Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Study of Structural Elucidation, Degradation Kinetics and Antimicrobial Analysis of Copper (II) Sesame-Soap Complexes with Urea and Thiourea Ligand in Non-aqueous Solvents

Author(s): Asha Meena*

Volume 21, Issue 4, 2024

Published on: 20 November, 2023

Page: [369 - 385] Pages: 17

DOI: 10.2174/0115701786260899231023091359

Price: $65

Abstract

Surfactants have great importance in biological and drug industries and the complexes of metallic soaps with various ligands are used in approximately every region of national economy. Therefore, our keen interest to study of degradation kinetics and biological importance of Cu (II) surfactants in non-aqueous and non-polar solvent benzene. Present research work has been initiated with synthesis, systematic study of structural elucidation, thermal degradation, kinetics and biocidal activities of copper (II) sesame-soap complexes with macrocyclic nitrogen and sulphur containing donar ligands like urea and thiourea. The thermal degradation of copper (II) sesame-soap complexes were carried out for analysis of degradation kinetics and estimation of kinetic and thermodynamic parameters using different methods at heating rate 10oC min-1. Copper (II) sesame-soap complexes of such ligands have also been analysed against Staphylococus aureus. This research work consolidates the synthesis of copper (II) sesame soap-urea and thiourea complexes by conventional methods and the structure of these complexes were assigned according to elemental analysis and molecular weight determinations. IR, NMR and ESR spectral studies have also been done to understand structural aspects. The anti-microbial activities of copper (II) sesame-soap urea and thiourea complexes have been evaluated by testing against Staphylococus aureus. The present research work includes information of thermal analysis using TGA technique to find out their kinetic and thermodynamic parameters by using diverse equations such as Coats-Redfern equation, Horowitz-Metzger equation, Broido equation, Piloyan–Novikova equation. Moreover, the results obtained from anti-microbial screening have been used to analyze the anti-microbial activities of copper (II) sesame-soap urea and thiourea complexes against gram-positive bacteria Staphylococus aureus. These results show that complexes of copper ion co-ordinated with different nitrogen, oxygen and sulphur containing ligands, are very important in the field of pharmaceutical chemistry due to its significant role in the inhibition activity. The study of these complexes concludes that the synthesized complexes were found to possess appreciable bactericidal properties at different concentrations because chelation increases the anti-microbial potency.

Graphical Abstract

[1]
Bulatova, M.; Melekhova, A.A.; Novikov, A.S.; Ivanov, D.M.; Bokach, N.A. Z. Kristallogr. Cryst. Mater., 2018, 233(6), 371-377.
[http://dx.doi.org/10.1515/zkri-2017-2107]
[2]
Melekhova, A.A.; Novikov, A.S.; Luzyanin, K.V.; Bokach, N.A.; Starova, G.L.; Gurzhiy, V.V.; Kukushkin, V.Y. Inorg. Chim. Acta, 2015, 434, 31-36.
[http://dx.doi.org/10.1016/j.ica.2015.05.002]
[3]
Orvig, C.; Abrams, M. J. Chem. Rev., 1999, 99(9), 2201-2204.
[http://dx.doi.org/10.1021/cr980419w] [PMID: 11749478]
[4]
Iakovidis, I.; Delimaris, I.; Piperakis, S.M. Mol. Biol. Int., 2011, 11, 594529.
[http://dx.doi.org/10.4061/2011/594529]
[5]
Thompson, K.H.; Orvig, C. Science, 2003, 300(5621), 936-939.
[http://dx.doi.org/10.1126/science.1083004] [PMID: 12738851]
[6]
Natarajan, R.; Sivasangu, S.; Liviu, M. Monatsh. Chem., 2012, 143, 1019-1030.
[7]
Padhye, S.; Zahra, A.; Ekk, S. Inorg. Chim. Acta, 2005, 358(6), 2023-2030.
[http://dx.doi.org/10.1016/j.ica.2004.12.042]
[8]
Sukhadia, V.; Sharma, R.; Meena, A. Curr. Phys. Chem., 2023, 13(3), 246-258.
[http://dx.doi.org/10.2174/1877946813666230720111013]
[9]
Dua, R.S.; Shrivastava, S.K.; Sonwane, S.K.; Shrivastava, S. Adv. Biol. Res., 2011, 5, 120-144.
[10]
Rajput, R.; Mishra, A.P. Int. J. Pharm. Pharm. Sci., 2012, 4, 66-70.
[11]
Gupta, D.; Kumar, R.; Roy, R.K.; Sharma, A.; Ali, I.; Shamsuzzaman, M. Med. Chem. Res., 2013, 22(7), 3282-3288.
[http://dx.doi.org/10.1007/s00044-012-0293-6]
[12]
Zheng, Y.; Bian, M.; Deng, X.Q.; Wang, S.B.; Quan, Z.S. Arch. Pharm., 2013, 346(2), 119-126.
[http://dx.doi.org/10.1002/ardp.201200376] [PMID: 23255333]
[13]
Malik, S.; Khan, S.A. Med. Chem. Res., 2014, 23(1), 207-223.
[http://dx.doi.org/10.1007/s00044-013-0630-4]
[14]
Zayed, M.F.; Hassan, M.H. Saudi Pharm. J., 2014, 22, 157-162.
[http://dx.doi.org/10.1016/j.jsps.2013.03.004] [PMID: 24648828]
[15]
Hussein, M.A. Med. Chem. Res., 2013, 22(10), 4641-4653.
[http://dx.doi.org/10.1007/s00044-013-0468-9]
[16]
Patel, M.N.; Gandhi, D.S.; Parmar, P.A. Inorg. Chem. Commun., 2012, 15, 248-251.
[http://dx.doi.org/10.1016/j.inoche.2011.10.037]
[17]
Li, D.D.; Huang, F.P.; Chen, G.J.; Gao, C.Y.; Tian, J.L.; Gu, W.; Liu, X.; Yan, S.P. J. Inorg. Biochem., 2010, 104(4), 431-441.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.12.008] [PMID: 20056282]
[18]
Thompson, K.H.; Orvig, C. Wiley-VCH:Weinheim; Kraatz, H.B.; Metzler-Nolte, N., Eds.; Germany, 2006.
[19]
Kanoongo, N.; Singh, R.V.; Tandon, J.P.; Goyal, R.B. J. Inorg. Biochem., 1990, 38(1), 57-67.
[http://dx.doi.org/10.1016/0162-0134(90)85007-J] [PMID: 2332764]
[20]
Ryan, K.J.; Ray, C.G.; Sherris, E. Medical Microbiology, 4th ed; McGraw Hill, 2004.
[21]
Kluytmans, J.; van Belkum, A.; Verbrugh, H. Clin. Microbiol. Rev., 1997, 10(3), 505-520.
[http://dx.doi.org/10.1128/CMR.10.3.505] [PMID: 9227864]
[22]
Sharma, A.K.; Saxena, M.; Sharma, R. Curr. Phys. Chem., 2019, 9(2), 123-137.
[http://dx.doi.org/10.2174/1877946809666190617142243]
[23]
Jain, S.; Sharma, R.; Sharma, A.K. Antiinfect. Agents, 2020, 18(1), 59-71.
[http://dx.doi.org/10.2174/2211352517666190514074750]
[24]
Balasubramanian, K.R.; Ravi Kumar, K.; Sathiya Prabhakaran, S.P.; Jinshah, B.S.; Abhishek, N. Int. J. Energy Res., 2022, 46(11), 15733-15755.
[http://dx.doi.org/10.1002/er.8272]
[25]
Tank, P.; Sharma, R.; Sharma, A.K. Curr. Phys. Chem., 2018, 8(1), 46-57.
[http://dx.doi.org/10.2174/1877946808666180102152443]
[26]
Mathur, N.; Manna, B.; Sharma, A.K. Curr. Phys. Chem., 2019, 9(3), 232-246.
[http://dx.doi.org/10.2174/1877946809666190424145506]
[27]
Duswalt, A.A. Chem. Acta, 1974, 8, 57-68.
[http://dx.doi.org/10.1016/0040-6031(74)85072-0]
[28]
Flynn, J.H.; Wall, L.A. J. Polym. Sci. B, 1966, 4(5), 323-328.
[http://dx.doi.org/10.1002/pol.1966.110040504]
[29]
Dharwadkar, S.P.; Karkhanawala, M.D. Thermal Analysis, 1st ed.; Garn, P.D.; Schwenker, R.F., Eds.; Academic Press Inc.: New York, 1969, 2, pp. 1049-1052.
[30]
Gyulari, G.; Greenhow, E.G. Talanta, 1974, 21, 131.
[http://dx.doi.org/10.1016/0039-9140(74)80035-4] [PMID: 18961433]
[31]
Ozawa, T. J. Therm. Anal., 1975, 7(3), 601-617.
[http://dx.doi.org/10.1007/BF01912021]
[32]
van Heerden, C.; Nobel, A.P.P.; van Krevelen, D.W. Chem. Eng. Sci., 1951, 1(1), 37-49.
[http://dx.doi.org/10.1016/0009-2509(51)80006-X]
[33]
Freeman, E.S.; Carroll, B. J. Phys. Chem., 1958, 62(4), 394-397.
[http://dx.doi.org/10.1021/j150562a003]
[34]
Doyle, C.D. J. Appl. Polym. Sci., 1961, 5(15), 285-292.
[http://dx.doi.org/10.1002/app.1961.070051506]
[35]
Broido, A. J. Polym. Sci., A-2. Polym. Phys., 1969, 7(10), 1761-1773.
[http://dx.doi.org/10.1002/pol.1969.160071012]
[36]
Piloyan, G.O.; Ryabchikov, I.D.; Novikova, O.S. Nature, 1966, 212(5067), 1229.
[http://dx.doi.org/10.1038/2121229a0]
[37]
Van Krevelen, D.W.; Van Heerden, C.; Huntjens, F.J. Fuel, 1951, 30, 253-259.
[38]
Meena, A.; Sharma, R.; Sukhadia, V. Curr. Phys. Chem., 2023, 13(2), 165-176.
[http://dx.doi.org/10.2174/1877946813666230331090939]
[39]
Meena, A.; Adusumilli, U.K. Int. J. Sci. Res. Sci. Eng. Technol., 2023, 10(2), 78-88.
[http://dx.doi.org/10.32628/IJSRSET219416]
[40]
Meena, A.; Sharma, R.; Sukhadia, V. Curr. Phys. Chem., 2020, 10(3), 213-228.
[http://dx.doi.org/10.2174/1877946810666200116091321]
[41]
Dutta, R.L.; Syamal, A. Affiliated East‐West Press Pvt Ltd; New Delhi, 1995, pp. 206-253.
[42]
Mishra, A.; Pandey, L. Indian J. Chem., A, 2005, 44(1), 94-97.
[43]
Al-Shihri, A.S.M.; Abdel-Fattah, H.M. J. Therm. Anal. Calorim., 2003, 71(2), 643-649.
[http://dx.doi.org/10.1023/A:1022880615841]
[44]
Uivarosi, V.; Badea, M.; Olar, R.; Marinescu, D.; Nicolescu, T.O.; Nitulescu, G.M. J. Therm. Anal. Calorim., 2011, 105(2), 645-650.
[http://dx.doi.org/10.1007/s10973-010-1222-x]
[45]
Coats, A.W.; Redfern, J.P. Nature, 1964, 201(4914), 68-69.
[http://dx.doi.org/10.1038/201068a0]
[46]
Horowitz, H.H.; Metzger, G. Anal. Chem., 1963, 35(10), 1464-1468.
[http://dx.doi.org/10.1021/ac60203a013]
[47]
Broido, A. J. Polymer Sci., Part B-2, 1969, 7(10), 1761-1773.
[48]
Meena, A.; Sharma, R. J. Appl. Chem., 2018, 7(6), 1703-1712.
[49]
Meena, A.; Sukhadia, V.; Sharma, R. Lett. Org. Chem., 2021, 18(6), 477-489.
[http://dx.doi.org/10.2174/1570178617999200812134745]
[50]
Urbanovici, E.; Popescu, C.; Segal, E. J. Therm. Anal. Calorim., 1999, 58(3), 683-700.
[http://dx.doi.org/10.1023/A:1010125132669]
[51]
Gabbour, L.H. J. Mater., 2015.
[52]
Salama, N.N.; Mohammad, M.A.; Fattah, T.A. J. Therm. Anal. Calorim., 2015, 120(1), 953-958.
[http://dx.doi.org/10.1007/s10973-015-4419-1]
[53]
Karapmar, E.; Gubbuk, I.H.; Taner, B.; Deveci, P.; Ozcan, E. J. Chem., 2013.
[54]
Mishra, A.P.; Sharma, N.; Jain, R.K. Avances en Química, 2012, 7(1), 77-85.
[55]
Jansen, W.T.M.; Beitsma, M.M.; Koeman, C.J.; van Wamel, W.J.B.; Verhoef, J.; Fluit, A.C. Antimicrob. Agents Chemother., 2006, 50(6), 2072-2078.
[http://dx.doi.org/10.1128/AAC.01539-05] [PMID: 16723568]
[56]
King, A.; Brown, D.F.J. J. Antimicrob. Chemother., 2001, 48(S1), 71-76.
[http://dx.doi.org/10.1093/jac/48.suppl_1.71] [PMID: 11420339]
[57]
Garrod, L.P.; Waterworth, P.M. J. Clin. Pathol., 1971, 24(9), 779-789.
[http://dx.doi.org/10.1136/jcp.24.9.779] [PMID: 5139984]
[58]
Niederstebruch, N.; Sixt, D. Eur. J. Clin. Microbiol. Infect. Dis., 2013, 32(2), 237-241.
[http://dx.doi.org/10.1007/s10096-012-1735-2] [PMID: 22926453]
[59]
David, M.Z.; Daum, R.S. Clin. Microbiol. Rev., 2010, 23(3), 616-687.
[http://dx.doi.org/10.1128/CMR.00081-09] [PMID: 20610826]
[60]
Kannan, D.; Arumugham, M.N. Int J Res Controlled Release, 2012, 2(4), 10-17.
[61]
Chaudhary, A.; Sharma, R.; Nagar, M. Int. Res. J. Pharm. Pharmacol., 2011, 1(6), 172-187.
[62]
Selvaganapathy, M.; Raman, N. J Chem Biol Therap., 2016, 1(2), 108-121.
[http://dx.doi.org/10.4172/2572-0406.1000108]
[63]
Basset, J.; Denny, R.C.; Jeffery, G.H.; Mendham, J., IV, Eds. Vogel’s Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th ed; Longman: London, 1985.
[64]
Reddick, J.R.; Bunger, W.B. Organic Solvent, 3rd ed; Wiley-Interscience: New York, 1970.
[65]
Mehta, V.P.; Hasan, M.; Mathur, S.P.; Rai, G.L. Tenside Surfactants Deterg., 1979, 16(2), 79-80.
[http://dx.doi.org/10.1515/tsd-1979-160207]
[66]
Khan, S.; Sharma, R.; Sharma, A.K. Curr. Phys. Chem., 2019, 8(3), 164-174.
[http://dx.doi.org/10.2174/1877946808666181102151911]
[67]
Mehrotra, K.N.; Mehta, V.P.; Nagar, T.N. Naturforschg., 1969, 24b, 1511-1513.
[68]
Adams, R. Organic reactions; John Wiley and Sons: New York, London, 1959.
[69]
Heda, L.C.; Mathur, N.; Saxena, P.; Ahmed, I. Asian J. Chem., 2009, 21(1), 57-62.
[70]
Kumawat, P.; Sharma, R.; Sharma, A.K. Nanosci. Nanotechnol. Asia, 2020, 10(6), 790-805.
[http://dx.doi.org/10.2174/2210681209666190723120309]
[71]
Pandey, T.; Singh, R.V. Main Group Met. Chem., 2000, 23(7), 345-350.
[http://dx.doi.org/10.1515/MGMC.2000.23.7.345]
[72]
Meena, A. Int. J. Biol. Chem. Sci., 2022, 4(2), 25-29.
[http://dx.doi.org/10.33545/26646765.v.i.43]
[73]
Meena, A. Int. J. Adv. Chem., 2022, 4(2), 329-331.
[http://dx.doi.org/10.33545/26646781.2022.v4.i2e.118]
[74]
Ito, T.; Katayama, Y.; Asada, K.; Mori, N.; Tsutsumimoto, K.; Tiensasitorn, C.; Hiramatsu, K. Antimicrob. Agents Chemother., 2001, 45(5), 1323-1336.
[http://dx.doi.org/10.1128/AAC.45.5.1323-1336.2001] [PMID: 11302791]
[75]
Hassan, M. Biointerface Res. Appl. Chem., 2012, 2(6), 450-462.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy