Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

CRD-BP as a Tumor Marker of Colorectal Cancer

Author(s): Fen-Xu, Liang-Hong Jiang, Chen-Fu, Wei-Wei Feng and Chang-Jiang Zhou*

Volume 24, Issue 3, 2024

Published on: 21 November, 2023

Page: [169 - 176] Pages: 8

DOI: 10.2174/0118715206256546231108095912

Price: $65

Abstract

The National Cancer Center published a comparative report on cancer data between China and the United States in the Chinese Medical Journal, which shows that colorectal cancer (CRC) ranks second in China and fourth in the United States. It is worth noting that since 2000, the case fatality rate of CRC in China has skyrocketed, while the United States has gradually declined. Finding tumor markers with high sensitivity and specificity is our primary goal to reduce the case fatality rate of CRC. Studies have shown that CRD-BP (Insulin-like growth factor 2 mRNA-binding protein 1) can affect a variety of signaling pathways, such as Wntnuclear factor KB (NF-κB), and Hedgehog, and has good biological effects as a therapeutic target for CRC. CRD-BP is expected to become a tumor marker with high sensitivity and specificity of CRC. This paper reviews the research on CRD-BP as a tumor marker of CRC.

[1]
Liu, X.; Song, X.; Li, H. Transcription elongation factor A-like 7, regulated by miR-758-3p inhibits the progression of melanoma through decreasing the expression levels of c-Myc and AKT1. Cancer Cell Int., 2021, 21(1), 43.
[http://dx.doi.org/10.1186/s12935-020-01737-3] [PMID: 33430878]
[2]
Doyle, G.A.R.; Leeds, P.F.; Fleisig, A.J.; Ross, J.; Betz, N.A.; Prokipcak, R.D. The c-myc coding region determinant-binding protein: A member of a family of KH domain RNA-binding proteins. Nucleic Acids Res., 1998, 26(22), 5036-5044.
[http://dx.doi.org/10.1093/nar/26.22.5036] [PMID: 9801297]
[3]
Brewer, G. Evidence for a 3′-5′ decay pathway for c-myc mRNA in mammalian cells. J. Biol. Chem., 1999, 274(23), 16174-16179.
[http://dx.doi.org/10.1074/jbc.274.23.16174] [PMID: 10347171]
[4]
Lemm, I.; Ross, J. Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol. Cell. Biol., 2002, 22(12), 3959-3969.
[http://dx.doi.org/10.1128/MCB.22.12.3959-3969.2002] [PMID: 12024010]
[5]
Huang, X.; Zhang, H.; Guo, X.; Zhu, Z.; Cai, H.; Kong, X. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J. Hematol. Oncol., 2018, 11(1), 88.
[http://dx.doi.org/10.1186/s13045-018-0628-y] [PMID: 29954406]
[6]
Du, Q.Y.; Zhu, Z.M.; Pei, D.S. The biological function of IGF2BPs and their role in tumorigenesis. Invest. New Drugs, 2021, 39(6), 1682-1693.
[http://dx.doi.org/10.1007/s10637-021-01148-9] [PMID: 34251559]
[7]
Prokipcak, R.D.; Herrick, D.J.; Ross, J. Purification and properties of a protein that binds to the C-terminal coding region of human c-myc mRNA. J. Biol. Chem., 1994, 269(12), 9261-9269.
[http://dx.doi.org/10.1016/S0021-9258(17)37102-8] [PMID: 8132663]
[8]
Nielsen, J.; Christiansen, J.; Lykke-Andersen, J.; Johnsen, A.H.; Wewer, U.M.; Nielsen, F.C. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol. Cell. Biol., 1999, 19(2), 1262-1270.
[http://dx.doi.org/10.1128/MCB.19.2.1262] [PMID: 9891060]
[9]
Bell, J.L.; Wächter, K.; Mühleck, B.; Pazaitis, N.; Köhn, M.; Lederer, M.; Hüttelmaier, S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): Post-transcriptional drivers of cancer progression? Cell. Mol. Life Sci., 2013, 70(15), 2657-2675.
[http://dx.doi.org/10.1007/s00018-012-1186-z] [PMID: 23069990]
[10]
Hansen, T.V.O.; Hammer, N.A.; Nielsen, J.; Madsen, M.; Dalbaeck, C.; Wewer, U.M.; Christiansen, J.; Nielsen, F.C. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice. Mol. Cell. Biol., 2004, 24(10), 4448-4464.
[http://dx.doi.org/10.1128/MCB.24.10.4448-4464.2004] [PMID: 15121863]
[11]
Chatterji, P.; Williams, P.A.; Whelan, K.A.; Samper, F.C.; Andres, S.F.; Simon, L.A.; Parham, L.R.; Mizuno, R.; Lundsmith, E.T.; Lee, D.S.M.; Liang, S.; Wijeratne, H.R.S.; Marti, S.; Chau, L.; Giroux, V.; Wilkins, B.J.; Wu, G.D.; Shah, P.; Tartaglia, G.G.; Hamilton, K.E. Posttranscriptional regulation of colonic epithelial repair by RNA binding protein IMP 1/IGF 2 BP 1. EMBO Rep., 2019, 20(6), e47074.
[http://dx.doi.org/10.15252/embr.201847074] [PMID: 31061170]
[12]
Manieri, N.A.; Drylewicz, M.R.; Miyoshi, H.; Stappenbeck, T.S. Igf2bp1 is required for full induction of Ptgs2 mRNA in colonic mesenchymal stem cells in mice. Gastroenterology, 2012, 143(1), 110-121.e10.
[http://dx.doi.org/10.1053/j.gastro.2012.03.037] [PMID: 22465430]
[13]
Dimitriadis, E.; Trangas, T.; Milatos, S.; Foukas, P.G.; Gioulbasanis, I.; Courtis, N.; Nielsen, F.C.; Pandis, N.; Dafni, U.; Bardi, G.; Ioannidis, P. Expression of oncofetal RNA-binding protein CRD-BP/IMP1 predicts clinical outcome in colon cancer. Int. J. Cancer, 2007, 121(3), 486-494.
[http://dx.doi.org/10.1002/ijc.22716] [PMID: 17415713]
[14]
Singh, V.; Gowda, C.P.; Singh, V.; Ganapathy, A.S.; Karamchandani, D.M.; Eshelman, M.A.; Yochum, G.S.; Nighot, P.; Spiegelman, V.S. The mRNA-binding protein IGF2BP1 maintains intestinal barrier function by up-regulating occludin expression. J. Biol. Chem., 2020, 295(25), 8602-8612.
[http://dx.doi.org/10.1074/jbc.AC120.013646] [PMID: 32385106]
[15]
Noubissi, F.K.; Nikiforov, M.A.; Colburn, N.; Spiegelman, V.S. Transcriptional Regulation of CRD-BP by c-myc: Implications for c-myc Functions. Genes Cancer, 2010, 1(10), 1074-1082.
[http://dx.doi.org/10.1177/1947601910395581] [PMID: 21779431]
[16]
Chen, H.M.; Lin, C.C.; Chen, W.S.; Jiang, J.K.; Yang, S.H.; Chang, S.C.; Ho, C.L.; Yang, C.C.; Huang, S.C.; Chao, Y.; Liao, T.T.; Hwang, W.L.; Teng, H.W. Insulin-like growth factor 2 mRNA-Binding Protein 1 (IGF2BP1) is a prognostic biomarker and associated with chemotherapy responsiveness in colorectal cancer. Int. J. Mol. Sci., 2021, 22(13), 6940.
[http://dx.doi.org/10.3390/ijms22136940] [PMID: 34203267]
[17]
Chen, M.; Tian, B.; Hu, G.; Guo, Y. METTL3-Modulated circUHRF2 promotes colorectal cancer stemness and metastasis through increasing DDX27 mRNA Stability by Recruiting IGF2BP1. Cancers, 2023, 15(12), 3148.
[http://dx.doi.org/10.3390/cancers15123148] [PMID: 37370759]
[18]
Hagemann, S.; Misiak, D.; Bell, J.L.; Fuchs, T.; Lederer, M.I.; Bley, N.; Hämmerle, M.; Ghazy, E.; Sippl, W.; Schulte, J.H.; Hüttelmaier, S. IGF2BP1 induces neuroblastoma via a druggable feedforward loop with MYCN promoting 17q oncogene expression. Mol. Cancer, 2023, 22(1), 88.
[http://dx.doi.org/10.1186/s12943-023-01792-0] [PMID: 37246217]
[19]
Dhamdhere, M.R.; Gowda, C.P.; Singh, V.; Liu, Z.; Carruthers, N.; Grant, C.N.; Sharma, A.; Dovat, S.; Sundstrom, J.M.; Wang, H.G.; Spiegelman, V.S. IGF2BP1 regulates the cargo of extracellular vesicles and promotes neuroblastoma metastasis. Oncogene, 2023, 42(19), 1558-1571.
[http://dx.doi.org/10.1038/s41388-023-02671-0] [PMID: 36973517]
[20]
Xi, Y.; Wang, Y. IGF2BP1, a new target to overcome drug resistance in melanoma? Front. Pharmacol., 2022, 13, 947363.
[http://dx.doi.org/10.3389/fphar.2022.947363] [PMID: 35935853]
[21]
Ghoshal, A.; Rodrigues, L.C.; Gowda, C.P.; Elcheva, I.A.; Liu, Z.; Abraham, T.; Spiegelman, V.S. Extracellular vesicle-dependent effect of RNA-binding protein IGF2BP1 on melanoma metastasis. Oncogene, 2019, 38(21), 4182-4196.
[http://dx.doi.org/10.1038/s41388-019-0797-3] [PMID: 30936459]
[22]
Cai, X.; Chen, Y.; Man, D.; Yang, B.; Feng, X.; Zhang, D.; Chen, J.; Wu, J. RBM15 promotes hepatocellular carcinoma progression by regulating N6-methyladenosine modification of YES1 mRNA in an IGF2BP1-dependent manner. Cell Death Discov., 2021, 7(1), 315.
[http://dx.doi.org/10.1038/s41420-021-00703-w] [PMID: 34707107]
[23]
Xu, Y.; Zheng, Y.; Liu, H.; Li, T. Modulation of IGF2BP1 by long non-coding RNA HCG11 suppresses apoptosis of hepatocellular carcinoma cells via MAPK signaling transduction. Int. J. Oncol., 2017, 51(3), 791-800.
[http://dx.doi.org/10.3892/ijo.2017.4066] [PMID: 28677801]
[24]
Qiao, Y.S.; Zhou, J.H.; Jin, B.H.; Wu, Y.Q.; Zhao, B. LINC00483 is regulated by IGF2BP1 and participates in the progression of breast cancer. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1379-1386.
[PMID: 33629308]
[25]
Shi, J.; Zhang, Q.; Yin, X.; Ye, J.; Gao, S.; Chen, C.; Yang, Y.; Wu, B.; Fu, Y.; Zhang, H.; Wang, Z.; Wang, B.; Zhu, Y.; Wu, H.; Yao, Y.; Xu, G.; Wang, Q.; Wang, S.; Zhang, W. Stabilization of IGF2BP1 by USP10 promotes breast cancer metastasis via CPT1A in an m6A-dependent manner. Int. J. Biol. Sci., 2023, 19(2), 449-464.
[http://dx.doi.org/10.7150/ijbs.76798] [PMID: 36632454]
[26]
Bley, N.; Schott, A.; Müller, S.; Misiak, D.; Lederer, M.; Fuchs, T.; Aßmann, C.; Glaß, M.; Ihling, C.; Sinz, A.; Pazaitis, N.; Wickenhauser, C.; Vetter, M.; Ungurs, O.; Strauss, H.G.; Thomssen, C.; Hüttelmaier, S. IGF2BP1 is a targetable SRC/MAPK-dependent driver of invasive growth in ovarian cancer. RNA Biol., 2021, 18(3), 391-403.
[http://dx.doi.org/10.1080/15476286.2020.1812894] [PMID: 32876513]
[27]
Jin, Y.; Qiu, J.; Lu, X.; Ma, Y.; Li, G. LncRNA CACNA1G-AS1 up-regulates FTH1 to inhibit ferroptosis and promote malignant phenotypes in ovarian cancer cells. Oncol. Res., 2023, 31(2), 169-179.
[http://dx.doi.org/10.32604/or.2023.027815] [PMID: 37304234]
[28]
Sperling, F.; Misiak, D.; Hüttelmaier, S.; Michl, P.; Griesmann, H. IGF2BP1 promotes proliferation of neuroendocrine neoplasms by post-transcriptional enhancement of EZH2. Cancers, 2022, 14(9), 2121.
[http://dx.doi.org/10.3390/cancers14092121] [PMID: 35565249]
[29]
Barazeghi, E.; Hellman, P.; Norlén, O.; Westin, G.; Stålberg, P. EZH2 presents a therapeutic target for neuroendocrine tumors of the small intestine. Sci. Rep., 2021, 11(1), 22733.
[http://dx.doi.org/10.1038/s41598-021-02181-7] [PMID: 34815475]
[30]
Rensburg, G.; Mackedenski, S.; Lee, C.H. Characterizing the coding region determinant-binding protein (CRD-BP)-microphthalmia-associated transcription factor (MITF) mRNA interaction. PLoS One, 2017, 12(2), e0171196.
[http://dx.doi.org/10.1371/journal.pone.0171196] [PMID: 28182633]
[31]
Noubissi, F.K.; Goswami, S.; Sanek, N.A.; Kawakami, K.; Minamoto, T.; Moser, A.; Grinblat, Y.; Spiegelman, V.S. Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA. Cancer Res., 2009, 69(22), 8572-8578.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1500] [PMID: 19887615]
[32]
Wallis, N.; Oberman, F.; Shurrush, K.; Germain, N.; Greenwald, G.; Gershon, T.; Pearl, T.; Abis, G.; Singh, V.; Singh, A.; Sharma, A.K.; Barr, H.M.; Ramos, A.; Spiegelman, V.S.; Yisraeli, J.K. Small molecule inhibitor of Igf2bp1 represses Kras and a pro-oncogenic phenotype in cancer cells. RNA Biol., 2022, 19(1), 26-43.
[http://dx.doi.org/10.1080/15476286.2021.2010983] [PMID: 34895045]
[33]
Vikesaa, J.; Hansen, T.V.O.; Jønson, L.; Borup, R.; Wewer, U.M.; Christiansen, J.; Nielsen, F.C. RNA-binding IMPs promote cell adhesion and invadopodia formation. EMBO J., 2006, 25(7), 1456-1468.
[http://dx.doi.org/10.1038/sj.emboj.7601039] [PMID: 16541107]
[34]
Runge, S.; Nielsen, F.C.; Nielsen, J.; Lykke-Andersen, J.; Wewer, U.M.; Christiansen, J. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein. J. Biol. Chem., 2000, 275(38), 29562-29569.
[http://dx.doi.org/10.1074/jbc.M001156200] [PMID: 10875929]
[35]
Atlas, R.; Behar, L.; Elliott, E.; Ginzburg, I. The insulin-like growth factor mRNA binding-protein IMP-1 and the Ras-regulatory protein G3BP associate with tau mRNA and HuD protein in differentiated P19 neuronal cells. J. Neurochem., 2004, 89(3), 613-626.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02371.x] [PMID: 15086518]
[36]
Noubissi, F.K.; Elcheva, I.; Bhatia, N.; Shakoori, A.; Ougolkov, A.; Liu, J.; Minamoto, T.; Ross, J.; Fuchs, S.Y.; Spiegelman, V.S. CRD-BP mediates stabilization of βTrCP1 and c-myc mRNA in response to β-catenin signalling. Nature, 2006, 441(7095), 898-901.
[http://dx.doi.org/10.1038/nature04839] [PMID: 16778892]
[37]
Hosono, Y.; Niknafs, Y.S.; Prensner, J.R. Oncogenic role of THOR, a conserved cancer/testis long non-coding RNA. Cell, 2017, 171(7), 1559-1572.
[38]
Mongroo, P.S.; Noubissi, F.K.; Cuatrecasas, M.; Kalabis, J.; King, C.E.; Johnstone, C.N.; Bowser, M.J.; Castells, A.; Spiegelman, V.S.; Rustgi, A.K. IMP-1 displays cross-talk with K-Ras and modulates colon cancer cell survival through the novel proapoptotic protein CYFIP2. Cancer Res., 2011, 71(6), 2172-2182.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3295] [PMID: 21252116]
[39]
Luo, Y.; Sun, R.; Zhang, J.; Sun, T.; Liu, X.; Yang, B. miR-506 inhibits the proliferation and invasion by targeting IGF2BP1 in glioblastoma. Am. J. Transl. Res., 2015, 7(10), 2007-2014.
[PMID: 26692944]
[40]
Elcheva, I.; Goswami, S.; Noubissi, F.K.; Spiegelman, V.S. CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol. Cell, 2009, 35(2), 240-246.
[http://dx.doi.org/10.1016/j.molcel.2009.06.007] [PMID: 19647520]
[41]
Zheng, Q.; Yu, J.J.; Li, C. miR-224 targets BTRC and promotes cell migration and invasion in colorectal cancer. 3 Biotech, 2020, 10(11), 485.
[42]
Ougolkov, A.; Zhang, B.; Yamashita, K.; Bilim, V.; Mai, M.; Fuchs, S.Y.; Minamoto, T. Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer. J. Natl. Cancer Inst., 2004, 96(15), 1161-1170.
[http://dx.doi.org/10.1093/jnci/djh219] [PMID: 15292388]
[43]
Zhao, H.; Ming, T.; Tang, S.; Ren, S.; Yang, H.; Liu, M.; Tao, Q.; Xu, H. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol. Cancer, 2022, 21(1), 144.
[http://dx.doi.org/10.1186/s12943-022-01616-7] [PMID: 35836256]
[44]
Schirosi, L. Mazzotta, A.; Opinto, G.; Pinto, R.; Graziano, G.; Tommasi, S.; Fucci, L.; Simone, G.; Mangia, A. β-catenin interaction with NHERF1 and RASSF1A methylation in metastatic colorectal cancer patients. Oncotarget, 2016, 7(42), 67841-67850.
[http://dx.doi.org/10.18632/oncotarget.12280] [PMID: 27765918]
[45]
Hayashi, Y.; Molina, J.R.; Hamilton, S.R.; Georgescu, M.M. NHERF1/EBP50 is a new marker in colorectal cancer. Neoplasia, 2010, 12(12), 1013-IN9.
[http://dx.doi.org/10.1593/neo.10780] [PMID: 21170265]
[46]
Shibata, T.; Chuma, M.; Kokubu, A.; Sakamoto, M.; Hirohashi, S. EBP50, a β-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma. Hepatology, 2003, 38(1), 178-186.
[http://dx.doi.org/10.1053/jhep.2003.50270] [PMID: 12830000]
[47]
Fuchs, S.Y.; Spiegelman, V.S.; Suresh, K.K.G. The many faces of β-TrCP E3 ubiquitin ligases: Reflections in the magic mirror of cancer. Oncogene, 2004, 23(11), 2028-2036.
[http://dx.doi.org/10.1038/sj.onc.1207389] [PMID: 15021890]
[48]
Sakamoto, K.; Maeda, S.; Hikiba, Y.; Nakagawa, H.; Hayakawa, Y.; Shibata, W.; Yanai, A.; Ogura, K.; Omata, M. Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin. Cancer Res., 2009, 15(7), 2248-2258.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1383] [PMID: 19276252]
[49]
Yu, L. Li, L.; Medeiros, L.J.; Young, K.H. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev., 2017, 31(2), 77-92.
[http://dx.doi.org/10.1016/j.blre.2016.10.001] [PMID: 27773462]
[50]
Melikian, M.; Eluard, B.; Bertho, G.; Baud, V.; Evrard-Todeschi, N. Model of the interaction between the NF-κB Inhibitory Protein p100 and the E3 Ubiquitin Ligase β-TrCP based on NMR and docking experiments. J. Chem. Inf. Model., 2017, 57(2), 223-233.
[http://dx.doi.org/10.1021/acs.jcim.5b00409] [PMID: 28004927]
[51]
Lang, V.; Janzen, J.; Fischer, G.Z.; Soneji, Y.; Beinke, S.; Salmeron, A.; Allen, H.; Hay, R.T.; Ben-Neriah, Y.; Ley, S.C. betaTrCP-mediated proteolysis of NF-kappaB1 p105 requires phosphorylation of p105 serines 927 and 932. Mol. Cell. Biol., 2003, 23(1), 402-413.
[http://dx.doi.org/10.1128/MCB.23.1.402-413.2003] [PMID: 12482991]
[52]
Lauscher, J.C.; Gröne, J.; Dullat, S.; Hotz, B.; Ritz, J.P.; Steinhoff, U.; Buhr, H.J.; Visekruna, A. Association between activation of atypical NF-kappaB1 p105 signaling pathway and nuclear beta-catenin accumulation in colorectal carcinoma. Mol. Carcinog., 2010, 49(2), 121-129.
[PMID: 20027638]
[53]
Jeng, K.S.; Chang, C.F.; Lin, S.S. Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int. J. Mol. Sci., 2020, 21(3), 758.
[http://dx.doi.org/10.3390/ijms21030758] [PMID: 31979397]
[54]
Mehmood, K.; Akhtar, D.; Mackedenski, S.; Wang, C.; Lee, C.H. Inhibition of GLI1 expression by targeting the CRD-BP–GLI1 mRNA interaction using a specific oligonucleotide. Mol. Pharmacol., 2016, 89(6), 695-706.
[http://dx.doi.org/10.1124/mol.115.102434] [PMID: 27036131]
[55]
Sigafoos, A.N.; Paradise, B.D.; Fernandez-Zapico, M.E. Hedgehog/GLI signaling pathway: Transduction, regulation, and implications for disease. Cancers, 2021, 13(14), 3410.
[http://dx.doi.org/10.3390/cancers13143410] [PMID: 34298625]
[56]
Douard, R.; Moutereau, S.; Pernet, P.; Chimingqi, M.; Allory, Y.; Manivet, P.; Conti, M.; Vaubourdolle, M.; Cugnenc, P.H.; Loric, S. Sonic Hedgehog–dependent proliferation in a series of patients with colorectal cancer. Surgery, 2006, 139(5), 665-670.
[http://dx.doi.org/10.1016/j.surg.2005.10.012] [PMID: 16701100]
[57]
Wang, D.; Hu, G.; Du, Y.; Zhang, C.; Lu, Q.; Lv, N.; Luo, S. Aberrant activation of hedgehog signaling promotes cell proliferation via the transcriptional activation of forkhead Box M1 in colorectal cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 23.
[http://dx.doi.org/10.1186/s13046-017-0491-7] [PMID: 28148279]
[58]
Wang, H.; Li, Y.Y.; Wu, Y.Y.; Nie, Y.Q. Expression and clinical significance of hedgehog signaling pathway related components in colorectal cancer. Asian Pac. J. Cancer Prev., 2012, 13(5), 2319-2324.
[http://dx.doi.org/10.7314/APJCP.2012.13.5.2319] [PMID: 22901214]
[59]
Katoh, Y.; Katoh, M. Hedgehog signaling pathway and gastrointestinal stem cell signaling network (Review). Int. J. Mol. Med., 2006, 18(6), 1019-1023.
[http://dx.doi.org/10.3892/ijmm.18.6.1019] [PMID: 17089004]
[60]
Song, L.; Li, Z.Y.; Liu, W.P.; Zhao, M.R. Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy. Cancer Biol. Ther., 2015, 16(1), 1-7.
[http://dx.doi.org/10.4161/15384047.2014.972215] [PMID: 25692617]
[61]
Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev., 2018, 62, 50-60.
[http://dx.doi.org/10.1016/j.ctrv.2017.11.002] [PMID: 29169144]
[62]
Mazumdar, T.; DeVecchio, J.; Agyeman, A.; Shi, T.; Houghton, J.A. Blocking Hedgehog survival signaling at the level of the GLI genes induces DNA damage and extensive cell death in human colon carcinoma cells. Cancer Res., 2011, 71(17), 5904-5914.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4173] [PMID: 21747117]
[63]
Hamilton, K.E.; Noubissi, F.K.; Katti, P.S.; Hahn, C.M.; Davey, S.R.; Lundsmith, E.T.; Klein-Szanto, A.J.; Rhim, A.D.; Spiegelman, V.S.; Rustgi, A.K. IMP1 promotes tumor growth, dissemination and a tumor-initiating cell phenotype in colorectal cancer cell xenografts. Carcinogenesis, 2013, 34(11), 2647-2654.
[http://dx.doi.org/10.1093/carcin/bgt217] [PMID: 23764754]
[64]
Betson, N.; Hajahmed, M.; Gebretsadek, T.; Ndebele, K.; Ahmad, H.A.; Tchounwou, P.B.; Spiegelman, V.S.; Noubissi, F.K. Inhibition of insulin-like growth factor 2 MRNA -binding protein 1 sensitizes colorectal cancer cells to chemotherapeutics. FASEB Bioadv., 2022, 4(12), 816-829.
[http://dx.doi.org/10.1096/fba.2021-00069] [PMID: 36479210]
[65]
Van Cutsem, E.; Köhne, C.H.; Láng, I.; Folprecht, G.; Nowacki, M.P.; Cascinu, S.; Shchepotin, I.; Maurel, J.; Cunningham, D.; Tejpar, S.; Schlichting, M.; Zubel, A.; Celik, I.; Rougier, P.; Ciardiello, F. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: Updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol., 2011, 29(15), 2011-2019.
[http://dx.doi.org/10.1200/JCO.2010.33.5091] [PMID: 21502544]
[66]
Samanta, S.; Pursell, B.; Mercurio, A.M. IMP3 protein promotes chemoresistance in breast cancer cells by regulating breast cancer resistance protein (ABCG2) expression. J. Biol. Chem., 2013, 288(18), 12569-12573.
[http://dx.doi.org/10.1074/jbc.C112.442319] [PMID: 23539627]
[67]
Hsu, K-F.; Shen, M-R.; Huang, Y-F.; Cheng, Y-M.; Lin, S-H.; Chow, N-H.; Cheng, S-W.; Chou, C-Y.; Ho, C-L. Overexpression of the RNA-binding proteins Lin28B and IGF2BP3 (IMP3) is associated with chemoresistance and poor disease outcome in ovarian cancer. Br. J. Cancer, 2015, 113(3), 414-424.
[http://dx.doi.org/10.1038/bjc.2015.254] [PMID: 26158423]
[68]
Faye, M.D.; Beug, S.T.; Graber, T.E.; Earl, N.; Xiang, X.; Wild, B.; Langlois, S.; Michaud, J.; Cowan, K.N.; Korneluk, R.G.; Holcik, M. IGF2BP1 controls cell death and drug resistance in rhabdomyosarcomas by regulating translation of cIAP1. Oncogene, 2015, 34(12), 1532-1541.
[http://dx.doi.org/10.1038/onc.2014.90] [PMID: 24704827]
[69]
Kim, T.; Havighurst, T.; Kim, K.; Albertini, M.; Xu, Y.G.; Spiegelman, V.S. Targeting insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in metastatic melanoma to increase efficacy of BRAF V600E inhibitors. Mol. Carcinog., 2018, 57(5), 678-683.
[http://dx.doi.org/10.1002/mc.22786] [PMID: 29369405]
[70]
Maniotis, A.J.; Folberg, R.; Hess, A.; Seftor, E.A.; Gardner, L.M.G.; Pe’er, J.; Trent, J.M.; Meltzer, P.S.; Hendrix, M.J.C. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol., 1999, 155(3), 739-752.
[http://dx.doi.org/10.1016/S0002-9440(10)65173-5] [PMID: 10487832]
[71]
Ge, H.; Luo, H. Overview of advances in vasculogenic mimicry – a potential target for tumor therapy. Cancer Manag. Res., 2018, 10, 2429-2437.
[http://dx.doi.org/10.2147/CMAR.S164675] [PMID: 30122992]
[72]
Li, W.; Zong, S.; Shi, Q.; Li, H.; Xu, J.; Hou, F. Hypoxia-induced vasculogenic mimicry formation in human colorectal cancer cells: Involvement of HIF-1a, Claudin-4, and E-cadherin and Vimentin. Sci. Rep., 2016, 6(1), 37534.
[http://dx.doi.org/10.1038/srep37534] [PMID: 27869227]
[73]
Liu, X.; He, H.; Zhang, F.; Hu, X.; Bi, F.; Li, K.; Yu, H.; Zhao, Y.; Teng, X.; Li, J.; Wang, L.; Zhang, Y.; Wu, Q. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis., 2022, 13(5), 483.
[http://dx.doi.org/10.1038/s41419-022-04950-2] [PMID: 35595748]
[74]
Mahapatra, L.; Andruska, N.; Mao, C.; Le, J.; Shapiro, D.J. A Novel IMP1 Inhibitor, BTYNB, Targets c-Myc and inhibits melanoma and ovarian cancer cell proliferation. Transl. Oncol., 2017, 10(5), 818-827.
[http://dx.doi.org/10.1016/j.tranon.2017.07.008] [PMID: 28846937]
[75]
Müller, S.; Bley, N.; Busch, B.; Glaß, M.; Lederer, M.; Misiak, C.; Fuchs, T.; Wedler, A.; Haase, J.; Bertoldo, J.B.; Michl, P.; Hüttelmaier, S. The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer. Nucleic Acids Res., 2020, 48(15), 8576-8590.
[http://dx.doi.org/10.1093/nar/gkaa653] [PMID: 32761127]
[76]
Liu, Y.; Guo, Q.; Yang, H.; Zhang, X.W.; Feng, N.; Wang, J.K.; Liu, T.T.; Zeng, K.W.; Tu, P.F. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment. ACS Cent. Sci., 2022, 8(8), 1102-1115.
[http://dx.doi.org/10.1021/acscentsci.2c00107] [PMID: 36032766]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy