Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Development and Challenges of Cyclic Peptides for Immunomodulation

Author(s): Xianqiong Jiang, Li Gao, Zhilong Li, Yan Shen and Zhi-Hua Lin*

Volume 25, Issue 5, 2024

Published on: 21 November, 2023

Page: [353 - 375] Pages: 23

DOI: 10.2174/0113892037272528231030074158

Price: $65

conference banner
Abstract

Cyclic peptides are polypeptide chains formed by cyclic sequences of amide bonds between protein-derived or non-protein-derived amino acids. Compared to linear peptides, cyclic peptides offer several unique advantages, such as increased stability, stronger affinity, improved selectivity, and reduced toxicity. Cyclic peptide has been proved to have a promising application prospect in the medical field. In addition, this paper mainly describes that cyclic peptides play an important role in anti-cancer, anti-inflammatory, anti-virus, treatment of multiple sclerosis and membranous nephropathy through immunomodulation. In order to know more useful information about cyclic peptides in clinical research and drug application, this paper also summarizes cyclic peptides currently in the clinical trial stage and cyclic peptide drugs approved for marketing in the recent five years. Cyclic peptides have many advantages and great potential in treating various diseases, but there are still many challenges to be solved in the development process of cyclic peptides.

Next »
Graphical Abstract

[1]
Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325.
[http://dx.doi.org/10.1038/s41573-020-00135-8] [PMID: 33536635]
[2]
Abdalla, M.; McGaw, L. Natural cyclic peptides as an attractive modality for therapeutics: A mini review. Molecules, 2018, 23(8), 2080-2198.
[http://dx.doi.org/10.3390/molecules23082080] [PMID: 30127265]
[3]
Bellavita, R.; Maione, A.; Merlino, F.; Siciliano, A.; Dardano, P.; De Stefano, L.; Galdiero, S.; Galdiero, E.; Grieco, P.; Falanga, A. Antifungal and antibiofilm activity of cyclic temporin L peptide analogues against albicans and non-albicans candida species. Pharmaceutics, 2022, 14(2), 454-478.
[http://dx.doi.org/10.3390/pharmaceutics14020454] [PMID: 35214187]
[4]
(a) Bajraktari-Sylejmani, G.; Von Linde, T.; Burhenne, J.; Haefeli, W.E.; Sauter, M.; Weiss, J. Evaluation of pept1 (slC15A1) substrate characteristics of therapeutic cyclic peptides. Pharmaceutics, 2022, 14(8), 1610-1620.
[http://dx.doi.org/10.3390/pharmaceutics14081610] [PMID: 36015235];
(b) Horton, D.A.; Bourne, G.T.; Smythe, M.L. Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J. Comput. Aided Mol. Des., 2002, 16(5/6), 415-431.
[http://dx.doi.org/10.1023/A:1020863921840] [PMID: 12489688];
(c) Furman, O.; Zaporozhets, A.; Tobi, D.; Bazylevich, A.; Firer, M.A.; Patsenker, L.; Gellerman, G.; Lubin, B.C.R. Novel cyclic peptides for targeting EGFR and EGRvIII mutation for drug delivery. Pharmaceutics, 2022, 14(7), 1505-1522.
[http://dx.doi.org/10.3390/pharmaceutics14071505] [PMID: 35890400];
(d) Gallo, M.; Defaus, S.; Andreu, D. Disrupting GPCR complexes with smart drug-like peptides. Pharmaceutics, 2022, 14(1), 161-177.
[http://dx.doi.org/10.3390/pharmaceutics14010161] [PMID: 35057055]
[5]
Yang, L.; Tan, R.; Wang, Q.; Huang, W.; Yin, Y. Antifungal cyclopeptides from halobacillus litoralis ys3106 of marine origin. Tetrahedron Lett., 2002, 43(37), 6545-6548.
[http://dx.doi.org/10.1016/S0040-4039(02)01458-2]
[6]
Jiang, L.; Huang, P.; Ren, B.; Song, Z.; Zhu, G.; He, W.; Zhang, J.; Oyeleye, A.; Dai, H.; Zhang, L.; Liu, X. Antibacterial polyene-polyol macrolides and cyclic peptides from the marine-derived Streptomyces sp. MS110128. Appl. Microbiol. Biotechnol., 2021, 105(12), 4975-4986.
[http://dx.doi.org/10.1007/s00253-021-11226-w] [PMID: 34146138]
[7]
Karim, M.R.U.; In, Y.; Zhou, T.; Harunari, E.; Oku, N.; Igarashi, Y. Nyuzenamides A and B: Bicyclic peptides with antifungal and cytotoxic activity from a marine-derived streptomyces sp. Org. Lett., 2021, 23(6), 2109-2113.
[http://dx.doi.org/10.1021/acs.orglett.1c00210] [PMID: 33661652]
[8]
Muratspahić, E.; Tomašević, N.; Nasrollahi-Shirazi, S.; Gattringer, J.; Emser, F.S.; Freissmuth, M.; Gruber, C.W. Plant-Derived cyclotides modulate κ-opioid receptor signaling. J. Nat. Prod., 2021, 84(8), 2238-2248.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00301] [PMID: 34308635]
[9]
(a) Du, Q.; Huang, Y.H.; Bajpai, A.; Frosig- Jorgensen, M.; Zhao, G.; Craik, D.J. Evaluation of the in vivo Aphrodisiac Activity of a Cyclotide Extract from Hybanthus enneaspermus. J. Nat. Prod., 2020, 83(12), 3736-3743.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01045] [PMID: 33296204];
(b) Fahradpour, M.; Keov, P.; Tognola, C.; Perez-Santamarina, E.; McCormick, P.J.; Ghassempour, A.; Gruber, C.W. Cyclotides isolated from an ipecac root extract antagonize the corticotropin releasing factor type 1 receptor. Front. Pharmacol., 2017, 8, 616-629.
[http://dx.doi.org/10.3389/fphar.2017.00616] [PMID: 29033832];
(c) Anastasiou, E.; Lorentz, K.O.; Stein, G.J.; Mitchell, P.D. Prehistoric schistosomiasis parasite found in the middle east. Lancet Infect. Dis., 2014, 14(7), 553-554.
[http://dx.doi.org/10.1016/S1473-3099(14)70794-7] [PMID: 24953264]
[10]
Abdalla, M.A. Three new cyclotetrapeptides isolated from streptomyces sp. 447. Nat. Prod. Res., 2017, 31(9), 1014-1021.
[http://dx.doi.org/10.1080/14786419.2016.1263849] [PMID: 27936924]
[11]
Wyche, T.P.; Ruzzini, A.C.; Schwab, L.; Currie, C.R.; Clardy, J.; Tryptorubin, A. Tryptorubin A: A polycyclic peptide from a fungus-derived streptomycete. J. Am. Chem. Soc., 2017, 139(37), 12899-12902.
[http://dx.doi.org/10.1021/jacs.7b06176] [PMID: 28853867]
[12]
Liang, X.; Nong, X.H.; Huang, Z.H.; Qi, S.H. Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus simplicillium obclavatum EIODSF 020. J. Agric. Food Chem., 2017, 65(25), 5114-5121.
[http://dx.doi.org/10.1021/acs.jafc.7b01238] [PMID: 28578573]
[13]
Zhou, T.; Katsuragawa, M.; Xing, T.; Fukaya, K.; Okuda, T.; Tokiwa, T.; Tashiro, E.; Imoto, M.; Oku, N.; Urabe, D.; Igarashi, Y. Cyclopeptides from the mushroom pathogen fungus cladobotryum varium. J. Nat. Prod., 2021, 84(2), 327-338.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00980] [PMID: 33439652]
[14]
Takashina, K.; Katsuyama, A.; Kaguchi, R.; Yamamoto, K.; Sato, T.; Takahashi, S.; Horiuchi, M.; Yokota, S.; Ichikawa, S. Solid-phase total synthesis of plusbacin A3. Org. Lett., 2022, 24(11), 2253-2257.
[http://dx.doi.org/10.1021/acs.orglett.2c00667] [PMID: 35293208]
[15]
Ullrich, S.; George, J.; Coram, A.E.; Morewood, R.; Nitsche, C. Biocompatible and selective generation of bicyclic peptides. Angew. Chem. Int. Ed., 2022, 61(43), e202208400.
[http://dx.doi.org/10.1002/anie.202208400] [PMID: 35852030]
[16]
Marciniak, A.; Pacini, L.; Papini, A.M.; Brasuń, J. Bicyclopeptides: a new class of ligands for Cu( II ) ions. Dalton Trans., 2022, 51(35), 13368-13375.
[http://dx.doi.org/10.1039/D2DT01497A] [PMID: 35984441]
[17]
Yates, N.D.J.; Warnes, M.E.; Breetveld, R.; Spicer, C.D.; Signoret, N.; Fascione, M. Preparation and application of an inexpensive α-formylglycine building block compatible with fmoc solid-phase peptide synthesis. Org. Lett., 2023, 25(12), 2001-2005.
[http://dx.doi.org/10.1021/acs.orglett.2c04059] [PMID: 36662590]
[18]
Nagaya, A.; Murase, S.; Mimori, Y.; Wakui, K.; Yoshino, M.; Matsuda, A.; Kobayashi, Y.; Kurasaki, H.; Cary, D.R.; Masuya, K.; Handa, M.; Nishizawa, N. Extended solution-phase peptide synthesis strategy using isostearyl-mixed anhydride coupling and a new C-terminal silyl ester-protecting group for N -methylated cyclic peptide production. Org. Process Res. Dev., 2021, 25(9), 2029-2038.
[http://dx.doi.org/10.1021/acs.oprd.1c00078]
[19]
Li, H.; Li, J.; Chao, J.; Zhang, Z.; Qin, C. Total liquid-phase sythesis, head-to-tail cyclization and synergistic self-cleavage of peptide on small-molecular supports. ChemRxiv, 2021, 2021
[20]
Hossain, F.; Nishat, S.; Andreana, P.R. Synthesis of malformin-A 1, C, a glycan, and an aglycon analog: Potential scaffolds for targeted cancer therapy. Pept. Sci., 2022, 114(4), e24260.
[http://dx.doi.org/10.1002/pep2.24260]
[21]
Kanwal, I.; Mushtaq, F.; Ali, H.; Tufail, P.; Jahan, H.; Shaheen, F. First report on the synthesis and structural studies of trans-Phakellistatin 18: A rotamer of marine natural product phakellistatin 18. Nat. Prod. Res., 2023, 37(9), 1470-1479.
[http://dx.doi.org/10.1080/14786419.2021.2023141] [PMID: 34986732]
[22]
Yayat, H.N.A.; Maharani, R.; Hidayat, A.T.; Wiani, I.; Zainuddin, A.; Mayanti, T.; Nurlelasari; Harneti, D.; Supratman, U. Total synthesis of a reversed cyclopurpuracin using a combination of solid and solution phase methods. J. Heterocycl. Chem., 2022, 59(11), 1963-1970.
[http://dx.doi.org/10.1002/jhet.4532]
[23]
Napitupulu, O.I.; Sumiarsa, D.; Subroto, T.; Nurlelasari; Harneti, D.; Supratman, U.; Maharani, R. Synthesis of cyclo-PLAI using a combination of solid- and solution-phase methods. Synth. Commun., 2019, 49(2), 308-315.
[http://dx.doi.org/10.1080/00397911.2018.1554148]
[24]
Wills, R.; Adebomi, V.; Raj, M. Site-selective peptide macrocyclization. ChemBioChem, 2021, 22(1), 52-62.
[http://dx.doi.org/10.1002/cbic.202000398] [PMID: 32794268]
[25]
Raj, M.; Wills, R.D.; Adebomi, V.T. Peptide cyclization at high concentration. Synlett, 2020, 31(16), 1537-1542.
[http://dx.doi.org/10.1055/s-0040-1707165]
[26]
Wills, R.; Adebomi, V.; Spancake, C.; Cohen, R.D.; Raj, M. Synthesis of L-cyclic tetrapeptides by backbone amide activation CyClick strategy. Tetrahedron, 2022, 126, 133071-133076.
[http://dx.doi.org/10.1016/j.tet.2022.133071]
[27]
Habibi, Y.; Weerasinghe, N.W.; Uggowitzer, K.A.; Thibodeaux, C.J. Partially modified peptide intermediates in lanthipeptide biosynthesis alter the structure and dynamics of a lanthipeptide synthetase. J. Am. Chem. Soc., 2022, 144(23), 10230-10240.
[http://dx.doi.org/10.1021/jacs.2c00727] [PMID: 35647706]
[28]
(a) Rice, A.J.; Pelton, J.M.; Kramer, N.J.; Catlin, D.S.; Nair, S.K.; Pogorelov, T.V.; Mitchell, D.A.; Bowers, A.A. Enzymatic pyridine aromatization during thiopeptide biosynthesis. J. Am. Chem. Soc., 2022, 144(46), 21116-21124.
[http://dx.doi.org/10.1021/jacs.2c07377] [PMID: 36351243];
(b) Nguyen, D.T.; Le, T.T.; Rice, A.J.; Hudson, G.A.; Van der Donk, W.A.; Mitchell, D.A. Accessing diverse pyridine-based macrocyclic peptides by a two-site recognition pathway. J. Am. Chem. Soc., 2022, 144(25), 11263-11269.
[http://dx.doi.org/10.1021/jacs.2c02824] [PMID: 35713415]
[29]
Kersten, R.D.; Mydy, L.S.; Fallon, T.R.; de Waal, F.; Shafiq, K.; Wotring, J.W.; Sexton, J.Z.; Weng, J.K. Gene-guided discovery and ribosomal biosynthesis of moroidin peptides. J. Am. Chem. Soc., 2022, 144(17), 7686-7692.
[http://dx.doi.org/10.1021/jacs.2c00014] [PMID: 35438481]
[30]
Sugiyama, R.; Suarez, A.F.L.; Morishita, Y.; Nguyen, T.Q.N.; Tooh, Y.W.; Roslan, M.N.H.B.; Lo Choy, J.; Su, Q.; Goh, W.Y.; Gunawan, G.A.; Wong, F.T.; Morinaka, B.I. The biosynthetic landscape of triceptides reveals radical sam enzymes that catalyze cyclophane formation on tyr- and his-containing motifs. J. Am. Chem. Soc., 2022, 144(26), 11580-11593.
[http://dx.doi.org/10.1021/jacs.2c00521] [PMID: 35729768]
[31]
Luo, J.; Liu, S.; Lu, H.; Chen, Q.; Shi, Y. A comprehensive review of microorganism-derived cyclic peptides: Bioactive functions and food safety applications. Compr. Rev. Food Sci. Food Saf., 2022, 21(6), 5272-5290.
[http://dx.doi.org/10.1111/1541-4337.13038] [PMID: 36161470]
[32]
Kazmaier, U.; Junk, L. Recent developments on the synthesis and bioactivity of ilamycins/rufomycins and cyclomarins, marine cyclopeptides that demonstrate anti-malaria and anti-tuberculosis activity. Mar. Drugs, 2021, 19(8), 446-472.
[http://dx.doi.org/10.3390/md19080446] [PMID: 34436284]
[33]
Kazemi Shariat Panahi, H.; Mohammadipanah, F.; Rahmati, F.; Tarlani, A.; Hamedi, J. In situ recovery of persipeptides from streptomyces zagrosensis fermentation broth by enhanced adsorption. Iran. J. Biotechnol., 2020, 18(2), e2231-e2240.
[PMID: 33542931]
[34]
Helaly, S.E.; Hamad, Z.; El Sayed, M.A.; Abdel-Motaal, F.F.; Nassar, M.I.; Ito, S.; Stadler, M. Bacillus methylotrophicus ASWU-C2, a strain inhabiting hot desert soil, a new source for antibacterial bacillopyrone, pyrophen, and cyclopeptides. Z. Naturforsch. C J. Biosci., 2018, 74(1-2), 55-59.
[http://dx.doi.org/10.1515/znc-2018-0093] [PMID: 30864389]
[35]
(a) Zhao, L.; Wei, L.; Li, X.; Chen, H.; Liu, J.; Wang, X.; Guan, F. Design and synthesis of novel cyclopeptide p53-MDM2 inhibitors with isoindolinone as antitumor agent. J. Mol. Struct., 2023, 1275, 134604-134610.
[http://dx.doi.org/10.1016/j.molstruc.2022.134604];
(b) Xiao, S.; Wang, Z.; Zhang, H.; Zhao, L.; Chang, Q.; Zhang, X.; Yan, R.; Wu, X.; Jin, Y. Photoinduced synthesis of methylated marine cyclopeptide galaxamide analogs with isoindolinone as anticancer agents. Mar. Drugs, 2022, 20(6), 379-399.
[http://dx.doi.org/10.3390/md20060379] [PMID: 35736182];
(c) Jiang, S.; Zhao, L.; Wu, J.; Bao, Y.; Wang, Z.; Jin, Y. Photo-induced synthesis, structure and in vitro bioactivity of a natural cyclic peptide Yunnanin A analog. RSC Advances, 2020, 10(1), 210-214.
[http://dx.doi.org/10.1039/C9RA09163G] [PMID: 35492554];
(d) Zhang, H.; Wu, J.; Wang, J.; Xiao, S.; Zhao, L.; Yan, R.; Wu, X.; Wang, Z.; Fan, L.; Jin, Y. Novel Isoindolinone-based analogs of the natural cyclic peptide fenestin A: Synthesis and antitumor activity. ACS Med. Chem. Lett., 2022, 13(7), 1118-1124.
[http://dx.doi.org/10.1021/acsmedchemlett.2c00149] [PMID: 35859879];
(e) Bao, Y.; Zhao, L.; Wu, J.; Jiang, S.; Wang, Z.; Jin, Y. Photo-induced synthesis of Axinastatin 3 analogs, the secondary structures and their in vitro antitumor activities. Bioorg. Med. Chem. Lett., 2019, 29(22), 126730-126734.
[http://dx.doi.org/10.1016/j.bmcl.2019.126730] [PMID: 31607609]
[36]
(a) Zhang, J.N.; Xia, Y.X.; Zhang, H.J. Natural cyclopeptides as anticancer agents in the last 20 years. Int. J. Mol. Sci., 2021, 22(8), 3973-4030.
[http://dx.doi.org/10.3390/ijms22083973] [PMID: 33921480];
(b) Zhao, K.; Xing, R.; Yan, X. Cyclic dipeptides: Biological activities and self-assembled materials. Pept. Sci., 2021, 113(2), e24202-e24214.
[http://dx.doi.org/10.1002/pep2.24202];
(c) Jwad, R.; Weissberger, D.; Hunter, L. Strategies for fine-tuning the conformations of cyclic peptides. Chem. Rev., 2020, 120(17), 9743-9789.
[http://dx.doi.org/10.1021/acs.chemrev.0c00013] [PMID: 32786420];
(d) Chow, H.Y.; Zhang, Y.; Matheson, E.; Li, X. Ligation technologies for the synthesis of cyclic peptides. Chem. Rev., 2019, 119(17), 9971-10001.
[http://dx.doi.org/10.1021/acs.chemrev.8b00657] [PMID: 31318534];
(e) Malde, A.K.; Hill, T.A.; Iyer, A.; Fairlie, D.P. Crystal structures of protein-bound cyclic peptides. Chem. Rev., 2019, 119(17), 9861-9914.
[http://dx.doi.org/10.1021/acs.chemrev.8b00807] [PMID: 31046237];
(f) Nielsen, D.S.; Shepherd, N.E.; Xu, W.; Lucke, A.J.; Stoermer, M.J.; Fairlie, D.P. Orally absorbed cyclic peptides. Chem. Rev., 2017, 117(12), 8094-8128.
[http://dx.doi.org/10.1021/acs.chemrev.6b00838] [PMID: 28541045];
(g) Dougherty, P.G.; Sahni, A.; Pei, D. Understanding cell penetration of cyclic peptides. Chem. Rev., 2019, 119(17), 10241-10287.
[http://dx.doi.org/10.1021/acs.chemrev.9b00008] [PMID: 31083977];
(h) Zorzi, A.; Deyle, K.; Heinis, C. Cyclic peptide therapeutics: Past, present and future. Curr. Opin. Chem. Biol., 2017, 38, 24-29.
[http://dx.doi.org/10.1016/j.cbpa.2017.02.006] [PMID: 28249193]
[37]
Räder, A.F.B.; Reichart, F.; Weinmüller, M.; Kessler, H. Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg. Med. Chem., 2018, 26(10), 2766-2773.
[http://dx.doi.org/10.1016/j.bmc.2017.08.031] [PMID: 28886995]
[38]
Iskandarsyah; Tejo, B.A.; Tambunan, U.S.F.; Verkhivker, G.; Siahaan, T.J. Structural modifications of ICAM-1 cyclic peptides to improve the activity to inhibit heterotypic adhesion of T cells. Chem. Biol. Drug Des., 2008, 72(1), 27-33.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00676.x] [PMID: 18554252]
[39]
Tang, J.; He, Y.; Chen, H.; Sheng, W.; Wang, H. Synthesis of bioactive and stabilized cyclic peptides by macrocyclization using C(sp3)–H activation. Chem. Sci., 2017, 8(6), 4565-4570.
[http://dx.doi.org/10.1039/C6SC05530C] [PMID: 28936334]
[40]
Ulapane, K.R.; Kopec, B.M.; Siahaan, T.J. Improving in vivo brain delivery of monoclonal antibody using novel cyclic peptides. Pharmaceutics, 2019, 11(11), 568-582.
[http://dx.doi.org/10.3390/pharmaceutics11110568] [PMID: 31683745]
[41]
Kumar, S.; Mandal, D.; El-Mowafi, S.A.; Mozaffari, S.; Tiwari, R.K.; Parang, K. Click-free synthesis of a multivalent tricyclic peptide as a molecular transporter. Pharmaceutics, 2020, 12(9), 842-858.
[http://dx.doi.org/10.3390/pharmaceutics12090842] [PMID: 32899170]
[42]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23(1-3), 3-25.
[43]
Wang, H.M.; Seo, C.D.; Lee, K.J.; Park, J.H.; Lim, H.S. Evaluation of the cell permeability of bicyclic peptoids and bicyclic peptide-peptoid hybrids. Bioorg. Chem., 2022, 127, 105976-105983.
[http://dx.doi.org/10.1016/j.bioorg.2022.105976] [PMID: 35777233]
[44]
Riniker, S.; Zurich, E. Toward the elucidation of the mechanism for passive membrane permeability of cyclic peptides. Future Med. Chem., 2019, 11(7), 637-639.
[http://dx.doi.org/10.4155/fmc-2018-0429] [PMID: 30920310]
[45]
Linker, S.M.; Schellhaas, C.; Ries, B.; Roth, H.J.; Fouché, M.; Rodde, S.; Riniker, S. Polar/apolar interfaces modulate the conformational behavior of cyclic peptides with impact on their passive membrane permeability. RSC Advances, 2022, 12(10), 5782-5796.
[http://dx.doi.org/10.1039/D1RA09025A] [PMID: 35424539]
[46]
Ono, T.; Tabata, K.V.; Goto, Y.; Saito, Y.; Suga, H.; Noji, H.; Morimoto, J.; Sando, S. Label-free quantification of passive membrane permeability of cyclic peptides across lipid bilayers: Penetration speed of cyclosporin A across lipid bilayers. Chem. Sci., 2023, 14(2), 345-349.
[http://dx.doi.org/10.1039/D2SC05785A] [PMID: 36687349]
[47]
Peraro, L.; Kritzer, J.A. Emerging methods and design principles for cell-penetrant peptides. Angew. Chem. Int. Ed., 2018, 57(37), 11868-11881.
[http://dx.doi.org/10.1002/anie.201801361] [PMID: 29740917]
[48]
Salim, H.; Pei, D. Assessing the cellular uptake, endosomal escape, and cytosolic entry efficiencies of cyclic peptides. Methods Mol. Biol., 2022, 2371(16), 301-316.
[http://dx.doi.org/10.1007/978-1-0716-1689-5_16] [PMID: 34596855]
[49]
Levi, B.; Yacobovich, S.; Kirby, M.; Becker, M.; Agranyoni, O.; Redko, B.; Gellerman, G.; Pinhasov, A.; Koman, I.; Nesher, E. Anti-cancer effects of cyclic peptide ALOS4 in a human melanoma mouse model. Int. J. Mol. Sci., 2021, 22(17), 9579-9585.
[http://dx.doi.org/10.3390/ijms22179579] [PMID: 34502483]
[50]
Ramadhani, D.; Maharani, R.; Gazzali, A.M.; Muchtaridi, M. Cyclic peptides for the treatment of cancers: A review. Molecules, 2022, 27(14), 4428.
[http://dx.doi.org/10.3390/molecules27144428] [PMID: 35889301]
[51]
Pinto, M.E.F.; Najas, J.Z.G.; Magalhães, L.G.; Bobey, A.F.; Mendonça, J.N.; Lopes, N.P.; Leme, F.M.; Teixeira, S.P.; Trovó, M.; Andricopulo, A.D.; Koehbach, J.; Gruber, C.W.; Cilli, E.M.; Bolzani, V.S. Inhibition of breast cancer cell migration by cyclotides isolated from pombalia calceolaria. J. Nat. Prod., 2018, 81(5), 1203-1208.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00969] [PMID: 29757646]
[52]
Du, X.; Xiao, S.; Luo, Q.; Liu, X.; Liu, J. Laminaria japonica cyclic peptides exert anti-colorectal carcinoma effects through apoptosis induction in vitro and in vivo. J. Pept. Sci., 2022, 28(5), e3385-e3394.
[http://dx.doi.org/10.1002/psc.3385] [PMID: 34935253]
[53]
Li, D.; Liao, X.; Zhong, S.; Zhao, B.; Xu, S. Synthesis of marine cyclopeptide galaxamide analogues as potential anticancer agents. Mar. Drugs, 2022, 20(3), 158-169.
[http://dx.doi.org/10.3390/md20030158] [PMID: 35323457]
[54]
Suresh, K.; Abhishek, T.; Varsha, T.; Sukhbir Lal, K.; Renu, S.; Manish, K.; Ajay, S.; Tarun, V.; Reshu, V.; Girish, K.; Abdulsalam, A. Synthesis, anticancer, and antimicrobial evaluation of integerrimide-A. BioMed Res. Int., 2022.
[55]
S, R.; S, P.; Joann, M.D.; S, J. Evaluation of anti-inflammatory efficacy of RA-V: A natural cyclopeptide. Appl. Biochem. Biotechnol., 2020, 190(2), 732-744.
[http://dx.doi.org/10.1007/s12010-019-03124-9] [PMID: 31482289]
[56]
Liu, J.; Wang, H.; Wang, G.; Luo, Q.; Cao, H.; Liu, X.; Zhang, Z.; Yang, P.; Liu, Z. Anti-inflammatory potency of Locusta migratoria manilensis cyclopeptides in mast cells and macrophages. RSC Advances, 2019, 9(54), 31296-31305.
[http://dx.doi.org/10.1039/C9RA06284J] [PMID: 35527955]
[57]
Liu, J.; Gu, B.; Yang, L.; Yang, F.; Lin, H. New anti-inflammatory cyclopeptides from a sponge-derived fungus aspergillus violaceofuscus. Front Chem., 2018, 6, 226-233.
[http://dx.doi.org/10.3389/fchem.2018.00226] [PMID: 29963550]
[58]
(a) Alsaffar, R.M.; Ali, S.; Rashid, S.; Rashid, S.M.; Majid, S.; Rehman, M.U. Immunomodulation: An immune regulatory mechanism in carcinoma therapeutics. Int. Immunopharmacol., 2021, 99, 107984-107996.
[http://dx.doi.org/10.1016/j.intimp.2021.107984] [PMID: 34303999];
(b) Yang, Y.; Mao, H.; Chen, L.; Li, L. Targeting signal pathways triggered by cyclic peptides in cancer: Current trends and future challenges. Arch. Biochem. Biophys., 2021, 701, 108776-108790.
[http://dx.doi.org/10.1016/j.abb.2021.108776] [PMID: 33515532]
[59]
Chia, L.Y.; Kumar, P.V.; Maki, M.A.A.; Ravichandran, G.; Thilagar, S. A Review: The antiviral activity of cyclic peptides. Int. J. Pept. Res. Ther., 2022, 29(1), 7-33.
[http://dx.doi.org/10.1007/s10989-022-10478-y] [PMID: 36471676]
[60]
Park, J.Y.; Yang, S.Y.; Kim, Y.C.; Kim, J.C.; Dang, Q.L.; Kim, J.J.; Kim, I.S. Antiviral peptide from Pseudomonas chlororaphis O6 against tobacco mosaic virus (TMV). J. Korean Soc. Appl. Biol. Chem., 2012, 55(1), 89-94.
[http://dx.doi.org/10.1007/s13765-012-0015-2]
[61]
Song, X.; Lu, L.; Passioura, T.; Suga, H. Macrocyclic peptide inhibitors for the protein–protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5. Org. Biomol. Chem., 2017, 15(24), 5155-5160.
[http://dx.doi.org/10.1039/C7OB00012J] [PMID: 28574091]
[62]
Lee, B.W.; Quy Ha, T.K.; Park, E.J.; Cho, H.M.; Ryu, B.; Doan, T.P.; Lee, H.J.; Oh, W.K. Melicopteline A–E, unusual cyclopeptide alkaloids with antiviral activity against influenza a virus from melicope pteleifolia. J. Org. Chem., 2021, 86(2), 1437-1447.
[http://dx.doi.org/10.1021/acs.joc.0c02137] [PMID: 33369410]
[63]
Johansen-Leete, J.; Ullrich, S.; Fry, S.E.; Frkic, R.; Bedding, M.J.; Aggarwal, A.; Ashhurst, A.S.; Ekanayake, K.B.; Mahawaththa, M.C.; Sasi, V.M.; Luedtke, S.; Ford, D.J.; O’Donoghue, A.J.; Passioura, T.; Larance, M.; Otting, G.; Turville, S.; Jackson, C.J.; Nitsche, C.; Payne, R.J. Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chem. Sci., 2022, 13(13), 3826-3836.
[http://dx.doi.org/10.1039/D1SC06750H] [PMID: 35432913]
[64]
Smith, C.A.; Hinman, C.L. Evidence that L1AD3, an apoptosis-inducing cyclic peptide, binds a leukemic T-cell membrane protein receptor. Arch. Biochem. Biophys., 2004, 432(1), 88-101.
[http://dx.doi.org/10.1016/j.abb.2004.08.010] [PMID: 15519300]
[65]
Anderson, M.E.; Yakovleva, T.; Hu, Y.; Siahaan, T.J. Inhibition of ICAM-1/LFA-1-mediated heterotypic T-cell adhesion to epithelial cells: design of ICAM-1 cyclic peptides. Bioorg. Med. Chem. Lett., 2004, 14(6), 1399-1402.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.100] [PMID: 15006370]
[66]
Chittasupho, C.; Manikwar, P.; Krise, J.P.; Siahaan, T.J.; Berkland, C. cIBR effectively targets nanoparticles to LFA-1 on acute lymphoblastic T cells. Mol. Pharm., 2010, 7(1), 146-155.
[http://dx.doi.org/10.1021/mp900185u] [PMID: 19883077]
[67]
Gründemann, C.; Thell, K.; Lengen, K.; Garcia-Käufer, M.; Huang, Y.H.; Huber, R.; Craik, D.J.; Schabbauer, G.; Gruber, C.W. Cyclotides suppress human T-lymphocyte proliferation by an interleukin 2-dependent mechanism. PLoS One, 2013, 8(6), e68016-e68027.
[http://dx.doi.org/10.1371/journal.pone.0068016] [PMID: 23840803]
[68]
Pinto, M.E.F.; Chan, L.Y.; Koehbach, J.; Devi, S.; Gründemann, C.; Gruber, C.W.; Gomes, M.; Bolzani, V.S.; Cilli, E.M.; Craik, D.J. Cyclotides from brazilian palicourea sessilis and their effects on human lymphocytes. J. Nat. Prod., 2021, 84(1), 81-90.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01069] [PMID: 33397096]
[69]
Hazama, D.; Yin, Y.; Murata, Y.; Matsuda, M.; Okamoto, T.; Tanaka, D.; Terasaka, N.; Zhao, J.; Sakamoto, M.; Kakuchi, Y.; Saito, Y.; Kotani, T.; Nishimura, Y.; Nakagawa, A.; Suga, H.; Matozaki, T. Macrocyclic peptide-mediated blockade of the CD47-SIRPα interaction as a potential cancer immunotherapy. Cell Chem. Biol., 2020, 27(9), 1181-1191.e7.
[http://dx.doi.org/10.1016/j.chembiol.2020.06.008] [PMID: 32640189]
[70]
Karanam, G.; Arumugam, M.K.; Sirpu Natesh, N. Anticancer effect of marine sponge-associated Bacillus pumilus amk1 derived dipeptide cyclo (-Pro-Tyr) in human liver cancer cell line through apoptosis and G2/M phase arrest. Int. J. Pept. Res. Ther., 2020, 26(1), 445-457.
[http://dx.doi.org/10.1007/s10989-019-09850-2]
[71]
Karanam, G.; Arumugam, M.K. Reactive oxygen species generation and mitochondrial dysfunction for the initiation of apoptotic cell death in human hepatocellular carcinoma HepG2 cells by a cyclic dipeptide Cyclo(-Pro-Tyr). Mol. Biol. Rep., 2020, 47(5), 3347-3359.
[http://dx.doi.org/10.1007/s11033-020-05407-5] [PMID: 32248385]
[72]
Magiera-Mularz, K.; Kuska, K.; Skalniak, L.; Grudnik, P.; Musielak, B.; Plewka, J.; Kocik, J.; Stec, M.; Weglarczyk, K.; Sala, D.; Wladyka, B.; Siedlar, M.; Holak, T.A.; Dubin, G. Macrocyclic peptide inhibitor of PD-1/PD-L1 immune checkpoint. Adv. Ther., 2021, 4(2), 2000195-2000200.
[http://dx.doi.org/10.1002/adtp.202000195]
[73]
Zhai, W.; Zhou, X.; Zhai, M.; Li, W.; Ran, Y.; Sun, Y.; Du, J.; Zhao, W.; Xing, L.; Qi, Y.; Gao, Y. Blocking of the PD-1/PD-L1 interaction by a novel cyclic peptide inhibitor for cancer immunotherapy. Sci. China Life Sci., 2021, 64(4), 548-562.
[http://dx.doi.org/10.1007/s11427-020-1740-8] [PMID: 32737851]
[74]
Zhai, W.; Zhou, X.; Wang, H.; Li, W.; Chen, G.; Sui, X.; Li, G.; Qi, Y.; Gao, Y. A novel cyclic peptide targeting LAG-3 for cancer immunotherapy by activating antigen-specific CD8+ T cell responses. Acta Pharm. Sin. B, 2020, 10(6), 1047-1060.
[http://dx.doi.org/10.1016/j.apsb.2020.01.005] [PMID: 32642411]
[75]
Miao, Q.; Zhang, W.; Zhang, K.; Li, H.; Zhu, J.; Jiang, S. Rational design of a potent macrocyclic peptide inhibitor targeting the PD-1/PD-L1 protein–protein interaction. RSC Advances, 2021, 11(38), 23270-23279.
[http://dx.doi.org/10.1039/D1RA03118J] [PMID: 35479790]
[76]
Wang, X.; Hu, C.; Wu, X.; Wang, S.; Zhang, A.; Chen, W.; Shen, Y.; Tan, R.; Wu, X.; Sun, Y.; Xu, Q.; Roseotoxin, B. Roseotoxin B improves allergic contact dermatitis through a unique anti-inflammatory mechanism involving excessive activation of autophagy in activated t lymphocytes. J. Invest. Dermatol., 2016, 136(8), 1636-1646.
[http://dx.doi.org/10.1016/j.jid.2016.04.017] [PMID: 27155460]
[77]
Shen, Y.; Luo, Q.; Xu, H.; Gong, F.; Zhou, X.; Sun, Y.; Wu, X.; Liu, W.; Zeng, G.; Tan, N.; Xu, Q. Mitochondria-dependent apoptosis of activated T lymphocytes induced by astin C, a plant cyclopeptide, for preventing murine experimental colitis. Biochem. Pharmacol., 2011, 82(3), 260-268.
[http://dx.doi.org/10.1016/j.bcp.2011.04.013] [PMID: 21569765]
[78]
Wang, Z.; Zhao, S.; Song, L.; Pu, Y.; Wang, Q.; Zeng, G.; Liu, X.; Bai, M.; Li, S.; Gao, F.; Chen, L.; Wang, C.; Tan, N. Natural cyclopeptide RA-V inhibits the NF-κB signaling pathway by targeting TAK1. Cell Death Dis., 2018, 9(7), 715.
[http://dx.doi.org/10.1038/s41419-018-0743-2] [PMID: 29915207]
[79]
Zou, X.G.; Shim, Y.Y.; Cho, J.Y.; Jeong, D.; Yang, J.; Deng, Z.Y.; Reaney, M.J.T. Flaxseed orbitides, linusorbs, inhibit LPS-induced THP-1 macrophage inflammation. RSC Advances, 2020, 10(38), 22622-22630.
[http://dx.doi.org/10.1039/C9RA09058D] [PMID: 35514549]
[80]
Matsoukas, J.M.; Ligielli, I.; Chasapis, C.T.; Kelaidonis, K.; Apostolopoulos, V.; Mavromoustakos, T. Novel approaches in the immunotherapy of multiple sclerosis: Cyclization of myelin epitope peptides and conjugation with mannan. Brain Sci., 2021, 11(12), 1583-1596.
[http://dx.doi.org/10.3390/brainsci11121583] [PMID: 34942885]
[81]
Hellinger, R.; Muratspahić, E.; Devi, S.; Koehbach, J.; Vasileva, M.; Harvey, P.J.; Craik, D.J.; Gründemann, C.; Gruber, C.W. Importance of the cyclic cystine knot structural motif for immunosuppressive effects of cyclotides. ACS Chem. Biol., 2021, 16(11), 2373-2386.
[http://dx.doi.org/10.1021/acschembio.1c00524] [PMID: 34592097]
[82]
Thell, K.; Hellinger, R.; Sahin, E.; Michenthaler, P.; Gold-Binder, M.; Haider, T.; Kuttke, M.; Liutkevičiūtė, Z.; Göransson, U.; Gründemann, C.; Schabbauer, G.; Gruber, C.W. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc. Natl. Acad. Sci., 2016, 113(15), 3960-3965.
[http://dx.doi.org/10.1073/pnas.1519960113] [PMID: 27035952]
[83]
Dayani, L.; Dinani, M.S.; Aliomrani, M.; Hashempour, H.; Varshosaz, J.; Taheri, A. Immunomodulatory effects of cyclotides isolated from Viola odorata in an experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Mult. Scler. Relat. Disord., 2022, 64, 103958-103972.
[http://dx.doi.org/10.1016/j.msard.2022.103958] [PMID: 35716476]
[84]
(a) Liddicoat, A.M.; Lavelle, E.C. Modulation of innate immunity by cyclosporine A. Biochem. Pharmacol., 2019, 163, 472-480.
[http://dx.doi.org/10.1016/j.bcp.2019.03.022] [PMID: 30880061];
(b) Patel, D.; Wairkar, S. Recent advances in cyclosporine drug delivery: challenges and opportunities. Drug Deliv. Transl. Res., 2019, 9(6), 1067-1081.
[http://dx.doi.org/10.1007/s13346-019-00650-1] [PMID: 31144214]
[85]
Fervenza, F.C.; Appel, G.B.; Barbour, S.J.; Rovin, B.H.; Lafayette, R.A.; Aslam, N.; Jefferson, J.A.; Gipson, P.E.; Rizk, D.V.; Sedor, J.R.; Simon, J.F.; McCarthy, E.T.; Brenchley, P.; Sethi, S.; Avila-Casado, C.; Beanlands, H.; Lieske, J.C.; Philibert, D.; Li, T.; Thomas, L.F.; Green, D.F.; Juncos, L.A.; Beara-Lasic, L.; Blumenthal, S.S.; Sussman, A.N.; Erickson, S.B.; Hladunewich, M.; Canetta, P.A.; Hebert, L.A.; Leung, N.; Radhakrishnan, J.; Reich, H.N.; Parikh, S.V.; Gipson, D.S.; Lee, D.K.; da Costa, B.R.; Jüni, P.; Cattran, D.C. Rituximab or cyclosporine in the treatment of membranous nephropathy. N. Engl. J. Med., 2019, 381(1), 36-46.
[http://dx.doi.org/10.1056/NEJMoa1814427] [PMID: 31269364]
[86]
Costa, L.; Sousa, E.; Fernandes, C. Cyclic peptides in pipeline: what future for these great molecules? Pharmaceuticals, 2023, 16(7), 996.
[http://dx.doi.org/10.3390/ph16070996] [PMID: 37513908]
[87]
Dhillon, S.; Keam, S.J. Bremelanotide: First approval. Drugs, 2019, 79(14), 1599-1606.
[http://dx.doi.org/10.1007/s40265-019-01187-w] [PMID: 31429064]
[88]
Scheinberg, A.R.; Martin, P.; Turkeltaub, J.A. Terlipressin in the management of liver disease. Expert Opin. Pharmacother., 2023, 24(15), 1665-1671.
[http://dx.doi.org/10.1080/14656566.2023.2244427] [PMID: 37535437]
[89]
Markham, A. Setmelanotide: First approval. Drugs, 2021, 81(3), 397-403.
[http://dx.doi.org/10.1007/s40265-021-01470-9] [PMID: 33638809]
[90]
Duggan, S. Vosoritide: First approval. Drugs, 2021, 81(17), 2057-2062.
[http://dx.doi.org/10.1007/s40265-021-01623-w] [PMID: 34694597]
[91]
Hoy, S.M. Pegcetacoplan: First approval. Drugs, 2021, 81(12), 1423-1430.
[http://dx.doi.org/10.1007/s40265-021-01560-8] [PMID: 34342834]
[92]
Heo, Y.A. Voclosporin: First approval. Drugs, 2021, 81(5), 605-610.
[http://dx.doi.org/10.1007/s40265-021-01488-z] [PMID: 33788181]
[93]
Keam, S.J. Lutetium Lu 177 vipivotide tetraxetan: First approval. Mol. Diagn. Ther., 2022, 26(4), 467-475.
[http://dx.doi.org/10.1007/s40291-022-00594-2] [PMID: 35553387]
[94]
Lamb, Y.N. Pacritinib: First approval. Drugs, 2022, 82(7), 831-838.
[http://dx.doi.org/10.1007/s40265-022-01718-y] [PMID: 35567653]
[95]
Syed, Y.Y. Rezafungin: First approval. Drugs, 2023, 83(9), 833-840.
[http://dx.doi.org/10.1007/s40265-023-01891-8] [PMID: 37212966]
[96]
Boivin-Jahns, V.; Uhland, K.; Holthoff, H.P.; Beyersdorf, N.; Kocoski, V.; Kerkau, T.; Münch, G.; Lohse, M.J.; Ungerer, M.; Jahns, R. Cyclopeptide COR-1 to treat beta1-adrenergic receptor antibody-induced heart failure. PLoS One, 2018, 13(8), e0201160.
[http://dx.doi.org/10.1371/journal.pone.0201160] [PMID: 30125285]
[97]
Anup, K.; Harri, J.; Raed Moh’d Taiseer, A-R.; Anwaar, S.; Milind, A.P.; Anusha, C.; Timothy, S.; Sean, K.; Mazin Mazin, A-K.; John, A.; Benjamin, M.; Samuel, L.; Mojtaba, O.; Amit, R.; Scott James, W.; Subhrajit, S.; Prasad, D.; Rashna, M.; Weijing, S.; Joaquina Celebre, B. Phase Ib/IIa trial of CEND-1 in combination with neoadjuvant FOLFIRINOX-based therapies in pancreatic, colorectal, and appendiceal cancers (CENDIFOX). J. Clin. Oncol., 2022, 40(16)
[98]
Mastellos, D.C.; Skendros, P.; Lambris, J.D. Is complement the culprit behind COVID-19 vaccine-related adverse reactions? J. Clin. Invest., 2021, 131(11), e151092.
[http://dx.doi.org/10.1172/JCI151092] [PMID: 33945504]
[99]
(a) Zhuang, L.; Huang, S.; Liu, W.Q.; Karim, A.S.; Jewett, M.C.; Li, J. Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metab. Eng., 2020, 60, 37-44.
[http://dx.doi.org/10.1016/j.ymben.2020.03.009] [PMID: 32224263];
(b) Zhang, D.; Ma, Z.; Chen, H.; Lu, Y.; Chen, X. Valinomycin as a potential antiviral agent against coronaviruses: A review. Biomed. J., 2020, 43(5), 414-423.
[http://dx.doi.org/10.1016/j.bj.2020.08.006] [PMID: 33012699]
[100]
O’Shaughnessy, J.; Kaklamani, V.; Kalinsky, K. Perspectives on the mechanism of action and clinical application of eribulin for metastatic breast cancer. Future Oncol., 2019, 15(14), 1641-1653.
[http://dx.doi.org/10.2217/fon-2018-0936] [PMID: 30892083]
[101]
Barth, P.; Bruijnzeel, P.; Wach, A.; Sellier Kessler, O.; Hooftman, L.; Zimmermann, J.; Naue, N.; Huber, B.; Heimbeck, I.; Kappeler, D.; Timmer, W.; Chevalier, E. Single dose escalation studies with inhaled POL6014, a potent novel selective reversible inhibitor of human neutrophil elastase, in healthy volunteers and subjects with cystic fibrosis. J. Cyst. Fibros., 2020, 19(2), 299-304.
[http://dx.doi.org/10.1016/j.jcf.2019.08.020] [PMID: 31501052]
[102]
Guerlavais, V.; Sawyer, T.K.; Carvajal, L.; Chang, Y.S.; Graves, B.; Ren, J.G.; Sutton, D.; Olson, K.A.; Packman, K.; Darlak, K.; Elkin, C.; Feyfant, E.; Kesavan, K.; Gangurde, P.; Vassilev, L.T.; Nash, H.M.; Vukovic, V.; Aivado, M.; Annis, D.A. Discovery of sulanemadlin (ALRN-6924), the first cell-permeating, stabilized α-helical peptide in clinical development. J. Med. Chem., 2023, 66(14), 9401-9417.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00623] [PMID: 37439511]
[103]
Howard, J.F., Jr; Bresch, S.; Genge, A.; Hewamadduma, C.; Hinton, J.; Hussain, Y.; Juntas-Morales, R.; Kaminski, H.J.; Maniaol, A.; Mantegazza, R.; Masuda, M.; Sivakumar, K.; Śmiłowski, M.; Utsugisawa, K.; Vu, T.; Weiss, M.D.; Zajda, M.; Boroojerdi, B.; Brock, M.; de la Borderie, G.; Duda, P.W.; Lowcock, R.; Vanderkelen, M.; Leite, M.I.; Sembinelli, D.; Teitelbaum, J.; Nicolle, M.; Bernard, E.; Svahn, J.; Spinazzi, M.; Stojkovic, T.; Demeret, S.; Weiss, N.; Le Guennec, L.; Messai, S.; Tranchant, C.; Nadaj-Pakleza, A.; Chanson, J-B.; Suliman, M.; Zaidi, L.; Tard, C.; Lecointe, P.; Zschüntzsch, J.; Schmidt, J.; Glaubitz, S.; Zeng, R.; Scholl, M.; Kowarik, M.; Ziemann, U.; Krumbholz, M.; Martin, P.; Ruschil, C.; Dünschede, J.; Kemmner, R.; Rumpel, N.; Berger, B.; Totzeck, A.; Hagenacker, T.; Stolte, B.; Iorio, R.; Evoli, A.; Falso, S.; Antozzi, C.; Frangiamore, R.; Vanoli, F.; Rinaldi, E.; Deguchi, K.; Minami, N.; Nagane, Y.; Suzuki, Y.; Ishida, S.; Suzuki, S.; Nakahara, J.; Nagaoka, A.; Yoshimura, S.; Konno, S.; Tsuya, Y.; Uzawa, A.; Kubota, T.; Takahashi, M.; Okuno, T.; Murai, H.; Gilhus, N.E.; Boldingh, M.; Rønning, T.H.; Chyrchel-Paszkiewicz, U.; Kumor, K.; Zielinski, T.; Banaszkiewicz, K.; Błaż, M.; Kłósek, A.; Świderek-Matysiak, M.; Szczudlik, A.; Paśko, A.; Szczechowski, L.; Banach, M.; Ilkowski, J.; Kapetanovic Garcia, S.; Ortiz Bagan, P.; Belén Cánovas Segura, A.; Turon Sans, J.; Vidal Fernandez, N.; Cortes Vicente, E.; Rodrigo Armenteros, P.; Ashraghi, M.; Cavey, A.; Haslam, L.; Emery, A.; Liow, K.; Yegiaian, S.; Barboi, A.; Vazquez, R.M.; Lennon, J.; Pascuzzi, R.M.; Bodkin, C.; Guingrich, S.; Comer, A.; Bromberg, M.; Janecki, T.; Saba, S.; Tellez, M.; Elsheikh, B.; Freimer, M.; Heintzman, S.; Govindarajan, R.; Guptill, J.; Massey, J.M.; Juel, V.; Gonzalez, N.; Habib, A.A.; Mozaffar, T.; Korb, M.; Goyal, N.; Machemehl, H.; Manousakis, G.; Allen, J.; Harper, E.; Farmakidis, C.; Saavedra, L.; Dimachkie, M.; Pasnoor, M.; Akhter, S.; Beydoun, S.; McIlduff, C.; Nye, J.; Roy, B.; Munro Sheldon, B.; Nowak, R.; Barnes, B.; Rivner, M.; Suresh, N.; Shaw, J.; Harvey, B.; Lam, L.; Thomas, N.; Chopra, M.; Traub, R.E.; Jones, S.; Wagoner, M.; Smajic, S.; Aly, R.; Katz, J.; Chen, H.; Miller, R.G.; Jenkins, L.; Khan, S.; Khatri, B.; Sershon, L.; Pavlakis, P.; Holzberg, S.; Li, Y.; Caristo, I.B.; Marquardt, R.; Hastings, D.; Rube, J.; Lisak, R.P.; Choudhury, A.; Ruzhansky, K.; Sachdev, A.; Shin, S.; Bratton, J.; Fetter, M.; McKinnon, N.; McKinnon, J.; Sissons-Ross, L.; Sahu, A.; Distad, B.J. Safety and efficacy of zilucoplan in patients with generalised myasthenia gravis (RAISE): A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Neurol., 2023, 22(5), 395-406.
[http://dx.doi.org/10.1016/S1474-4422(23)00080-7] [PMID: 37059508]
[104]
Mammen, A.L.; Amato, A.A.; Dimachkie, M.M.; Chinoy, H.; Hussain, Y.; Lilleker, J.B.; Pinal-Fernandez, I.; Allenbach, Y.; Boroojerdi, B.; Vanderkelen, M.; Delicha, E.M.; Koendgen, H.; Farzaneh-Far, R.; Duda, P.W.; Sayegh, C.; Benveniste, O.; Amato, A.A.; Benveniste, O.; Biliciler, S.; Chinoy, H.; Dimachkie, M.M.; Edmundson, C.; Freimer, M.; Geraci, A.; Hussain, Y.; Machado, P.; Mammen, A.L.; Mozaffar, T.; Soltanzadeh, P.; Suresh, N.; van der Kooi, A.; Allenbach, Y.; Appleby, M.; Barohn, R.J.; Champtiaux, N.; Doughty, C.; Farias, J.; Farmakidis, C.; Habib, A.A.; Karam, C.; Lilleker, J.; Lorusso, S.; Pasnoor, M.; Pinal-Fernandez, I.; Querin, G.; Raaphorst, J.; Ransley, G.; Saba, S.; Sheikh, K.; Snedden, A.; Statland, J.; Vu, T. Zilucoplan in immune-mediated necrotising myopathy: A phase 2, randomised, double-blind, placebo-controlled, multicentre trial. Lancet Rheumatol., 2023, 5(2), e67-e76.
[http://dx.doi.org/10.1016/S2665-9913(23)00003-6] [PMID: 36923454]
[105]
Cook, N.; Banerji, U.; Evans, J.; Biondo, A.; Germetaki, T.; Randhawa, M.; Godfrey, L.; Leslie, S.; Jeffrey, P.; Rigby, M.; Bennett, G.; Blakemore, S.; Koehler, M.; Niewiarowski, A.; Pittman, M.; Symeonides, S.N. 464PPharmacokinetic (PK) assessment of BT1718: A phase I/II a study of BT1718, a first in class bicycle toxin conjugate (BTC), in patients (pts) with advanced solid tumours. Ann. Oncol., 2019, 30(5)
[106]
Capucine, B.; Vincent, G.; Irene, B.; Bernard, D.; Antoine, I.; Sophie, C.; Gerald Steven, F.; Andrea, N.; Oscar, R.; Louise, C.; Elisa, F.; Loic, V.; Sebastien, H.; Amy, D.; Cong, X.; Hongmei, X.; Rajiv, S.; Dominic, S.; Meredith, M. BT8009-100: A phase I/II study of novel bicyclic peptide and MMAE conjugate BT8009 in patients (pts) with advanced malignancies associated with nectin-4 expression, including urothelial cancer (UC). J. Clin. Oncol., 2023, 41(6), 498-498.
[107]
Bendell, J.C.; Wang, J.S.Z.; Bashir, B.; Richardson, D.L.; Bennett, G.; Campbell, C.; Hennessy, M.G.; Jeffrey, P.; Kirui, J.; Mahnke, L.; Shapiro, G. BT5528-100 phase I/II study of the safety, pharmacokinetics, and preliminary clinical activity of BT5528 in patients with advanced malignancies associated with EphA2 expression. J. Clin. Oncol., 2020, 38(15_suppl), TPS3655.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.TPS3655]
[108]
Kyriakos, P.P.; Afshin, D.; Amy, D.; Sandra, H.; Sally, W.; Punit, U.; Heather, C.; Kristen, H.; Roshawn, W.; Sebastien, H.; Dominic, S.; Jordi Rodon, A. A combined phase I/II study of a novel bicycle tumor-targeted immune cell agonist BT7480 in patients with nectin-4 associated advanced malignancies. J. Clin. Oncol., 2022, 40(16)
[109]
Wyer, S.; Townsend, D.M.; Ye, Z.; Kourtidis, A.; Choo, Y.M.; de Barros, A.L.B.; Donia, M.S.; Hamann, M.T. Recent advances and limitations in the application of kahalalides for the control of cancer. Biomed. Pharmacother., 2022, 148, 112676-112685.
[http://dx.doi.org/10.1016/j.biopha.2022.112676] [PMID: 35149387]
[110]
a) Ling, Y.H.; Aracil, M.; Zou, Y.; Yuan, Z.; Lu, B.; Jimeno, J.; Cuervo, A.M.; Perez-Soler, R. PM02734 (elisidepsin) induces caspase-independent cell death associated with features of autophagy, inhibition of the Akt/mTOR signaling pathway, and activation of death-associated protein kinase. Clin. Cancer Res., 2011, 17(16), 5353-5366.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1948] [PMID: 21690574];
b) Martín-Algarra, S.; Espinosa, E.; Rubió, J.; López, J.J.L.; Manzano, J.L.; Carrión, L.A.; Plazaola, A.; Tanovic, A.; Paz-Ares, L. Phase II study of weekly Kahalalide F in patients with advanced malignant melanoma. Eur. J. Cancer, 2009, 45(5), 732-735.
[http://dx.doi.org/10.1016/j.ejca.2008.12.005] [PMID: 19186051]
[111]
Ballantyne, C.M.; Banka, P.; Mendez, G.; Garcia, R.; Rosenstock, J.; Rodgers, A.; Mendizabal, G.; Mitchel, Y.; Catapano, A.L. Phase 2b randomized trial of the oral PCSK9 inhibitor MK-0616. J. Am. Coll. Cardiol., 2023, 81(16), 1553-1564.
[http://dx.doi.org/10.1016/j.jacc.2023.02.018] [PMID: 36889610]
[112]
Tanada, M.; Tamiya, M.; Matsuo, A.; Chiyoda, A.; Takano, K.; Ito, T.; Irie, M.; Kotake, T.; Takeyama, R.; Kawada, H.; Hayashi, R.; Ishikawa, S.; Nomura, K.; Furuichi, N.; Morita, Y.; Kage, M.; Hashimoto, S.; Nii, K.; Sase, H.; Ohara, K.; Ohta, A.; Kuramoto, S.; Nishimura, Y.; Iikura, H.; Shiraishi, T. Development of orally bioavailable peptides targeting an intracellular protein: From a hit to a clinical KRAs inhibitor. J. Am. Chem. Soc., 2023, 145(30), 16610-16620.
[http://dx.doi.org/10.1021/jacs.3c03886] [PMID: 37463267]
[113]
Saharan, R.; Kumar, S.; Khokra, S.L. A comprehensive review on therapeutic potentials of natural cyclic peptides. Curr. Nutr. Food Sci., 2021, 18, 441-449.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy