Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

The Effect of Metformin Treatment on Disease Control in Patients with Acromegaly

Author(s): Humeyra Rekali Sahin, Serdar Sahin, Betul Sarac, Cem Sulu, Pinar Kadioglu and Hande Mefkure Ozkaya*

Volume 24, Issue 6, 2024

Published on: 20 November, 2023

Page: [709 - 716] Pages: 8

DOI: 10.2174/0118715303260084231102105149

Price: $65

Abstract

Background: The increase in portal insulin levels has been shown to upregulate growth hormone receptor expression in the liver, leading to increased insulin-like growth hormone- 1 levels. Metformin inhibits hepatic gluconeogenesis and reduces fasting insulin.

Objectives: We evaluated the effect of metformin treatment in patients with acromegaly on growth hormone, insulin-like growth hormone-1, and pituitary adenoma size.

Methods: Patients who were followed up with the diagnosis of acromegaly in Istanbul University- Cerrahpaşa, Cerrahpaşa Medical Faculty were evaluated. The patients were divided into three groups after pituitary adenectomy as those who received somatostatin receptor ligand and metformin treatment (group A), somatostatin receptor ligand treatment only (group B), and those who received metformin treatment only (group C). Groups A and B were compared with each other, and patients in group C were compared among themselves.

Results: While the median insulin-like growth factor-1 level decreased to 170 ng/ml in Group A after the treatment, the median insulin-like growth factor-1 level decreased to 229 ng/ml in Group B, and a statistically significant difference was found between the two groups (p =0.020). There was no significant difference in post-treatment growth hormone levels and residual adenoma sizes between groups A and B (p >0.005). In group C, there was no significant difference in growth hormone values pre-and post-metformin treatment (p =0.078); however, the median insulin-like growth factor-1 level decreased from 205 ng/ml to 168 ng/ml during metformin treatment and was found to be statistically significant (p =0.027).

Conclusion: Due to the effect of metformin treatment on insulin-like growth factor-1 values in patients with acromegaly, it can be used in disease control, as well as diabetes treatment.

Graphical Abstract

[1]
Fleseriu, M.; Langlois, F.; Lim, D.S.T.; Varlamov, E.V.; Melmed, S. Acromegaly: Pathogenesis, diagnosis, and management. Lancet Diabetes Endocrinol., 2022, 10(11), 804-826.
[http://dx.doi.org/10.1016/S2213-8587(22)00244-3] [PMID: 36209758]
[2]
Ershadinia, N.; Tritos, N.A. Diagnosis and treatment of acromegaly: An update. Mayo Clin. Proc., 2022, 97(2), 333-346.
[http://dx.doi.org/10.1016/j.mayocp.2021.11.007] [PMID: 35120696]
[3]
Colao, A.; Grasso, L.F.S.; Giustina, A.; Melmed, S.; Chanson, P.; Pereira, A.M.; Pivonello, R. Acromegaly. Nat. Rev. Dis. Primers, 2019, 5(1), 20.
[http://dx.doi.org/10.1038/s41572-019-0071-6]
[4]
Katznelson, L.; Laws, E.R., Jr; Melmed, S.; Molitch, M.E.; Murad, M.H.; Utz, A.; Wass, J.A.H. Acromegaly: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab., 2014, 99(11), 3933-3951.
[http://dx.doi.org/10.1210/jc.2014-2700] [PMID: 25356808]
[5]
Berkmann, S.; Brun, J.; Schuetz, P.; Christ, E.; Mariani, L.; Mueller, B. Prevalence and outcome of comorbidities associated with acromegaly. Acta Neurochir., 2021, 163(11), 3171-3180.
[http://dx.doi.org/10.1007/s00701-021-04846-8] [PMID: 33856552]
[6]
Ritvonen, E.; Löyttyniemi, E.; Jaatinen, P.; Ebeling, T.; Moilanen, L.; Nuutila, P.; Kauppinen-Mäkelin, R.; Schalin-Jäntti, C. Mortality in acromegaly: A 20-year follow-up study. Endocr. Relat. Cancer, 2016, 23(6), 469-480.
[http://dx.doi.org/10.1530/ERC-16-0106] [PMID: 27185871]
[7]
Esposito, D.; Ragnarsson, O.; Granfeldt, D.; Marlow, T.; Johannsson, G.; Olsson, D.S. Decreasing mortality and changes in treatment patterns in patients with acromegaly from a nationwide study. Eur. J. Endocrinol., 2018, 178(5), 459-469.
[http://dx.doi.org/10.1530/EJE-18-0015] [PMID: 29483205]
[8]
Esposito, D.; Olsson, D.S.; Franzén, S.; Miftaraj, M.; Nåtman, J.; Gudbjörnsdottir, S.; Johannsson, G. Effect of diabetes on morbidity and mortality in patients with acromegaly. J. Clin. Endocrinol. Metab., 2022, 107(9), 2483-2492.
[http://dx.doi.org/10.1210/clinem/dgac400]
[9]
Kamenický, P.; Maione, L.; Chanson, P. Cardiovascular complications of acromegaly. Ann. Endocrinol., 2021, 82(3-4), 206-209.
[http://dx.doi.org/10.1016/j.ando.2020.03.010] [PMID: 33168155]
[10]
Esposito, D.; Ragnarsson, O.; Johannsson, G.; Olsson, D.S. Prolonged diagnostic delay in acromegaly is associated with increased morbidity and mortality. Eur. J. Endocrinol., 2020, 182(6), 523-531.
[http://dx.doi.org/10.1530/EJE-20-0019] [PMID: 32213651]
[11]
Bolfi, F.; Neves, A.F.; Boguszewski, C.L.; Nunes-Nogueira, V.S. Mortality in acromegaly decreased in the last decade: A systematic review and meta-analysis. Eur. J. Endocrinol., 2019, 181(5), L5-L6.
[http://dx.doi.org/10.1530/EJE-19-0509] [PMID: 31539872]
[12]
Postma, M.R.; Wolters, T.L.C.; van den Berg, G.; van Herwaarden, A.E.; Muller Kobold, A.C.; Sluiter, W.J.; Wagenmakers, M.A.; van den Bergh, A.C.M.; Wolffenbuttel, B.H.R.; Hermus, A.R.M.M.; Netea-Maier, R.T.; van Beek, A.P. Postoperative use of somatostatin analogs and mortality in patients with acromegaly. Eur. J. Endocrinol., 2019, 180(1), 1-9.
[http://dx.doi.org/10.1530/EJE-18-0166]
[13]
Khan, S.A.; Ram, N.; Masood, M.Q.; Islam, N. Prevalence of comorbidities among patients with Acromegaly. Pak. J. Med. Sci., 2021, 37(7), 1758-1761.
[http://dx.doi.org/10.12669/pjms.37.7.4277] [PMID: 34912391]
[14]
Holdaway, I.M.; Bolland, M.J.; Gamble, G.D. A meta-analysis of the effect of lowering serum levels of GH and IGF-I on mortality in acromegaly. Eur. J. Endocrinol., 2008, 159(2), 89-95.
[http://dx.doi.org/10.1530/EJE-08-0267] [PMID: 18524797]
[15]
Dekkers, O.M.; Biermasz, N.R.; Pereira, A.M.; Romijn, J.A.; Vandenbroucke, J.P. Mortality in acromegaly: A metaanalysis. J. Clin. Endocrinol. Metab., 2008, 93(1), 61-67.
[http://dx.doi.org/10.1210/jc.2007-1191] [PMID: 17971431]
[16]
Moustaki, M.; Paschou, S.A.; Xekouki, P.; Kotsa, K.; Peppa, M.; Psaltopoulou, T.; Kalantaridou, S.; Vryonidou, A. Secondary diabetes mellitus in acromegaly. Endocrine, 2023, 81(1), 1-15.
[http://dx.doi.org/10.1007/s12020-023-03339-1] [PMID: 36882643]
[17]
Leung, K.C.; Doyle, N.; Ballesteros, M.; Waters, M.J.; Ho, K.K.Y. Insulin regulation of human hepatic growth hormone receptors: Divergent effects on biosynthesis and surface translocation. J. Clin. Endocrinol. Metab., 2000, 85(12), 4712-4720.
[http://dx.doi.org/10.1210/jc.85.12.4712] [PMID: 11134133]
[18]
Cristin, L.; Montini, A.; Martinino, A.; Pereira, J.P.S.; Giovinazzo, F.; Agnes, S. The role of growth hormone and insulin growth factor 1 in the development of non-alcoholic steato-hepatitis: A systematic review. Cells, 2023, 12(4), 517.
[http://dx.doi.org/10.3390/cells12040517]
[19]
Frystyk, J.; Delhanty, P.J.D.; Skjærbæk, C.; Baxter, R.C. Changes in the circulating IGF system during short-term fasting and refeeding in rats. Am. J. Physiol. Endocrinol. Metab., 1999, 277(2), E245-E252.
[http://dx.doi.org/10.1152/ajpendo.1999.277.2.E245] [PMID: 10444419]
[20]
Apostolova, N.; Iannantuoni, F.; Gruevska, A.; Muntane, J.; Rocha, M.; Victor, V.M. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol., 2020, 34, 101517.
[http://dx.doi.org/10.1016/j.redox.2020.101517] [PMID: 32535544]
[21]
Lin, Y.; Wang, K.; Ma, C.; Wang, X.; Gong, Z.; Zhang, R.; Zang, D.; Cheng, Y. Evaluation of metformin on cognitive improvement in patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism. Front. Aging Neurosci., 2018, 27(10), 227.
[http://dx.doi.org/10.3389/fnagi.2018.00227]
[22]
Tobar, N.; Rocha, G.Z.; Santos, A.; Guadagnini, D.; Assalin, H.B.; Camargo, J.A.; Gonçalves, A.E.S.S.; Pallis, F.R.; Oliveira, A.G.; Rocco, S.A.; Neto, R.M.; de Sousa, I.L.; Alborghetti, M.R.; Sforça, M.L.; Rodrigues, P.B.; Ludwig, R.G.; Vanzela, E.C.; Brunetto, S.Q.; Boer, P.A.; Gontijo, J.A.R.; Geloneze, B.; Carvalho, C.R.O.; Prada, P.O.; Folli, F.; Curi, R.; Mori, M.A.; Vinolo, M.A.R.; Ramos, C.D.; Franchini, K.G.; Tormena, C.F.; Saad, M.J.A. Metformin acts in the gut and induces gut-liver crosstalk. Proc. Natl. Acad. Sci. USA, 2023, 120(4), e2211933120.
[http://dx.doi.org/10.1073/pnas.2211933120] [PMID: 36656866]
[23]
Mallik, R.; Chowdhury, T.A. Metformin in cancer. Diabetes Res. Clin. Pract., 2018, 143, 409-419.
[http://dx.doi.org/10.1016/j.diabres.2018.05.023] [PMID: 29807101]
[24]
Minniti, G.; Jaffrain-Rea, M-L.; Esposito, V.; Santoro, A.; Tamburrano, G.; Cantore, G. Evolving criteria for post-operative biochemical remission of acromegaly: Can we achieve a definitive cure? An audit of surgical results on a large series and a review of the literature. Endocr. Relat. Cancer, 2003, 10(4), 611-619.
[http://dx.doi.org/10.1677/erc.0.0100611] [PMID: 14713271]
[25]
ElSayed, NA; Aleppo, G; Aroda, VR; Bannuru, RR; Brown, FM; Bruemmer, D; Collins, BS; Hilliard, ME; Isaacs, D; Johnson, EL; Kahan, S; Khunti, K; Leon, J; Lyons, SK; Perry, ML; Prahalad, P; Pratley, RE; Seley, JJ; Stanton, RC; Gabbay, RA 2. Classification and diagnosis of diabetes: Standards of care in diabetes-2023. Diabetes Care, 2023, 46(S1), S19-S40.
[http://dx.doi.org/10.2337/dc23-S002]
[26]
Coopmans, E.C.; Berk, K.A.C.; El-Sayed, N.; Neggers, S.J.C.M.M.; van der Lely, A.J. Eucaloric very-low-carbohydrate ketogenic diet in acromegaly treatment. N. Engl. J. Med., 2020, 382(22), 2161-2162.
[http://dx.doi.org/10.1056/NEJMc1915808] [PMID: 32459928]
[27]
Winkelmann, M. Evidence for better response to somatostatin analogue treatment in acromegalic patients treated with metformin. LMU München; Faculty of Medicine, 2019.
[http://dx.doi.org/10.5282/edoc.24276]
[28]
Viollet, B.; Guigas, B.; Garcia, N.S.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: An overview. Clin. Sci., 2012, 122(6), 253-270.
[http://dx.doi.org/10.1042/CS20110386] [PMID: 22117616]
[29]
Giustina, A.; di Filippo, L.; Uygur, M.M.; Frara, S. Modern approach to resistant acromegaly. Endocrine, 2023, 80(2), 303-307.
[http://dx.doi.org/10.1007/s12020-023-03317-7] [PMID: 36790521]
[30]
Chiloiro, S.; Giampietro, A.; Gagliardi, I.; Bondanelli, M.; Epifani, V.; Milardi, D.; Ambrosio, M.R.; Zatelli, M.C.; Pontecorvi, A.; De Marinis, L.; Bianchi, A. Systemic comorbidities of acromegaly in real-life experience: Which difference among young and elderly patients? Endocrine, 2022, 80(1), 142-151.
[http://dx.doi.org/10.1007/s12020-022-03261-y] [PMID: 36447087]
[31]
An, J.; Pei, X.; Zang, Z.; Zhou, Z.; Hu, J.; Zheng, X.; Zhang, Y.; He, J.; Duan, L.; Shen, R.; Zhang, W.; Zhu, F.; Li, S.; Yang, H. Metformin inhibits proliferation and growth hormone secretion of GH3 pituitary adenoma cells. Oncotarget, 2017, 8(23), 37538-37549.
[http://dx.doi.org/10.18632/oncotarget.16556] [PMID: 28380462]
[32]
Tseng, C.H. Metformin reduces thyroid cancer risk in taiwanese patients with type 2 diabetes. PLoS ONE, 2014, 9(10), e109852.
[33]
Lin, H.C.; Kachingwe, B.H.; Lin, H.L.; Cheng, H.W.; Uang, Y.S.; Wang, L.H. Effects of metformin dose on cancer risk reduction in patients with type 2 diabetes mellitus: A 6-year follow-up study. Pharmacotherapy, 2014, 34(1), 36-45.
[34]
Cho, S.W.; Yi, K.H.; Han, S.K.; Sun, H.J.; Kim, Y.A.; Oh, B.C.; Park, Y.J.; Park, D.J. Therapeutic potential of metformin in papillary thyroid cancer in vitro and in vivo. Mol. Cell. Endocrinol., 2014, 393(1-2), 24-29.
[http://dx.doi.org/10.1016/j.mce.2014.05.021] [PMID: 24905037]
[35]
Albertelli, M.; Nazzari, E.; Dotto, A.; Grasso, L.F.; Sciallero, S.; Pirchio, R.; Rebora, A.; Boschetti, M.; Pivonello, R.; Ricci Bitti, S.; Colao, A A L.; Ferone, D. Possible protective role of metformin therapy on colonic polyps in acromegaly: An exploratory cross-sectional study. Eur. J. Endocrinol., 2021, 184(3), 419-425.
[http://dx.doi.org/10.1530/EJE-20-0795] [PMID: 33621192]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy