Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Emodin is a Potential Drug Targeting CD44-positive Hepatocellular Cancer

Author(s): Yuan Gao, Youling Li, Yunhe Zhu, Qiao Luo, Yifeng Lu, Ke Wen, Boyu Du, Xueyan Xi* and Gang Li*

Volume 24, Issue 5, 2024

Published on: 20 November, 2023

Page: [510 - 518] Pages: 9

DOI: 10.2174/0115680096256913231101103719

Price: $65

Abstract

Background: Liver cancer is one of the most prevalent forms of cancer of the digestive system in our country. The most common subtype of this disease is hepatocellular carcinoma (HCC). Currently, treatment options for HCC patients include surgical resection, liver transplantation, radiofrequency ablation, chemoembolization, and biologic-targeted therapy. However, the efficacy of these treatments is suboptimal, as they are prone to drug resistance, metastasis, spread, and recurrence. These attributes are closely related to cancer stem cells (CSCs). Therefore, the utilization of drugs targeting CSCs may effectively inhibit the development and recurrence of HCC.

Methods: HepG2 and Huh7 cells were used to analyze the antitumor activity of emodin by quantifying cell growth and metastasis, as well as to study its effect on stemness.

Results: Emodin effectively suppressed the growth and movement of HCC cells. Emodin also significantly inhibited the proliferation of CD44-positive hepatoma cells.

Conclusion: Emodin shows promise as a potential therapeutic agent for HCC by targeting CD44-- positive hepatoma cells.

Graphical Abstract

[1]
Konyn, P.; Ahmed, A.; Kim, D. Current epidemiology in hepatocellular carcinoma. Expert Rev. Gastroenterol. Hepatol., 2021, 15(11), 1295-1307.
[http://dx.doi.org/10.1080/17474124.2021.1991792] [PMID: 34624198]
[2]
Starley, B.Q.; Calcagno, C.J.; Harrison, S.A. Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection. Hepatology, 2010, 51(5), 1820-1832.
[http://dx.doi.org/10.1002/hep.23594] [PMID: 20432259]
[3]
Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma.. Lancet, 2018, 391(10127), 1301-1314.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[4]
Nault, J.C.; Datta, S.; Imbeaud, S.; Franconi, A.; Mallet, M.; Couchy, G.; Letouzé, E.; Pilati, C.; Verret, B.; Blanc, J.F.; Balabaud, C.; Calderaro, J.; Laurent, A.; Letexier, M.; Bioulac-Sage, P.; Calvo, F.; Zucman-Rossi, J. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet., 2015, 47(10), 1187-1193.
[http://dx.doi.org/10.1038/ng.3389] [PMID: 26301494]
[5]
Kulik, L.; El-Serag, H.B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology, 2019, 156(2), 477-491.e1.
[http://dx.doi.org/10.1053/j.gastro.2018.08.065] [PMID: 30367835]
[6]
Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[7]
Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet, 2022, 400(10360), 1345-1362.
[http://dx.doi.org/10.1016/S0140-6736(22)01200-4] [PMID: 36084663]
[8]
Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6.
[http://dx.doi.org/10.1038/s41572-020-00240-3] [PMID: 33479224]
[9]
Pan, Q.Z.; Pan, K.; Wang, Q.J.; Weng, D.S.; Zhao, J.J.; Zheng, H.X.; Zhang, X.F.; Jiang, S.S.; Lv, L.; Tang, Y.; Li, Y.Q.; He, J.; Liu, Q.; Chen, C.L.; Zhang, H.X.; Xia, J.C. Annexin A3 as a potential target for immunotherapy of liver cancer stem-like cells. Stem Cells, 2015, 33(2), 354-366.
[http://dx.doi.org/10.1002/stem.1850] [PMID: 25267273]
[10]
Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188314.
[http://dx.doi.org/10.1016/j.bbcan.2019.188314] [PMID: 31682895]
[11]
Barbato, L.; Bocchetti, M.; Di Biase, A.; Regad, T. Cancer stem cells and targeting strategies. Cells, 2019, 8(8), 926.
[http://dx.doi.org/10.3390/cells8080926] [PMID: 31426611]
[12]
Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer stem cells—origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280.
[http://dx.doi.org/10.3389/fimmu.2020.01280] [PMID: 32849491]
[13]
Rich, J.N. Cancer stem cells. Medicine, 2016, 95(S1), S2-S7.
[http://dx.doi.org/10.1097/MD.0000000000004764] [PMID: 27611934]
[14]
Clara, J.A.; Monge, C.; Yang, Y.; Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells — a clinical update. Nat. Rev. Clin. Oncol., 2020, 17(4), 204-232.
[http://dx.doi.org/10.1038/s41571-019-0293-2] [PMID: 31792354]
[15]
Yamashita, T.; Kaneko, S. Liver cancer stem cells: Recent progress in basic and clinical research. Regen. Ther., 2021, 17, 34-37.
[http://dx.doi.org/10.1016/j.reth.2021.03.002] [PMID: 33816720]
[16]
Liu, Y.C.; Yeh, C.T.; Lin, K.H. Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells, 2020, 9(6), 1331.
[http://dx.doi.org/10.3390/cells9061331] [PMID: 32466488]
[17]
Dong, X.; Ni, B.; Fu, J.; Yin, X.; You, L.; Leng, X.; Liang, X.; Ni, J. Emodin induces apoptosis in human hepatocellular carcinoma HepaRG cells via the mitochondrial caspase-dependent pathway. Oncol. Rep., 2018, 40(4), 1985-1993.
[http://dx.doi.org/10.3892/or.2018.6620] [PMID: 30106438]
[18]
Zhang, L.; He, D.; Li, K.; Liu, H.; Wang, B.; Zheng, L.; Li, J. Emodin targets mitochondrial cyclophilin D to induce apoptosis in HepG2 cells. Biomed. Pharmacother., 2017, 90, 222-228.
[http://dx.doi.org/10.1016/j.biopha.2017.03.046] [PMID: 28363167]
[19]
Oskarsson, T.; Batlle, E.; Massagué, J. Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell, 2014, 14(3), 306-321.
[http://dx.doi.org/10.1016/j.stem.2014.02.002] [PMID: 24607405]
[20]
Yin, W.; Wang, J.; Jiang, L.; James Kang, Y. Cancer and stem cells. Exp. Biol. Med., 2021, 246(16), 1791-1801.
[http://dx.doi.org/10.1177/15353702211005390] [PMID: 33820469]
[21]
Zhang, J.; He, X.; Wan, Y.; Zhang, H.; Tang, T.; Zhang, M.; Yu, S.; Zhao, W.; Chen, L. CD44 promotes hepatocellular carcinoma progression via upregulation of YAP. Exp. Hematol. Oncol., 2021, 10(1), 54.
[http://dx.doi.org/10.1186/s40164-021-00247-w] [PMID: 34798909]
[22]
Bourguignon, L.Y.W.; Shiina, M.; Li, J.J. Hyaluronan-CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression. Adv. Cancer Res., 2014, 123, 255-275.
[http://dx.doi.org/10.1016/B978-0-12-800092-2.00010-1] [PMID: 25081533]
[23]
Fan, X.; Zhu, M.; Qiu, F.; Li, W.; Wang, M.; Guo, Y.; Xi, X.; Du, B. Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44. Int. Immunopharmacol., 2020, 88, 106991.
[http://dx.doi.org/10.1016/j.intimp.2020.106991] [PMID: 33182071]
[24]
Wang, S.; Wang, Y.; Xun, X.; Zhang, C.; Xiang, X.; Cheng, Q.; Hu, S.; Li, Z.; Zhu, J. Hedgehog signaling promotes sorafenib resistance in hepatocellular carcinoma patient-derived organoids. J. Exp. Clin. Cancer Res., 2020, 39(1), 22.
[http://dx.doi.org/10.1186/s13046-020-1523-2] [PMID: 31992334]
[25]
Gao, Y.; Ruan, B.; Liu, W.; Wang, J.; Yang, X.; Zhang, Z.; Li, X.; Duan, J.; Zhang, F.; Ding, R.; Tao, K.; Dou, K. Knockdown of CD44 inhibits the invasion and metastasis of hepatocellular carcinoma both in vitro and in vivo by reversing epithelial-mesenchymal transition. Oncotarget, 2015, 6(10), 7828-7837.
[http://dx.doi.org/10.18632/oncotarget.3488] [PMID: 25797261]
[26]
Asai, R.; Tsuchiya, H.; Amisaki, M.; Makimoto, K.; Takenaga, A.; Sakabe, T.; Hoi, S.; Koyama, S.; Shiota, G. CD44 standard isoform is involved in maintenance of cancer stem cells of a hepatocellular carcinoma cell line. Cancer Med., 2019, 8(2), 773-782.
[http://dx.doi.org/10.1002/cam4.1968] [PMID: 30636370]
[27]
Toh, T.B.; Lim, J.J.; Hooi, L.; Rashid, M.B.M.A.; Chow, E.K.H. Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma. J. Hepatol., 2020, 72(1), 104-118.
[http://dx.doi.org/10.1016/j.jhep.2019.08.035] [PMID: 31541681]
[28]
Rawat, D.; Shrivastava, S.; Naik, R.A.; Chhonker, S.K.; Mehrotra, A.; Koiri, R.K. An overview of natural plant products in the treatment of hepatocellular carcinoma. Anticancer. Agents Med. Chem., 2019, 18(13), 1838-1859.
[http://dx.doi.org/10.2174/1871520618666180604085612] [PMID: 29866017]
[29]
Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Ni, J. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res., 2016, 30(8), 1207-1218.
[http://dx.doi.org/10.1002/ptr.5631] [PMID: 27188216]
[30]
Li, X.; Shan, C.; Wu, Z.; Yu, H.; Yang, A.; Tan, B. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway. Inflamm. Res., 2020, 69(4), 365-373.
[http://dx.doi.org/10.1007/s00011-020-01331-3] [PMID: 32130427]
[31]
Xu, C.; Zhang, J.; Liu, J.; Li, Z.; Liu, Z.; Luo, Y.; Xu, Q.; Wang, M.; Zhang, G.; Wang, F.; Chen, H. Proteomic analysis reveals the protective effects of emodin on severe acute pancreatitis induced lung injury by inhibiting neutrophil proteases activity. J. Proteomics, 2020, 220, 103760.
[http://dx.doi.org/10.1016/j.jprot.2020.103760] [PMID: 32244009]
[32]
Ji, C.; Xin, G.; Duan, F.; Huang, W.; Tan, T. Study on the antibacterial activities of emodin derivatives against clinical drug-resistant bacterial strains and their interaction with proteins. Ann. Transl. Med., 2020, 8(4), 92.
[http://dx.doi.org/10.21037/atm.2019.12.100] [PMID: 32175385]
[33]
Wu, C.C.; Chen, M.S.; Cheng, Y.J.; Ko, Y.C.; Lin, S.F.; Chiu, I.M.; Chen, J.Y. Emodin inhibits EBV reactivation and represses NPC tumorigenesis. Cancers, 2019, 11(11), 1795.
[http://dx.doi.org/10.3390/cancers11111795] [PMID: 31731581]
[34]
Yang, N.; Li, C.; Li, H.; Liu, M.; Cai, X.; Cao, F.; Feng, Y.; Li, M.; Wang, X. Emodin induced SREBP1-dependent and SREBP1-independent apoptosis in hepatocellular carcinoma cells. Front. Pharmacol., 2019, 10, 709.
[http://dx.doi.org/10.3389/fphar.2019.00709] [PMID: 31297058]
[35]
Zhang, Q.; Chen, W.W.; Sun, X.; Qian, D.; Tang, D.D.; Zhang, L.L.; Li, M.Y.; Wang, L.Y.; Wu, C.J.; Peng, W. The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers. Int. J. Biol. Sci., 2022, 18(8), 3498-3527.
[http://dx.doi.org/10.7150/ijbs.70447] [PMID: 35637953]
[36]
Bai, J.; Wu, J.; Tang, R.; Sun, C.; Ji, J.; Yin, Z.; Ma, G.; Yang, W. Emodin, a natural anthraquinone, suppresses liver cancer in vitro and in vivo by regulating VEGFR2 and miR-34a. Invest. New Drugs, 2020, 38(2), 229-245.
[http://dx.doi.org/10.1007/s10637-019-00777-5] [PMID: 30976957]
[37]
Guo, H.; Liu, F.; Yang, S.; Xue, T. Emodin alleviates gemcitabine resistance in pancreatic cancer by inhibiting MDR1/P-glycoprotein and MRPs expression. Oncol. Lett., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/ol.2020.12030] [PMID: 32934734]
[38]
Zhu, Y.; Fu, F.; Wang, Z.; Qiu, F.; Deng, T.; Du, B.; Zhu, Y.; Xi, X. Polyphyllin VII is a potential drug targeting CD44 positive colon cancer cells. Curr. Cancer Drug Targets, 2022, 22(5), 426-435.
[http://dx.doi.org/10.2174/1568009622666220304110222] [PMID: 35249490]
[39]
Xu, L.; Chen, Z.; Wang, Y.; Li, Y.; Wang, Z.; Li, F.; Xi, X. Polyphyllin VII as a potential drug for targeting stemness in hepatocellular cancer via STAT3 signaling. Curr. Cancer Drug Targets, 2023, 23(4), 325-331.
[http://dx.doi.org/10.2174/1568009623666221024103834] [PMID: 36284387]
[40]
Jemal, A.; Miller, K.D.; Ma, J.; Siegel, R.L.; Fedewa, S.A.; Islami, F.; Devesa, S.S.; Thun, M.J. Higher lung cancer incidence in young women than young men in the United States. N. Engl. J. Med., 2018, 378(21), 1999-2009.
[http://dx.doi.org/10.1056/NEJMoa1715907] [PMID: 29791813]
[41]
Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462.
[http://dx.doi.org/10.1056/NEJMra1713263] [PMID: 30970190]
[42]
Ombrato, L.; Nolan, E.; Kurelac, I.; Mavousian, A.; Bridgeman, V.L.; Heinze, I.; Chakravarty, P.; Horswell, S.; Gonzalez-Gualda, E.; Matacchione, G.; Weston, A.; Kirkpatrick, J.; Husain, E.; Speirs, V.; Collinson, L.; Ori, A.; Lee, J.H.; Malanchi, I. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature, 2019, 572(7771), 603-608.
[http://dx.doi.org/10.1038/s41586-019-1487-6] [PMID: 31462798]
[43]
Gullo, I.; Carneiro, F.; Oliveira, C.; Almeida, G.M. Heterogeneity in gastric cancer: From pure morphology to molecular classifications. Pathobiology, 2018, 85(1-2), 50-63.
[http://dx.doi.org/10.1159/000473881] [PMID: 28618420]
[44]
Ruella, M.; Xu, J.; Barrett, D.M.; Fraietta, J.A.; Reich, T.J.; Ambrose, D.E.; Klichinsky, M.; Shestova, O.; Patel, P.R.; Kulikovskaya, I.; Nazimuddin, F.; Bhoj, V.G.; Orlando, E.J.; Fry, T.J.; Bitter, H.; Maude, S.L.; Levine, B.L.; Nobles, C.L.; Bushman, F.D.; Young, R.M.; Scholler, J.; Gill, S.I.; June, C.H.; Grupp, S.A.; Lacey, S.F.; Melenhorst, J.J. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med., 2018, 24(10), 1499-1503.
[http://dx.doi.org/10.1038/s41591-018-0201-9] [PMID: 30275568]
[45]
Yang, K.; Jin, M.J.; Quan, Z.S.; Piao, H.R. Design and synthesis of novel anti-proliferative emodin derivatives and studies on their cell cycle arrest, apoptosis pathway and migration. Molecules, 2019, 24(5), 884.
[http://dx.doi.org/10.3390/molecules24050884] [PMID: 30832378]
[46]
Tuli, H.S.; Aggarwal, V.; Tuorkey, M.; Aggarwal, D.; Parashar, N.C.; Varol, M.; Savla, R.; Kaur, G.; Mittal, S.; Sak, K. Emodin: A metabolite that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Toxicol. In Vitro, 2021, 73, 105142.
[http://dx.doi.org/10.1016/j.tiv.2021.105142] [PMID: 33722736]
[47]
McDonald, S.J.; VanderVeen, B.N.; Velazquez, K.T.; Enos, R.T.; Fairman, C.M.; Cardaci, T.D.; Fan, D.; Murphy, E.A. Therapeutic potential of emodin for gastrointestinal cancers. Integr. Cancer Ther., 2022, 21
[http://dx.doi.org/10.1177/15347354211067469] [PMID: 34984952]
[48]
Zheng, Q.; Li, S.; Li, X.; Liu, R. Advances in the study of emodin: An update on pharmacological properties and mechanistic basis. Chin. Med., 2021, 16(1), 102.
[http://dx.doi.org/10.1186/s13020-021-00509-z] [PMID: 34629100]
[49]
Basakran, N.S. CD44 as a potential diagnostic tumor marker. Saudi Med. J., 2015, 36(3), 273-279.
[http://dx.doi.org/10.15537/smj.2015.3.9622] [PMID: 25737167]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy