
[80]
Biswaro LS, da Costa Sousa MG, Rezende TMB, Dias SC, Franco OL. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol 2018; 9: 855-69.
[http://dx.doi.org/10.3389/fmicb.2018.00855] [PMID: 29867793]
[81]
Ni M, Zhuo S. Applications of self-assembling ultrashort peptides in bionanotechnology. RSC Advances 2019; 9(2): 844-52.
[http://dx.doi.org/10.1039/C8RA07533F] [PMID: 35517614]
[82]
Pak CC, Ali S, Janoff AS, Meers P. Triggerable liposomal fusion by enzyme cleavage of a novel peptide–lipid conjugate. Biochim Biophys Acta Biomembr 1998; 1372(1): 13-27.
[http://dx.doi.org/10.1016/S0005-2736(98)00041-8] [PMID: 9651469]
[83]
Jash A, Ubeyitogullari A, Rizvi SSH. Liposomes for oral delivery of protein and peptide-based therapeutics: Challenges, formulation strategies, and advances. J Mater Chem B Mater Biol Med 2021; 9(24): 4773-92.
[http://dx.doi.org/10.1039/D1TB00126D] [PMID: 34027542]
[84]
Narayanaswamy R, Wang T, Torchilin VP. Improving peptide applications using nanotechnology. Curr Top Med Chem 2016; 16(3): 253-70.
[http://dx.doi.org/10.2174/1568026615666150817100338] [PMID: 26279082]
[85]
Wang Q, Zhang X, Zheng J, Liu D. Self-assembled peptide nanotubes as potential nanocarriers for drug delivery. RSC Advances 2014; 4(48): 25461-9.
[http://dx.doi.org/10.1039/c4ra03304c]
[86]
Ovais M, Ali A, Ullah S, et al. Fabrication of colloidal silver-peptide nanocomposites for bacterial wound healing. Colloids Surf A Physicochem Eng Asp 2022; 651: 129708-15.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129708]
[87]
Lee B, Park J, Ryu M, et al. Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Sci Rep 2017; 7(1): 13572-82.
[http://dx.doi.org/10.1038/s41598-017-14127-z] [PMID: 29051620]
[88]
Imperlini E, Massaro F, Buonocore F. Antimicrobial peptides against bacterial pathogens: Innovative delivery nanosystems for pharmaceutical applications. Antibiotics 2023; 12(1): 184-01.
[http://dx.doi.org/10.3390/antibiotics12010184] [PMID: 36671385]
[89]
Li S, Zou Q, Xing R, Govindaraju T, Fakhrullin R, Yan X. Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics 2019; 9(11): 3249-61.
[http://dx.doi.org/10.7150/thno.31814] [PMID: 31244952]
[90]
Knowlton S, Anand S, Shah T, Tasoglu S. Bioprinting for neural tissue engineering. Trends Neurosci 2018; 41(1): 31-46.
[http://dx.doi.org/10.1016/j.tins.2017.11.001] [PMID: 29223312]
[91]
Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser CAE. Peptide bioink: Self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures. Nano Lett 2015; 15(10): 6919-25.
[http://dx.doi.org/10.1021/acs.nanolett.5b02859] [PMID: 26214046]
[92]
Kim WJ, Soh Y, Heo SM. Recent advances of therapeutic targets for the treatment of periodontal disease. Biomol Ther 2021; 29(3): 263-7.
[http://dx.doi.org/10.4062/biomolther.2021.001] [PMID: 33731493]
[93]
Wang L, Wang N, Zhang W, et al. Therapeutic peptides: Current applications and future directions. Signal Transduct Target Ther 2022; 7(1): 48-75.
[http://dx.doi.org/10.1038/s41392-022-00904-4] [PMID: 35165272]
[94]
Rivera-Sánchez SP, Agudelo-Góngora HA, Oñate-Garzón J, et al. Antibacterial activity of a cationic antimicrobial peptide against multidrug-resistant gram-negative clinical isolates and their potential molecular targets. Molecules 2020; 25(21): 5035-53.
[http://dx.doi.org/10.3390/molecules25215035] [PMID: 33142969]
[95]
Sun P, Li X, Pan C, et al. A short peptide of autotransporter Ata is a promising protective antigen for vaccination against Acinetobacter baumannii. Front Immunol 2022; 13: 884555-67.
[http://dx.doi.org/10.3389/fimmu.2022.884555] [PMID: 35493470]
[96]
Prakash MD, Fraser S, Boer JC, Plebanski M, de Courten B, Apostolopoulos V. Anti-cancer effects of carnosine-a dipeptide molecule. Molecules 2021; 26(6): 1644-54.
[http://dx.doi.org/10.3390/molecules26061644] [PMID: 33809496]
[97]
Mieczkowski A, Speina E, Trzybiński D, et al. Diketopiperazine-based, flexible tadalafil analogues: Synthesis, crystal structures and biological activity profile. Molecules 2021; 26(4): 794-16.
[http://dx.doi.org/10.3390/molecules26040794] [PMID: 33546456]
[98]
Prabha N, Guru A, Harikrishnan R, et al. Neuroprotective and antioxidant capability of RW20 peptide from histone acetyltransferases caused by oxidative stress-induced neurotoxicity in in vivo zebrafish larval model. J King Saud Univ Sci 2022; 34(3): 101861-72.
[http://dx.doi.org/10.1016/j.jksus.2022.101861]
[99]
Cerrato A, Lammi C, Laura Capriotti A, et al. Isolation and functional characterization of hemp seed protein-derived short- and medium-chain peptide mixtures with multifunctional properties for metabolic syndrome prevention. Food Res Int 2023; 163: 112219.
[http://dx.doi.org/10.1016/j.foodres.2022.112219] [PMID: 36596148]
[100]
Vargas A, Garcia G, Rivara K, Woodburn K, Clemens LE, Simon SI. A designed host defense peptide for the topical treatment of MRSA-infected diabetic wounds. Int J Mol Sci 2023; 24(3): 2143-55.
[http://dx.doi.org/10.3390/ijms24032143] [PMID: 36768463]
[101]
Boback K, Bacchi K, O’Neill S, Brown S, Dorsainvil J, Smith-Carpenter JE. Impact of C-terminal chemistry on self-assembled morphology of guanosine containing nucleopeptides. Molecules 2020; 25(23): 5493.
[http://dx.doi.org/10.3390/molecules25235493] [PMID: 33255230]
[102]
Shi J, Hu Z, Zhou Y, et al. Therapeutic potential of synthetic human β-Defensin 1 short motif Pep-B on lipopolysaccharide-stimulated human dental pulp stem cells. Mediators Inflamm 2022; 2022: 1-12.
[http://dx.doi.org/10.1155/2022/6141967] [PMID: 35110972]
[103]
Hadianamrei R, Wang J, Brown S, Zhao X. Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. Int J Pharm 2022; 617: 121619.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121619] [PMID: 35218898]
[104]
Urello M, Hsu WH, Christie RJ. Peptides as a material platform for gene delivery: Emerging concepts and converging technologies. Acta Biomater 2020; 117: 40-59.
[http://dx.doi.org/10.1016/j.actbio.2020.09.027] [PMID: 32966922]
[105]
Prokopowicz M, Różycki KM. Innovation in cosmetics. World Sci News 2017; (72): 448-56.
[106]
Fosgerau K, Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov Today 2015; 20(1): 122-8.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[107]
Global industry analysis, size, share, growth, trends, and forecast 2022–2031. Available from:https://www.transparencymarketresearch.com/peptide-therapeutics-market.html (Accessed on: 16 January 23).
[108]
Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL. Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol 2021; 12: 616979-97.
[http://dx.doi.org/10.3389/fmicb.2021.616979] [PMID: 33692766]
[109]
Lamb HM, Wiseman LR. Pexiganan acetate. Drugs 1998; 56(6): 1047-52.
[http://dx.doi.org/10.2165/00003495-199856060-00011] [PMID: 9878992]
[110]
Itoh H, Tokumoto K, Kaji T, et al. Total synthesis and biological mode of action of WAP-8294A2: A menaquinone-targeting antibiotic. J Org Chem 2018; 83(13): 6924-35.
[http://dx.doi.org/10.1021/acs.joc.7b02318] [PMID: 29019678]
[111]
Cheng KT, Wu CL, Yip BS, et al. The interactions between the antimicrobial peptide P-113 and living candida albicans cells shed light on mechanisms of antifungal activity and resistance. Int J Mol Sci 2020; 21(7): 2654-71.
[http://dx.doi.org/10.3390/ijms21072654] [PMID: 32290246]
[112]
Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front Neurosci 2017; 11: 73.
[http://dx.doi.org/10.3389/fnins.2017.00073] [PMID: 28261050]
[113]
Harb W, Patnaik A, Mahalingam D, et al. A phase I open label dose escalation trial evaluating VT1021 in patients with advanced solid tumours. Ann Oncol 2019; 30: v175.
[http://dx.doi.org/10.1093/annonc/mdz244.027]
[114]
van Groenendael R, Beunders R, Kox M, van Eijk LT, Pickkers P. The human chorionic gonadotropin derivate EA-230 modulates the immune response and exerts renal protective properties: Therapeutic potential in humans. Semin Nephrol 2019; 39(5): 496-504.
[http://dx.doi.org/10.1016/j.semnephrol.2019.06.009] [PMID: 31514913]
[115]
Arch biopartners, MetaBlockTM. Available from: https://archbiopartners.com/our-science/metablok/ (Accessed on: 1 February 23).
[116]
Slifer ZM, Krishnan BR, Madan J, Blikslager AT. Larazotide acetate: A pharmacological peptide approach to tight junction regulation. Am J Physiol Gastrointest Liver Physiol 2021; 320(6): G983-9.
[http://dx.doi.org/10.1152/ajpgi.00386.2020] [PMID: 33881350]
[117]
Pieber T, Tehranchi R, Hovelmann U, et al. Ready-to-use dasiglucagon injection as a rapid and effective treatment for severe hypoglycemia. Metab Clin Exp 2021; 116
[http://dx.doi.org/10.1016/j.metabol.2020.154506]
[118]
Meloni BP, Blacker DJ, Mastaglia FL, Knuckey NW. Emerging cytoprotective peptide therapies for stroke. Expert Rev Neurother 2020; 20(9): 887-90.
[http://dx.doi.org/10.1080/14737175.2020.1788390] [PMID: 32580598]
[119]
Arun B, Rejeesh EP, Rani NM. 16 - Future perspective of peptide antibiotic market. Antimicrobial Peptides. Academic Press 2023; pp. 311-20.
[http://dx.doi.org/10.1016/B978-0-323-85682-9.00009-X]
[120]
Khafagy ES, Morishita M. Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 2012; 64(6): 531-9.
[http://dx.doi.org/10.1016/j.addr.2011.12.014] [PMID: 22245080]
[121]
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24(1): 21-36.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[122]
Brogden NK, Brogden KA. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 2011; 38(3): 217-25.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.05.004] [PMID: 21733662]
[123]
Martin V, Egelund PHG, Johansson H, Thordal Le Quement S, Wojcik F, Sejer Pedersen D. Greening the synthesis of peptide therapeutics: An industrial perspective. RSC Advances 2020; 10(69): 42457-92.
[http://dx.doi.org/10.1039/D0RA07204D] [PMID: 35516773]
[124]
Tesauro D, Accardo A, Diaferia C, et al. Peptide-based drug-delivery systems in biotechnological applications: Recent advances and perspectives. Molecules 2019; 24(2): 351-78.
[http://dx.doi.org/10.3390/molecules24020351] [PMID: 30669445]
[125]
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chem Soc Rev 2018; 47(10): 3574-620.
[http://dx.doi.org/10.1039/C7CS00877E] [PMID: 29479622]
[126]
Zhu M, Liu P, Niu ZW. A perspective on general direction and challenges facing antimicrobial peptides. Chin Chem Lett 2017; 28(4): 703-8.
[http://dx.doi.org/10.1016/j.cclet.2016.10.001]
[127]
Mahlapuu M, Björn C, Ekblom J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit Rev Biotechnol 2020; 40(7): 978-92.
[http://dx.doi.org/10.1080/07388551.2020.1796576] [PMID: 32781848]
[128]
Lee W, Lee DG. Fungicidal mechanisms of the antimicrobial peptide Bac8c. Biochim Biophys Acta Biomembr 2015; 1848(2): 673-9.
[http://dx.doi.org/10.1016/j.bbamem.2014.11.024] [PMID: 25434926]
[129]
Lee H, Lee DG. Fungicide Bac8c triggers attenuation of mitochondrial homeostasis and caspase-dependent apoptotic death. Biochimie 2017; 133: 80-6.
[http://dx.doi.org/10.1016/j.biochi.2016.12.013] [PMID: 28027901]
[130]
Hilpert K, Volkmer-Engert R, Walter T, Hancock REW. High- throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol 2005; 23(8): 1008-12.
[http://dx.doi.org/10.1038/nbt1113] [PMID: 16041366]
[131]
Monk BC, Niimi K, Lin S, et al. Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 2005; 49(1): 57-70.
[http://dx.doi.org/10.1128/AAC.49.1.57-70.2005] [PMID: 15616276]
[132]
Choi J, Moon E. Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library. J Microbiol Biotechnol 2009; 19(8): 792-802.
[http://dx.doi.org/10.4014/jmb.0809.497] [PMID: 19734717]
[133]
Muñoz A, López-García B, Marcos JF. Studies on the mode of action of the antifungal hexapeptide PAF26. Antimicrob Agents Chemother 2006; 50(11): 3847-55.
[http://dx.doi.org/10.1128/AAC.00650-06] [PMID: 17065623]
[134]
Wei GX, Bobek LA. In vitro synergic antifungal effect of MUC7 12-mer with histatin-5 12-mer or miconazole. J Antimicrob Chemother 2004; 53(5): 750-8.
[http://dx.doi.org/10.1093/jac/dkh181] [PMID: 15073161]
[135]
Ferre R, Badosa E, Feliu L, Planas M, Montesinos E, Bardají E. Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides. Appl Environ Microbiol 2006; 72(5): 3302-8.
[http://dx.doi.org/10.1128/AEM.72.5.3302-3308.2006] [PMID: 16672470]
[136]
Thennarasu S, Lee DK, Tan A, Prasad Kari U, Ramamoorthy A. Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843. Biochim Biophys Acta Biomembr 2005; 1711(1): 49-58.
[http://dx.doi.org/10.1016/j.bbamem.2005.02.010] [PMID: 15904663]
[137]
Oliveras À, Baró A, Montesinos L, et al. Antimicrobial activity of linear lipopeptides derived from BP100 towards plant pathogens. PLoS One 2018; 13(7): e0201571.
[http://dx.doi.org/10.1371/journal.pone.0201571] [PMID: 30052685]
[138]
Giuliani A, Pirri G, Nicoletto S. Antimicrobial peptides: An overview of a promising class of therapeutics. Open Life Sci 2007; 2(1): 1-33.
[http://dx.doi.org/10.2478/s11535-007-0010-5]
[139]
Ghosh C, Haldar J. Membrane-active small molecules: Designs inspired by antimicrobial peptides. ChemMedChem 2015; 10(10): 1606-24.
[http://dx.doi.org/10.1002/cmdc.201500299] [PMID: 26386345]
[140]
Feng Q, Huang Y, Chen M, Li G, Chen Y. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo. Eur J Clin Microbiol Infect Dis 2015; 34(1): 197-204.
[http://dx.doi.org/10.1007/s10096-014-2219-3] [PMID: 25169965]
[141]
Morici P, Fais R, Rizzato C, Tavanti A, Lupetti A. Inhibition of Candida albicans biofilm formation by the synthetic lactoferricin derived peptide hLF1-11. PLoS One 2016; 11(11): e0167470-.
[http://dx.doi.org/10.1371/journal.pone.0167470] [PMID: 27902776]
[142]
Krutetskaya ZI, Melnitskaya AV, Antonov VG, Nozdrachev AD. Lipoxygenases modulate the effect of glutoxim on Na+ transport in the frog skin epithelium. Dokl Biochem Biophys 2017; 474(1): 193-5.
[http://dx.doi.org/10.1134/S1607672917030073] [PMID: 28726099]
[143]
Cortes-Penfield N, Oliver NT, Hunter A, Rodriguez-Barradas M. Daptomycin and combination daptomycin-ceftaroline as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia. Infect Dis 2018; 50(8): 643-7.
[http://dx.doi.org/10.1080/23744235.2018.1448110] [PMID: 29508663]
[144]
Melo MN, Castanho MARB. Omiganan interaction with bacterial membranes and cell wall models. Assigning a biological role to saturation. Biochim Biophys Acta Biomembr 2007; 1768(5): 1277-90.
[http://dx.doi.org/10.1016/j.bbamem.2007.02.005] [PMID: 17383609]
[145]
Aguirre TAS, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev 2016; 106(Pt B): 223-41.
[http://dx.doi.org/10.1016/j.addr.2016.02.004] [PMID: 26921819]
[146]
Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol 2003; 21(12): 556-62.
[http://dx.doi.org/10.1016/j.tibtech.2003.10.005] [PMID: 14624865]
[147]
Koo HB, Seo J. Antimicrobial peptides under clinical investigation. Pept Sci 2019; 111(5): e24122.
[http://dx.doi.org/10.1002/pep2.24122]
[148]
Divyashree M, Mani MK, Reddy D, et al. Clinical applications of antimicrobial peptides (AMPs): Where do we stand now? Protein Pept Lett 2020; 27(2): 120-34.
[http://dx.doi.org/10.2174/0929866526666190925152957] [PMID: 31553285]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy