Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Pharmacokinetic and Pharmacodynamic Evaluation of Telmisartan-loaded Novel Curcumin-tagged Solid Nanodispersion for the Treatment of Diabetic Nephropathy in an Animal Model

Author(s): Aruna Rawat, Vikas Jhawat*, Samrat Chauhan and Rohit Dutt

Volume 14, Issue 1, 2024

Published on: 16 November, 2023

Page: [67 - 80] Pages: 14

DOI: 10.2174/0122103031270911231106114419

Price: $65

Abstract

Aims: This study aimed to evaluate the therapeutic efficacy of telmisartan-loaded novel curcumin-tagged solid nanodispersion in streptozotocin-nicotinamide-induced diabetic nephropathy in Wistar rats.

Objectives: The objective of this study was to perform a comprehensive pharmacokinetic and pharmacodynamic evaluation of a novel curcumin-tagged solid nanodispersion loaded with telmisartan, with the aim of assessing its potential as a treatment for diabetic nephropathy in an animal model. Specifically, the following objectives will be addressed: formulation and characterization, in vitro evaluation, pharmacokinetics and pharmacodynamics evaluation, and comparative analysis.

Materials and Methods: Telmisartan-loaded curcumin-tagged solid nanodispersion was prepared using the emulsion solvent evaporation method. The optimized formulation was evaluated for pharmacokinetic and pharmacodynamic parameters in an animal model. Wistar rats were divided into 5 groups, with 6 animals in each group. Diabetes was induced using nicotinamide (240 mg/kg) and streptozotocin (55 mg/kg, i.p.) injections in the animals. After 30 to 45 days of introduction, diabetic nephropathy was manifested. The kidneys and pancreas were used for histological analysis and renal and pancreatic damage assessment.

Results: In-vivo studies showed better bioavailability with the t1/2 and Cmax of TLS-15 was 14.92 ± 0.47 hours and 0.32 ± 0.009, respectively, within 2 hours as compared to the t1/2 and Cmax of MP was 4.38 ± 0.19 hours and 0.19 ± 0.008 owing to the better dissolution due to solubility improvement. When compared to the commercially available product, TLS-15 was found to have blood glucose and body weight that were, respectively, 1.01 and 1.03 times higher. Kidney measures, such as serum urea and creatinine, were found to be 0.71 and 1.16 times lower for TLS-15, respectively, and albumin had a value that was 1.13 times higher than for the commercial formulation. Urine indicators, urine albumin, and creatinine estimations, as well as cytokine estimations, revealed that TLS-15 had creatinine levels that were 1.17 times higher and IL-6 levels that were 0.77 times higher than those of a commercial batch.

Conclusion: The findings strongly support the renoprotective and pancreatic protective effects of TLS and Cur (SND-Solid Nanodispersion) combined by lowering levels of cytokines factor (IL- 6), kidney, and lipid parameters. The postulated mechanism might be the combined inhibitory action of TLS and Cur.

Graphical Abstract

[1]
Samsu, N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/1497449] [PMID: 34307650]
[2]
Pradana, F.J.P.; Tuba, S. Novel diabetic nephropathy-based hypertension treatment for type-2 diabetes mellitus and CKD patients: A mini review. J. Med. Health Stud., 2023, 4(4), 197-201.
[3]
Rocco, M.V.; Berns, J.S.; Nally, J.V.; Kramer, H.; Choi, M.J. Kdoqi clinical practice guideline for diabetes and CKD: 2012 update. Am. J. Kidney Dis., 2012, 60(5), 850-886.
[http://dx.doi.org/10.1053/j.ajkd.2012.07.005] [PMID: 23067652]
[4]
Pillai, A.; Fulmali, D. A Narrative review of new treatment options for diabetic nephropathy. Cureus, 2023, 15(1), e33235.
[http://dx.doi.org/10.7759/cureus.33235] [PMID: 36733548]
[5]
Lakshmanan, A.P.; Watanabe, K.; Thandavarayan, R.A.; Sari, F.R.; Harima, M.; Giridharan, V.V.; Soetikno, V.; Kodama, M.; Aizawa, Y. Telmisartan attenuates oxidative stress and renal fibrosis in streptozotocin induced diabetic mice with the alteration of angiotensin-(1-7) mas receptor expression associated with its PPAR-γ agonist action. Free Radic. Res., 2011, 45(5), 575-584.
[http://dx.doi.org/10.3109/10715762.2011.560149] [PMID: 21381899]
[6]
Benson, S.C.; Pershadsingh, H.A.; Ho, C.I.; Chittiboyina, A.; Desai, P.; Pravenec, M.; Qi, N.; Wang, J.; Avery, M.A.; Kurtz, T.W. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension, 2004, 43(5), 993-1002.
[http://dx.doi.org/10.1161/01.HYP.0000123072.34629.57] [PMID: 15007034]
[7]
Jermain, S.V.; Brough, C.; Williams, R.O., III Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery - An update. Int. J. Pharm., 2018, 535(1-2), 379-392.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.051] [PMID: 29128423]
[8]
Gupta, D.S.; Kotwal, P.; Nandi, U.; Bharate, S.S. Amorphous solid dispersion of niclosamide with water‐soluble β‐cyclodextrins for dissolution and bioavailability enhancement. ChemistrySelect, 2023, 8(19), e202300492.
[http://dx.doi.org/10.1002/slct.202300492]
[9]
Schittny, A.; Huwyler, J.; Puchkov, M. Mechanisms of increased bioavailability through amorphous solid dispersions: A review. Drug Deliv., 2020, 27(1), 110-127.
[http://dx.doi.org/10.1080/10717544.2019.1704940] [PMID: 31885288]
[10]
Tabrizi, R.; Vakili, S.; Lankarani, K.B.; Akbari, M.; Mirhosseini, N.; Ghayour-Mobarhan, M.; Ferns, G.; Karamali, F.; Karamali, M.; Taghizadeh, M.; Kouchaki, E.; Asemi, Z. The effects of curcumin on glycemic control and lipid profiles among patients with metabolic syndrome and related disorders: A systematic review and metaanalysis of randomized controlled trials. Curr. Pharm. Des., 2018, 24(27), 3184-3199.
[http://dx.doi.org/10.2174/1381612824666180828162053] [PMID: 30156145]
[11]
Yang, H.; Xu, W.; Zhou, Z.; Liu, J.; Li, X.; Chen, L.; Weng, J.; Yu, Z. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repressing inflammatory signaling efficacies. Exp. Clin. Endocrinol. Diabetes, 2015, 123(6), 360-367.
[http://dx.doi.org/10.1055/s-0035-1545345] [PMID: 25875220]
[12]
Han, J.; Wei, Y.; Li, L.; Song, Y.; Pang, Z.; Qian, S.; Zhang, J.; Gao, Y.; Heng, W. Gelation elimination and crystallization inhibition by Co-amorphous strategy for amorphous curcumin. J. Pharm. Sci., 2023, 112(1), 182-194.
[http://dx.doi.org/10.1016/j.xphs.2022.07.014] [PMID: 35901945]
[13]
Jin, Q.; Liu, T.; Qiao, Y.; Liu, D.; Yang, L.; Mao, H.; Ma, F.; Wang, Y.; Peng, L.; Zhan, Y. Oxidative stress and inflammation in diabetic nephropathy: Role of polyphenols. Front. Immunol., 2023, 14, 1185317.
[http://dx.doi.org/10.3389/fimmu.2023.1185317] [PMID: 37545494]
[14]
Wong, J.J.L.; Yu, H.; Lim, L.M.; Hadinoto, K. A trade-off between solubility enhancement and physical stability upon simultaneous amorphization and nanonization of curcumin in comparison to amorphization alone. Eur. J. Pharm. Sci., 2018, 114, 356-363.
[http://dx.doi.org/10.1016/j.ejps.2018.01.010] [PMID: 29309874]
[15]
Sharma, K.; Das, B.; Siril, P.F. Molecular distribution of indomethacin: Impact on the precipitation of glassy curcumin ph-responsive nanoparticles with enhanced solubility. Cryst. Growth Des., 2020, 20(4), 2377-2389.
[http://dx.doi.org/10.1021/acs.cgd.9b01550]
[16]
Paswan, S.K.; Saini, T.R. Purification of drug loaded PLGA nanoparticles prepared by emulsification solvent evaporation using stirred cell ultrafiltration technique. Pharm. Res., 2017, 34(12), 2779-2786.
[http://dx.doi.org/10.1007/s11095-017-2257-5] [PMID: 28924739]
[17]
Pulingam, T.; Foroozandeh, P.; Chuah, J.A.; Sudesh, K. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials, 2022, 12(3), 576.
[http://dx.doi.org/10.3390/nano12030576] [PMID: 35159921]
[18]
Scherlie, R.; Janke, J. Quality by design as a tool in the optimisation of nanoparticle preparation-A case study of PLGA nanoparticles. MDPI Pharmaceut., 2021, 13, 1-14.
[19]
Kumar, Y.G.; Anusha, V.; Khan, A.; Sreeharshini, M.; Sravani, N.; Anzer, K.; Arbaz, S. Design, formulation and in vitro evaluation - solid lipid nanoparticles of enzalutamide. Int. J. Farmacia, 2023, 9(1), 1-6.
[20]
Alcalá-Alcalá, S.; Casarrubias-Anacleto, J.E.; Mondragón-Guillén, M.; Tavira-Montalvan, C.A.; Bonilla-Hernández, M.; Gómez-Galicia, D.L.; Gosset, G.; Meneses-Acosta, A. Melanin nanoparticles obtained from preformed recombinant melanin by bottom-Up and top-down approaches. polymers, 2023, 15(10), 2381.
[http://dx.doi.org/10.3390/polym15102381] [PMID: 37242955]
[21]
Tan, S.C.; Rajendran, R.; Bhattamisra, S.K.; Krishnappa, P.; Davamani, F.; Chitra, E.; Ambu, S.; Furman, B.; Candasamy, M. Effect of madecassoside in reducing oxidative stress and blood glucose in streptozotocin-nicotinamide-induced diabetes in rats. J. Pharm. Pharmacol., 2023, 75(8), 1034-1045.
[http://dx.doi.org/10.1093/jpp/rgad063] [PMID: 37402616]
[22]
Muhammad Khan, M.; Shah, M.A.; Kamal, M.; Ola, M.S.; Mehboob Ali, M.; Panichayupakaranant, P. Comparative antihyperglycemic and antihyperlipidemic effects of lawsone methyl ether and lawsone in nicotinamide-streptozotocin-induced diabetic rats. MDPI Metabolites, 2023, 13, 1-17.
[23]
Furman, B.L. Streptozotocin‐induced diabetic models in mice and rats. Curr. Protocols Pharmacol., 2015, 70(1), 47.1-, 20.
[http://dx.doi.org/10.1002/0471141755.ph0547s70] [PMID: 26331889]
[24]
Tinku, M.; Mujeeb, M.; Ahad, A.; Aqil, M.; Siddiqui, W.A.; Najmi, A.K.; Akhtar, M.; Shrivastava, A.; Qadir, A.; Moolakkadath, T. Ameliorative effect of rubiadin-loaded nanocarriers in STZ-NA-induced diabetic nephropathy in rats: Formulation optimization, molecular docking, and in vivo biological evaluation. Drug Deliv. Transl. Res., 2022, 12(3), 615-628.
[http://dx.doi.org/10.1007/s13346-021-00971-0] [PMID: 34013457]
[25]
Corremans, R.; Vervaet, B.A.; Dams, G.; D’Haese, P.C.; Verhulst, A. Metformin and canagliflozin are equally renoprotective in diabetic kidney disease but have no synergistic effect. Int. J. Mol. Sci., 2023, 24(10), 9043.
[http://dx.doi.org/10.3390/ijms24109043] [PMID: 37240387]
[26]
Nanda, J.; Mani, M.; Mishra, S.B.; Verma, N. Antihyperglycemic avtivity of plumeria alba linn. leaves extracts in streptozotocin-nicotinamide induced diabetic rats. Biomed. Pharmacol. J., 2023, 16(1), 567-571.
[http://dx.doi.org/10.13005/bpj/2638]
[27]
Kumar, V.; Rao, V.U.; Palacharla, S.K. Reverse phase HPLC method for simultaneous estimation of atorvastatin and telmisartan in tablet dosage form. J. Sci. Res. Pharm., 2013, 2(1), 15-20.
[28]
Panda, M. RP-HPLC method for determination of azelnidipine and telmisartan in pharmaceutical dosage form. Res. J. Pharma. Technol., 2023, 16(2), 502-515.
[29]
Rai, J.P.; Mohanty, P.K.; Prajapati, M.; Sharma, V.K. In-vivo bioavailability study of telmisartan complex in wistar rats. Int. J. Adv. Sci. Res., 2020, 11(4), 146-149.
[30]
Wang, X.N.; Li, Y.; Meng, L.; Ding, C.Y.; Dong, Z.J. Evaluation of influence of telmisartan on the pharmacokinetics and tissue distribution of canagliflozin in rats and mice. Ann. Palliat. Med., 2021, 10(3), 3086-3096.
[http://dx.doi.org/10.21037/apm-21-65] [PMID: 33752434]
[31]
Amaresh, P.; Bijon, K.J.; Amiyakanta, M. formulation and in-vivo evaluation of pharmacokinetics parameters of extended release matrix tablet containing drug benidipine hydrochloride by using PK solver software. Res. J. Pharma. Technol., 2022, 15(11), 1-11.
[32]
Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed., 2010, 99(3), 306-314.
[http://dx.doi.org/10.1016/j.cmpb.2010.01.007] [PMID: 20176408]
[33]
Benet, L.Z.; Patel, A.; Wakuda, H.; Xu, A. Calculating pharmacokinetic areas. Res. Square, 2022, 2022
[34]
Pei, D.; Tian, S.; Bao, Y.; Zhang, J.; Xu, D.; Piao, M. Protective effect of salidroside on streptozotocin-induced diabetic nephropathy by inhibiting oxidative stress and inflammation in rats via the Akt/GSK-3β signalling pathway. Pharm. Biol., 2022, 60(1), 1732-1738.
[http://dx.doi.org/10.1080/13880209.2022.2116055] [PMID: 36086879]
[35]
Rasal, P.B.; Kasar, G.N.; Mahajan, M.S.; Upaganlawar, A.B.; Upasani, C.D. Ameliorative effect of lycopene alone and in combination with co-enzyme Q10 in streptozotocin-induced diabetic nephropathy in experimental rats. Int. J. Plant Based Pharmaceut., 2023, 3(1), 123-130.
[http://dx.doi.org/10.29228/ijpbp.24]
[36]
Sathibabu Uddandrao, V.V.; Brahmanaidu, P.; Ravindarnaik, R.; Suresh, P.; Vadivukkarasi, S.; Saravanan, G. Restorative potentiality of S-allylcysteine against diabetic nephropathy through attenuation of oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic rats. Eur. J. Nutr., 2019, 58(6), 2425-2437.
[http://dx.doi.org/10.1007/s00394-018-1795-x] [PMID: 30062492]
[37]
Feigerlová, E.; Battaglia-Hsu, S.F. IL-6 signaling in diabetic nephropathy: From pathophysiology to therapeutic perspectives. Cytokine Growth Factor Rev., 2017, 37, 57-65.
[http://dx.doi.org/10.1016/j.cytogfr.2017.03.003] [PMID: 28363692]
[38]
Cavallo, F.R.; Golden, C.; Pearson-Stuttard, J.; Falconer, C.; Toumazou, C. The association between sedentary behaviour, physical activity and type 2 diabetes markers: A systematic review of mixed analytic approaches. PLoS One, 2022, 17(5), e0268289.
[http://dx.doi.org/10.1371/journal.pone.0268289] [PMID: 35544519]
[39]
Martín-Carro, B.; Martín-Vírgala, J.; Fernández-Villabrille, S.; Fernández-Fernández, A.; Pérez-Basterrechea, M.; Navarro-González, J.F.; Donate-Correa, J.; Mora-Fernández, C.; Dusso, A.S.; Carrillo-López, N.; Panizo, S.; Naves-Díaz, M.; Fernández-Martín, J.L.; Cannata-Andía, J.B.; Alonso-Montes, C. Role of klotho and AGE/RAGE-Wnt/β-catenin signalling pathway on the development of cardiac and renal fibrosis in diabetes. Int. J. Mol. Sci., 2023, 24(6), 5241.
[http://dx.doi.org/10.3390/ijms24065241]
[40]
Kaur, N.; Kishore, L.; Singh, R. Therapeutic effect of Linum usitatissimum L. in STZ-nicotinamide induced diabetic nephropathy via inhibition of AGE’s and oxidative stress. J. Food Sci. Technol., 2017, 54(2), 408-421.
[http://dx.doi.org/10.1007/s13197-016-2477-4] [PMID: 28242940]
[41]
Zhang, Y.; Liao, H.; Shen, D.; Zhang, X.; Wang, J.; Zhang, X.; Wang, X.; Li, R. Renal protective effects of Inonotus obliquus on high fat diet/Streptozotocin-induced diabetic kidney disease rats: Biochemical, color doppler ultrasound and histopathological evidence. Front. Pharmacol., 2022, 12, 743931.
[http://dx.doi.org/10.3389/fphar.2021.743931] [PMID: 35111043]
[42]
Hamid, I.S.; Fikri, F.; Purnama, M.T.E.; Solfaine, R.; Chhetri, S. Effects of Tithonia diversifolia on blood glucose levels, renal and pancreatic histopathology of Wistar rats: A model of diabetic nephropathy. Indian Vet. J., 2022, 99(11), 37-39.
[43]
Alkholief, M.; Kalam, M.A.; Anwer, M.K.; Alshamsan, A. Effect of solvents, stabilizers and the concentration of stabilizers on the physical properties of poly(d,l-lactide-co-glycolide) nanoparticles: Encapsulation, in vitro release of indomethacin and cytotoxicity against HepG2-cell. Pharmaceutics, 2022, 14(4), 870.
[http://dx.doi.org/10.3390/pharmaceutics14040870] [PMID: 35456705]
[44]
Du, B.; Yu, M.; Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater., 2018, 3(10), 358-374.
[http://dx.doi.org/10.1038/s41578-018-0038-3]
[45]
Han, F.; Zhang, W.; Wang, Y.; Xi, Z.; Chen, L.; Li, S. Applying supercritical fluid technology to prepare ibuprofen solid dispersions with improved oral bioavailability. MDPI Pharmaceut., 2019, 11(2), 1-13.
[46]
He, X.; Li, G.; Chen, Y.; Xiao, Q.; Yu, X.; Yu, X.; Lu, X.; Xiang, Z. Pharmacokinetics and Pharmacodynamics of the combination of Rhein and Curcumin in the treatment of chronic kidney disease in rats. Front. Pharmacol., 2020, 11, 573118.
[http://dx.doi.org/10.3389/fphar.2020.573118] [PMID: 33424589]
[47]
Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Enhanced dissolution and bioavailability of grapefruit flavonoid Naringenin by solid dispersion utilizing fourth generation carrier. Drug Dev. Ind. Pharm., 2015, 41(5), 772-779.
[http://dx.doi.org/10.3109/03639045.2014.902466] [PMID: 24669978]
[48]
Wei, Y.; Quan, L.; Zhou, C.; Zhan, Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine, 2018, 13(12), 1495-1512.
[http://dx.doi.org/10.2217/nnm-2018-0040] [PMID: 29972677]
[49]
Lu, J.; Gao, X.; Wang, S.; He, Y.; Ma, X.; Zhang, T.; Liu, X. Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials. Exploration, 2023, 3(1), 20220045.
[http://dx.doi.org/10.1002/EXP.20220045] [PMID: 37323617]
[50]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[51]
Sirisha, I.A.; Gaur, G.S.; Pal, P.; Bobby, Z.; Balakumar, B.; Pal, G.K. Effect of honey and insulin treatment on oxidative stress and nerve conduction in an experimental model of diabetic neuropathy Wistar rats. PLoS One, 2020, 1-16.
[PMID: 33449943]
[52]
Samsu, N.; Soeharto, S.; Rifai, M.; Rudijanto, A. Rosmarinic acid monotherapy is better than the combination of rosmarinic acid and telmisartan in preventing podocyte detachment and inhibiting the progression of diabetic nephropathy in rats. Biologics, 2019, 13, 179-190.
[PMID: 31564826]
[53]
Abdel-Wahab, A.F.; Mahmoud, W.; Al-Harizy, R. Comparative renal protective effects of canagliflozin and telmisartan in a rat model of diabetic nephropathy. HSOA J. Nephrol. Ren. Ther., 2016, 2(2), 1-8.
[http://dx.doi.org/10.24966/NRT-7313/100010]
[54]
Tahara, A.; Takasu, T. Effects of the SGLT2 inhibitor ipragliflozin on various diabetic symptoms and progression of overt nephropathy in type 2 diabetic mice. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(4), 395-406.
[http://dx.doi.org/10.1007/s00210-018-1469-5] [PMID: 29374293]
[55]
Wu, W.; Geng, H.; Liu, Z.; Li, H.; Zhu, Z. Effect of curcumin on rats/mice with diabetic nephropathy: A systematic review and Meta-analysis of randomized controlled trials. J. Tradit. Chin. Med., 2014, 34(4), 419-429.
[http://dx.doi.org/10.1016/S0254-6272(15)30041-8] [PMID: 25185359]
[56]
Singla, K.; Singh, R. Nephroprotective effect of Curculigo orchiodies in streptozotocin-nicotinamide induced diabetic nephropathy in wistar rats. J. Ayurveda Integr. Med., 2020, 11(4), 399-404.
[http://dx.doi.org/10.1016/j.jaim.2020.05.006] [PMID: 32782114]
[57]
Elmarakby, A.A.; Sullivan, J.C. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc. Ther., 2012, 30(1), 49-59.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00218.x] [PMID: 20718759]
[58]
Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Butler, A.E.; Sahebkar, A. Therapeutic potential of curcumin in diabetic complications. Pharmacol. Res., 2018, 136, 181-193.
[http://dx.doi.org/10.1016/j.phrs.2018.09.012] [PMID: 30219581]
[59]
Emami, E.; Heidari-Soureshjani, S.; Sherwin, C.M.T. Anti-inflammatory response to curcumin supplementation in chronic kidney disease and hemodialysis patients: A systematic review and meta-analysis. Avicenna J. Phytomed., 2022, 12(6), 576-588.
[PMID: 36583173]
[60]
Kumari, A.; Sodum, N.; Ravichandiran, V.; Kumar, N. Role of sirt-1 as a target for treatment and prevention of diabetic nephropathy: A review. Curr. Mol. Pharmacol., 2023, 16(8), 811-831.
[PMID: 36624644]
[61]
Babu, P.S.; Srinivasan, K. Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats. Mol. Cell. Biochem., 1998, 181(1/2), 87-96.
[http://dx.doi.org/10.1023/A:1006821828706] [PMID: 9562245]
[62]
Venkatesan, A.; Roy, A.; Kulandaivel, S.; Natesan, V.; Kim, S.J. p-Coumaric acid nanoparticles ameliorate diabetic nephropathy via regulating mRNA expression of KIM-1 and GLUT-2 in streptozotocin-induced diabetic rats. Metabolites, 2022, 12(12), 1166.
[http://dx.doi.org/10.3390/metabo12121166] [PMID: 36557204]
[63]
Ibrahim, Z.S.; Alkafafy, M.E.; Ahmed, M.M.; Soliman, M.M. Renoprotective effect of curcumin against the combined oxidative stress of diabetes and nicotine in rats. Mol. Med. Rep., 2016, 13(4), 3017-3026.
[http://dx.doi.org/10.3892/mmr.2016.4922] [PMID: 26936435]
[64]
Rizzo, L.Y.; Theek, B.; Storm, G.; Kiessling, F.; Lammers, T. Recent progress in nanomedicine: Therapeutic, diagnostic and theranostic applications. Curr. Opin. Biotechnol., 2013, 24(6), 1159-1166.
[http://dx.doi.org/10.1016/j.copbio.2013.02.020] [PMID: 23578464]
[65]
Akhtar, M. Diabetic kidney disease: Past and present. Adv. Anat. Pathol., 2019, 1-11.
[66]
El Rabey, H.A.; Al-Seeni, M.N.; Bakhashwain, A.S. The antidiabetic activity of nigella sativa and propolis on streptozotocin-induced diabetes and diabetic nephropathy in male rats. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-15.
[67]
Wardani, G.; Nugraha, J.; Mustafa, M.R.; Sudjarwo, S.A. Antioxidative stress and anti-inflammatory activity of fucoidan nanoparticles against nephropathy of streptozotocin-induced diabetes in rats. Evid. Based Complement. Alternat. Med., 2022, 2022(3), 1-10.
[http://dx.doi.org/10.1155/2022/3405871] [PMID: 35685736]
[68]
Shankland, S.J. The podocyte’s response to injury: Role in proteinuria and glomerulosclerosis. Kidney Int., 2006, 69(12), 2131-2147.
[http://dx.doi.org/10.1038/sj.ki.5000410] [PMID: 16688120]
[69]
Arif, E.; Nihalani, D. Glomerular filtration barrier assembly: An insight. HHS Public Access, 2013, 1(4), 3-45.
[70]
Oliveira, S.; Monteiro-Alfredo, T.; Silva, S.; Matafome, P. Curcumin derivatives for Type 2 diabetes management and prevention of complications. Arch. Pharm. Res., 2020, 43(6), 567-581.
[http://dx.doi.org/10.1007/s12272-020-01240-3] [PMID: 32557163]
[71]
Marshall, C.B. Rethinking glomerular basement membrane thickening in diabetic nephropathy: Adaptive or pathogenic? Am. J. Physiol. Renal Physiol., 2016, 311(5), F831-F843.
[http://dx.doi.org/10.1152/ajprenal.00313.2016] [PMID: 27582102]
[72]
Ibrahim, S.S.; Rizk, S.M. Nicotinamide: A cytoprotectant against streptozotocin induced diabetic damage in wistar rat brains. Afr. J. Biochem. Res., 2008, 174-180.
[73]
Xu, X.; Cai, Y.; Yu, Y. Effects of a novel curcumin derivative on the functions of kidney in streptozotocin-induced type 2 diabetic rats. Inflammopharmacology, 2018, 26(5), 1257-1264.
[http://dx.doi.org/10.1007/s10787-018-0449-1] [PMID: 29582239]
[74]
Darenskaya, M.; Kolesnikov, S.; Semenova, N.; Kolesnikova, L. Diabetic nephropathy: Significance of determining oxidative stress and opportunities for antioxidant therapies. Int. J. Mol. Sci., 2023, 24(15), 12378.
[http://dx.doi.org/10.3390/ijms241512378] [PMID: 37569752]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy