Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Regioselectivity Inversion in Hydroformylation of Aryl Alkenes with a Diphosphoramidite-rhodium Catalyst

Author(s): Carmela G. Arena*

Volume 27, Issue 19, 2023

Published on: 21 November, 2023

Page: [1711 - 1716] Pages: 6

DOI: 10.2174/0113852728263828231021191600

Price: $65

Abstract

Rhodium catalysts for hydroformylation of aryl alkenes generally promote the formation of branched aldehydes. Here, we have demonstrated that by using a single rhodium catalyst containing a diphosphoramidite ligand derived from BINOL, it is possible to achieve the inversion of regioselectivity in the hydroformylation of aryl alkenes simply by reducing the syngas pressure or, alternatively, increasing the reaction temperature. Indeed, the hydroformylation of styrene carried out at 20 bar and 50°C resulted in 72% of 2- phenylpropanal, while at atmospheric pressure, 71% of 3-phenylpropanal was obtained. A similar linear selectivity (72-74%) was observed when the hydroformylation of styrene, pmethylstyrene, and p-methoxystyrene was performed at 10 bar and higher temperature (80°C). The regioselectivity of the hydroformylation of trans-β-methylstyrene under mild conditions (80°C, 10-20 bar) was also strongly influenced by the syngas pressure. The results of this study show that it is possible to reverse the selectivity of aryl alkenes hydroformylation with a single catalyst by simply exploring the reaction conditions. In this paper, we have shown that the inversion of the regioselectivity in the hydroformylation of aryl alkenes can be achieved using a single rhodium catalyst containing a BINOL-derived diphosphoramidite ligand by reducing the syngas pressure or, alternatively, increasing the reaction temperature.

Graphical Abstract

[1]
Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev., 2012, 112(11), 5675-5732.
[http://dx.doi.org/10.1021/cr3001803] [PMID: 22937803]
[2]
Zhang, B.; Peña Fuentes, D.; Börner, A. Hydroformylation. ChemTexts., 2022, 8(1), 2.
[http://dx.doi.org/10.1007/s40828-021-00154-x]
[3]
Börner, A.; Franke, R. Hydroformylations: Fundamentals; Processes and Applications in Organic Synthesis, 2016.
[http://dx.doi.org/10.1002/9783527677931]
[4]
del Rìo, I.; Pàmies, O.; van Leeuwen, P.W.N.M.; Claver, C. Mechanistic study of the hydroformylation of styrene catalyzed by the rhodium/BDPP system. J. Organomet. Chem., 2000, 608(1-2), 115-121.
[http://dx.doi.org/10.1016/S0022-328X(00)00389-2]
[5]
Chakrabortty, S.; Almasalma, A.A.; de Vries, J.G. Recent developments in asymmetric hydroformylation. Catal. Sci. Technol., 2021, 11(16), 5388-5411.
[http://dx.doi.org/10.1039/D1CY00737H]
[6]
Brezny, A.C.; Landis, C.R. Recent developments in the scope, practicality, and mechanistic understanding of enantioselective hydroformylation. Acc. Chem. Res., 2018, 51(9), 2344-2354.
[http://dx.doi.org/10.1021/acs.accounts.8b00335] [PMID: 30118203]
[7]
Wang, X.; Liang, X.; Geng, P.; Li, Q. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catal., 2020, 10(4), 2395-2412.
[http://dx.doi.org/10.1021/acscatal.9b05031]
[8]
Sémeril, D.; Matt, D.; Toupet, L. Highly regioselective hydroformylation with hemispherical chelators. Chemistry, 2008, 14(24), 7144-7155.
[http://dx.doi.org/10.1002/chem.200800747] [PMID: 18686280]
[9]
Goudriaan, P.E.; Kuil, M.; Jiang, X.B.; van Leeuwen, P.W.N.M.; Reek, J.N.H. SUPRAPhos ligands for the regioselective rhodium catalyzed hydroformylation of styrene forming the linear aldehyde. Dalton Trans., 2009, 10, 1801-1805.
[http://dx.doi.org/10.1039/b818665k] [PMID: 19240914]
[10]
Boymans, E.; Janssen, M. MA1/4ller, C.; Lutz, M.; Vogt, D. Rh-catalyzed linear hydroformylation of styrene. Dalton Trans., 2013, 42(1), 137-142.
[http://dx.doi.org/10.1039/C2DT31738A] [PMID: 23104326]
[11]
Yu, S.; Chie, Y.; Guan, Z.; Zou, Y.; Li, W.; Zhang, X. Highly regioselective hydroformylation of styrene and its derivatives catalyzed by Rh complex with tetraphosphorus ligands. Org. Lett., 2009, 11(1), 241-244.
[http://dx.doi.org/10.1021/ol802479y] [PMID: 19053715]
[12]
Li, C.; Li, S.; Liang, H.; Fu, H.; Chen, H. A diphosphoramidite ligand for hydroformylation of various olefins. Chem. Commun. (Camb.), 2023, 59(15), 2126-2129.
[http://dx.doi.org/10.1039/D2CC05119B] [PMID: 36723295]
[13]
Watkins, A.L.; Landis, C.R. Origin of pressure effects on regioselectivity and enantioselectivity in the rhodium-catalyzed hydroformylation of styrene with (S,S,S)-BisDiazaphos. J. Am. Chem. Soc., 2010, 132(30), 10306-10317.
[http://dx.doi.org/10.1021/ja909619a] [PMID: 20662513]
[14]
Tonks, I.A.; Froese, R.D.; Landis, C.R. Very low pressure Rh-catalyzed hydroformylation of styrene with (S,S,S-bisdiazaphos): Regioselectivity inversion and mechanistic insights. ACS Catal., 2013, 3(12), 2905-2909.
[http://dx.doi.org/10.1021/cs400943s]
[15]
Drommi, D.; Arena, C.G. An effective diphosphoramidite rhodium catalyst for selective hydroformylation of 1-octene. Catal. Commun., 2018, 115, 36-39.
[http://dx.doi.org/10.1016/j.catcom.2018.07.004]
[16]
Drommi, D.; Arena, C.G. Rh(I) complexes with new C2-symmetric chiral diphosphoramidite ligands: Catalytic activity for asymmetric hydrogenation of olefins. Appl. Organomet. Chem., 2017, 31(12), e3837.
[http://dx.doi.org/10.1002/aoc.3837]
[17]
van Rooy, A.; Burgers, D.; Kamer, P.C.J.; van Leeuwen, P.W.N.M. Phosphoramidites: Novel modifying ligands in rhodium catalysed hydroformylation. Recl. Trav. Chim. Pays Bas, 1996, 115(11-12), 492-498.
[http://dx.doi.org/10.1002/recl.19961151108]
[18]
Briggs, J.R.; Whiteker, G.T. High regioselectivity in propylene hydroformylation using rhodium-bisphosphite catalysts is due to properties of the SRS diastereomer. Chem. Commun. (Camb.), 2001, 1(21), 2174-2175.
[http://dx.doi.org/10.1039/b105391b] [PMID: 12240098]
[19]
Selent, D.; Baumann, W.; Wiese, K.D.; Börner, A. Diastereoisomeric bisphosphite ligands in the hydroformylation of octenes: rhodium catalysis and HP-NMR investigations. Chem. Commun. (Camb.), 2008, (46), 6203-6205.
[http://dx.doi.org/10.1039/b814120g] [PMID: 19082120]
[20]
Lazzaroni, R.; Raffaelli, A.; Settambolo, R.; Bertozzi, S.; Vitulli, G. Regioselectivity in the rhodium-catalyzed hydroformylation of styrene as a function of reaction temperature and gas pressure. J. Mol. Catal., 1989, 50(1), 1-9.
[http://dx.doi.org/10.1016/0304-5102(89)80104-X]
[21]
van Rooy, A.; Orij, E.N.; Kamer, P.C.J.; van Leeuwen, P.W.N.M. Hydroformylation with a rhodium/bulky phosphite modified catalyst. catalyst comparison for oct-1-ene, cyclohexene, and styrene. Organometallics, 1995, 14(1), 34-43.
[http://dx.doi.org/10.1021/om00001a010]
[22]
Hayashi, T.; Tanaka, M.; Ogata, I. Hydroformylation of p-substituted styrenes catalyzed by rhodium-triphenylphosphine complexes. J. Mol. Catal., 1981, 13(3), 323-330.
[http://dx.doi.org/10.1016/0304-5102(81)85079-1]
[23]
Kollár, L.; Farkas, E.; Bâtiu, J. Synthesis of aryl-butanal isomers by hydroformylation of substituted allylbenzene and propenylbenzene. J. Mol. Catal. Chem., 1997, 115(2), 283-288.
[http://dx.doi.org/10.1016/S1381-1169(96)00286-5]
[24]
da Silva, A.C.; de Oliveira, K.C.B.; Gusevskaya, E.V.; dos Santos, E.N. Rhodium-catalyzed hydroformylation of allylbenzenes and propenylbenzenes: effect of phosphine and diphosphine ligands on chemo- and regioselectivity. J. Mol. Catal. Chem., 2002, 179(1-2), 133-141.
[http://dx.doi.org/10.1016/S1381-1169(01)00408-3]
[25]
Axet, M.R.; Castillon, S.; Claver, C. Rhodium-diphosphite catalysed hydroformylation of allylbenzene and propenylbenzene derivatives. Inorg. Chim. Acta, 2006, 359(9), 2973-2979.
[http://dx.doi.org/10.1016/j.ica.2005.12.039]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy