Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

Design, Synthesis, Docking Studies, and Biological Evaluation of Novel 2-Hydroxyacetophenone Derivatives as Anti-HIV-1 Agents

Author(s): Samira Sooreni Oliaie, Mahdieh Safakish, Rouhollah Vahabpour Roudsari, Mohammad Mahboubi-Rabbani, Zahra Hajimahdi* and Afshin Zarghi*

Volume 21, Issue 5, 2023

Published on: 16 November, 2023

Page: [290 - 300] Pages: 11

DOI: 10.2174/011570162X261377231107110447

Price: $65

conference banner
Abstract

Background: The persistence of HIV mutations and the existence of multidrug resistance have produced an opportunity for an array of innovative anti-HIV medicines with a variety of structures that target HIV key enzymes.

Objective: The goal of this work was to find a new class of anti-HIV drugs founded on HIV integrase inhibitor pharmacophores.

Methods: A novel class of 2-hydroxy acetophenone analogs featuring substituted benzamide or N-phenylthiourea groups was designed and synthesized based on the general pharmacophore of HIV-1 integrase inhibitors (INs).

Results: Most of the synthesized analogs were found to be moderately active against the virus, with EC50 values ranging from 40 to 140 μM. Additionally, it was found that most of the compounds presented no considerable cytotoxicity (CC50 > 500 μΜ). The most potent compounds substituting with 4-fluorobenzamide (compound 7) and 4-methylbenzamide (compound 9) rings inhibited the HIV-1 replication by EC50 values of 40 and 45 μΜ, respectively. Docking studies using the crystallographic data available for PFV IN indicated that the Mg2+ coordination might be the possible mechanism of the anti-viral activity.

Conclusion: Our findings proved that the synthesized analogs may suggest a very good basis for the development of new anti-HIV-1 agents.

Graphical Abstract

[1]
Duesberg PH. Human immunodeficiency virus and acquired immunodeficiency syndrome: correlation but not causation. Proc Natl Acad Sci USA 1989; 86(3): 755-64.
[http://dx.doi.org/10.1073/pnas.86.3.755] [PMID: 2644642]
[2]
UNAIDS. Global HIV & AIDS statistics — Fact sheet. 2022. Available From: https://www.unaids.org/en/resources/fact-sheet
[3]
Eggleton JS, Nagalli S. Highly Active Antiretroviral Therapy (HAART). St. Petersburg, Florida: StatPearls 2020.
[4]
Gomes MFdC, Guimarães ACR. Raltegravir-Induced Adaptations of the HIV-1 Integrase: Analysis of Structure, Variability, and Mutation Co-occurrence. Front Microbiol 2019; 10: 1-12.
[5]
Teeraananchai S, Kerr SJ, Amin J, Ruxrungtham K, Law MG. Life expectancy of HIV ‐positive people after starting combination antiretroviral therapy: a meta‐analysis. HIV Med 2017; 18(4): 256-66.
[http://dx.doi.org/10.1111/hiv.12421] [PMID: 27578404]
[6]
Hajimahdi Z, Zarghi A. Progress in HIV-1 Integrase Inhibitors: A Review of their Chemical Structure Diversity. Iran J Pharm Res 2016; 15(4): 595-628.
[PMID: 28243261]
[7]
Ramana LN, Anand AR, Sethuraman S, Krishnan UM. Targeting strategies for delivery of anti-HIV drugs. J Control Release 2014; 192: 271-83.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.003] [PMID: 25119469]
[8]
Bolhassani A. Target Molecules and Delivery Vehicles for Anti-HIV Drugs In vitro and In vivo. Curr Pharm Des 2018; 24(29): 3393-401.
[http://dx.doi.org/10.2174/1381612824666180608124549] [PMID: 29886823]
[9]
Di Santo R, Costi R, Roux A, et al. Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, biological activities, and mechanism of action. J Med Chem 2006; 49(6): 1939-45.
[http://dx.doi.org/10.1021/jm0511583] [PMID: 16539381]
[10]
Yelle J, Sauvé G, Sayasith K. Targeting HIV-1 integrase. Expert Opin Ther Targets 2001; 5(4): 443-64.
[http://dx.doi.org/10.1517/14728222.5.4.443] [PMID: 12540259]
[11]
Kalpana GV, Marmon S, Wang W, Crabtree GR, Goff SP. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 1994; 266(5193): 2002-6.
[http://dx.doi.org/10.1126/science.7801128] [PMID: 7801128]
[12]
Scarsi KK, Havens JP, Podany AT, Avedissian SN, Fletcher CV. HIV-1 Integrase Inhibitors: A Comparative Review of Efficacy and Safety. Drugs 2020; 80(16): 1649-76.
[http://dx.doi.org/10.1007/s40265-020-01379-9] [PMID: 32860583]
[13]
Perry CM. Raltegravir: a review of its use in the management of HIV-1 infection in children and adolescents. Paediatr Drugs 2014; 16(1): 91-100.
[http://dx.doi.org/10.1007/s40272-013-0058-9] [PMID: 24277175]
[14]
Messiaen P, Wensing AMJ, Fun A, Nijhuis M, Brusselaers N, Vandekerckhove L. Clinical use of HIV integrase inhibitors: a systematic review and meta-analysis. PLoS One 2013; 8(1): e52562.
[http://dx.doi.org/10.1371/journal.pone.0052562] [PMID: 23341902]
[15]
Choi E, Mallareddy JR, Lu D, Kolluru S. Recent advances in the discovery of small-molecule inhibitors of HIV-1 integrase. Future Sci OA 2018; 4(9): FSO338.
[http://dx.doi.org/10.4155/fsoa-2018-0060] [PMID: 30416746]
[16]
Zeuli J, Rizza S, Bhatia R, Temesgen Z. Bictegravir, a novel integrase inhibitor for the treatment of HIV infection. Drugs Today (Barc) 2019; 55(11): 669-82.
[http://dx.doi.org/10.1358/dot.2019.55.11.3068796] [PMID: 31840682]
[17]
Margolis DA, Gonzalez-Garcia J, Stellbrink HJ, et al. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority trial. Lancet 2017; 390(10101): 1499-510.
[http://dx.doi.org/10.1016/S0140-6736(17)31917-7] [PMID: 28750935]
[18]
Smith SJ, Zhao XZ, Passos DO, Lyumkis D, Burke TR Jr, Hughes SH. Integrase Strand Transfer Inhibitors Are Effective Anti-HIV Drugs. Viruses 2021; 13(2): 205.
[http://dx.doi.org/10.3390/v13020205] [PMID: 33572956]
[19]
Trivedi J, Mahajan D, Jaffe RJ, Acharya A, Mitra D, Byrareddy SN. Recent Advances in the Development of Integrase Inhibitors for HIV Treatment. Curr HIV/AIDS Rep 2020; 17(1): 63-75.
[http://dx.doi.org/10.1007/s11904-019-00480-3] [PMID: 31965427]
[20]
Anstett K, Brenner B, Mesplede T, Wainberg MA. HIV drug resistance against strand transfer integrase inhibitors. Retrovirology 2017; 14(1): 36.
[http://dx.doi.org/10.1186/s12977-017-0360-7] [PMID: 28583191]
[21]
Mbhele N, Chimukangara B, Gordon M. HIV-1 integrase strand transfer inhibitors: a review of current drugs, recent advances and drug resistance. Int J Antimicrob Agents 2021; 57(5): 106343.
[http://dx.doi.org/10.1016/j.ijantimicag.2021.106343] [PMID: 33852932]
[22]
Sharma H, Patil S, Sanchez TW, Neamati N, Schinazi RF, Buolamwini JK. Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors. Bioorg Med Chem 2011; 19(6): 2030-45.
[http://dx.doi.org/10.1016/j.bmc.2011.01.047] [PMID: 21371895]
[23]
Al-Mawsawi LQ, Dayam R, Taheri L, Witvrouw M, Debyser Z, Neamati N. Discovery of novel non-cytotoxic salicylhydrazide containing HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2007; 17(23): 6472-5.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.102] [PMID: 17950601]
[24]
Fan X, Zhang FH, Al-Safi RI, et al. Design of HIV-1 integrase inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75: A scaffold hopping approach using salicylate and catechol groups. Bioorg Med Chem 2011; 19(16): 4935-52.
[http://dx.doi.org/10.1016/j.bmc.2011.06.058] [PMID: 21778063]
[25]
Hajimahdi Z, Zabihollahi R, Aghasadeghi M, Zarghi A. Design, synthesis and docking studies of new 4-hydroxyquinoline-3-carbohydrazide derivatives as anti-HIV-1 agents. Drug Res (Stuttg) 2013; 63(4): 192-7.
[http://dx.doi.org/10.1055/s-0033-1334964] [PMID: 23487403]
[26]
Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci USA 2010; 107(46): 20057-62.
[http://dx.doi.org/10.1073/pnas.1010246107] [PMID: 21030679]
[27]
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[28]
Tools A. 2016.
[29]
Laxmi D, Priyadarshy S. HyperChem 6.03. Biotech Softw Internet Rep 2002; 3(1): 5-9.
[http://dx.doi.org/10.1089/152791602317250351]
[30]
Soezi M, Memarnejadian A, Aminzadeh S, et al. Toward the development of a single-round infection assay based on EGFP reporting for anti-HIV-1 drug discovery. Rep Biochem Mol Biol 2015; 4(1): 1-9.
[PMID: 26989744]
[31]
Zhao Q, Ernst JT, Hamilton AD, Debnath AK, Jiang S. XTT formazan widely used to detect cell viability inhibits HIV type 1 infection in vitro by targeting gp41. AIDS Res Hum Retroviruses 2002; 18(14): 989-97.
[http://dx.doi.org/10.1089/08892220260235353] [PMID: 12396451]
[32]
Safakish M, Hajimahdi Z, Zabihollahi R, Aghasadeghi MR, Vahabpour R, Zarghi A. Design, synthesis, and docking studies of new 2-benzoxazolinone derivatives as anti-HIV-1 agents. Med Chem Res 2017; 26(11): 2718-26.
[http://dx.doi.org/10.1007/s00044-017-1969-8]
[33]
Hajimahdi Z, Zarghi A, Zabihollahi R, Aghasadeghi MR. Synthesis, biological evaluation, and molecular modeling studies of new 1,3,4-oxadiazole- and 1,3,4-thiadiazole-substituted 4-oxo-4H-pyrido[1,2-a]pyrimidines as anti-HIV-1 agents. Med Chem Res 2013; 22(5): 2467-75.
[http://dx.doi.org/10.1007/s00044-012-0241-5]
[34]
Karimi N, Vahabpour Roudsari R, Azami Movahed M, Hajimahdi Z, Zarghi A. 4-(1-Benzyl-1H-benzo[d]imidazol-2-yl)-4-oxo-2-butenoic Acid Derivatives: Design, Synthesis and Anti-HIV-1 Activity. Iran J Pharm Res 2021; 20(1): 408-17.
[PMID: 34400969]
[35]
Hajimahdi Z, Zabihollahi R, Aghasadeghi MR, Zarghi A. Design, Synthesis, Docking Studies and Biological Activities Novel 2,3- Diaryl-4-Quinazolinone Derivatives as Anti-HIV-1 Agents. Curr HIV Res 2019; 17(3): 214-22.
[http://dx.doi.org/10.2174/1570162X17666190911125359] [PMID: 31518225]
[36]
Mahboubi Rabbani SMI, Vahabpour R, Hajimahdi Z, Zarghi A. Design, Synthesis, Molecular Modeling Studies and Biological Evaluation of N′-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents. Iran J Pharm Res 2019; 18(4): 1790-802.
[PMID: 32184846]
[37]
Ebrahimzadeh E, Tabatabai SA, Vahabpour R, Hajimahdi Z, Zarghi A. Design, Synthesis, Molecular Modeling Study and Biological Evaluation of New N′-Arylidene-pyrido [2,3-d]pyrimidine-5-carbohydrazide Derivatives as Anti-HIV-1 Agents. Iran J Pharm Res 2019; 18 (Suppl. 1): 237-48.
[PMID: 32802103]
[38]
Chetty V, Moodley D, Chuturgoon A. Evaluation of a 4th generation rapid HIV test for earlier and reliable detection of HIV infection in pregnancy. J Clin Virol 2012; 54(2): 180-4.
[http://dx.doi.org/10.1016/j.jcv.2012.02.021] [PMID: 22445263]
[39]
Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods 1991; 142(2): 257-65.
[http://dx.doi.org/10.1016/0022-1759(91)90114-U] [PMID: 1919029]
[40]
Safakish M, Hajimahdi Z, Aghasadeghi MR, Vahabpour R, Zarghi A. Design, synthesis, molecular modeling and anti-HIV assay of novel quinazolinone incorporated coumarin derivatives. Curr HIV Res 2020; 18(1): 41-51.
[http://dx.doi.org/10.2174/18734251MTAykODcuw] [PMID: 31820700]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy