Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Review Article

The Relationship Between Sarcopenia And Proteinuria, What Do We Know?

Author(s): Ozkan Gungor, Sena Ulu, Ayca Inci*, Kenan Topal and Kamyar Kalantar-Zadeh

Volume 17, Issue 2, 2024

Published on: 15 November, 2023

Page: [93 - 102] Pages: 10

DOI: 10.2174/0118746098232969231106091204

Price: $65

Abstract

Sarcopenia is one of the most common geriatric syndromes in the elderly. It is defined as a decrease in muscle mass and function, and it can lead to physical disability, falls, poor quality of life, impaired immune system, and death. It is known that, the frequency of sarcopenia increases in the kidney patient population compared to healthy individuals. Although it is known that kidney disease can lead to sarcopenia; our knowledge of whether sarcopenia causes kidney disease is limited. Prior studies have suggested that protein energy wasting may be a risk of de novo CKD. Proteinuria is an important manifestation of kidney disease and there is a relationship between sarcopenia and proteinuria in diabetes, geriatric population, kidney transplant, and nephrotic syndrome. Does proteinuria cause sarcopenia or vice versa? Are they both the results of common mechanisms? This issue is not clearly known. In this review, we examined the relationship between sarcopenia and proteinuria in the light of other studies.

Graphical Abstract

[1]
Rosenberg IH. Sarcopenia: Origins and clinical relevance. J Nutr 1997; 127(5): 990S-1S.
[http://dx.doi.org/10.1093/jn/127.5.990S] [PMID: 9164280]
[2]
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010; 39(4): 412-23.
[http://dx.doi.org/10.1093/ageing/afq034] [PMID: 20392703]
[3]
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019; 48(1): 16-31.
[http://dx.doi.org/10.1093/ageing/afy169] [PMID: 30312372]
[4]
Cruz-Jentoft AJ, Landi F, Schneider SM, et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014; 43(6): 748-59.
[http://dx.doi.org/10.1093/ageing/afu115] [PMID: 25241753]
[5]
Castillo-Olea C, García-Zapirain Soto B, Carballo Lozano C, Zuñiga C. Automatic classification of sarcopenia level in older adults: A case study at tijuana general hospital. Int J Environ Res Public Health 2019; 16(18): 3275.
[http://dx.doi.org/10.3390/ijerph16183275] [PMID: 31489909]
[6]
Morley JE. Hormones and Sarcopenia. Curr Pharm Des 2017; 23(30): 4484-92.
[PMID: 27881060]
[7]
Sgrò P, Sansone M, Sansone A, et al. Physical exercise, nutrition and hormones: Three pillars to fight sarcopenia. Aging Male 2019; 22(2): 75-88.
[http://dx.doi.org/10.1080/13685538.2018.1439004] [PMID: 29451419]
[8]
Ábrigo J, Elorza AA, Riedel CA, et al. Role of oxidative stress as key regulator of muscle wasting during cachexia. Oxid Med Cell Longev 2018; 2018: 1-17.
[http://dx.doi.org/10.1155/2018/2063179] [PMID: 29785242]
[9]
Gungor O, Sevinc M, Ulu S, Kocyigit I. Sarcopenia and cardiovascular disease in patients with and without kidney disease: What do we know? Int Urol Nephrol 2022; 55(5): 1161-71.
[http://dx.doi.org/10.1007/s11255-022-03393-0] [PMID: 36327007]
[10]
Yang J, Jiang F, Yang M, Chen Z. Sarcopenia and nervous system disorders. J Neurol 2022; 269(11): 5787-97.
[http://dx.doi.org/10.1007/s00415-022-11268-8] [PMID: 35829759]
[11]
Souza VA, Oliveira D, Barbosa SR, et al. Sarcopenia in patients with chronic kidney disease not yet on dialysis: Analysis of the prevalence and associated factors. PLoS One 2017; 12(4): e0176230.
[http://dx.doi.org/10.1371/journal.pone.0176230] [PMID: 28448584]
[12]
Pereira RA, Cordeiro AC, Avesani CM, et al. Sarcopenia in chronic kidney disease on conservative therapy: Prevalence and association with mortality. Nephrol Dial Transplant 2015; 30(10): 1718-25.
[http://dx.doi.org/10.1093/ndt/gfv133] [PMID: 25999376]
[13]
Bouchi R, Fukuda T, Takeuchi T, Minami I, Yoshimoto T, Ogawa Y. Sarcopenia is associated with incident albuminuria in patients with type 2 diabetes: A retrospective observational study. J Diabetes Investig 2017; 8(6): 783-7.
[http://dx.doi.org/10.1111/jdi.12636] [PMID: 28130832]
[14]
Moreno-Gonzalez R, Corbella X, Mattace-Raso F, et al. Prevalence of sarcopenia in community-dwelling older adults using the updated EWGSOP2 definition according to kidney function and albuminuria: The Screening for CKD among Older People across Europe (SCOPE) study. BMC Geriatr 2020; 20(S1): 327.
[15]
Menna Barreto APM, Barreto Silva MI, Pontes KSS, et al. Sarcopenia and its components in adult renal transplant recipients: prevalence and association with body adiposity. Br J Nutr 2019; 122(12): 1386-97.
[http://dx.doi.org/10.1017/S0007114519002459] [PMID: 31551095]
[16]
Matyjek A, Literacki S, Niemczyk S, Rymarz A. Protein energy wasting associated with nephrotic syndrome – the comparison of metabolic pattern in severe nephrosis to different stages of chronic kidney disease. BMC Nephrol 2020; 21(1): 346.
[http://dx.doi.org/10.1186/s12882-020-02003-4] [PMID: 32795277]
[17]
Yoo JH, Kim G, Park SW, et al. Effects of low skeletal muscle mass and sarcopenic obesity on albuminuria: A 7-year longitudinal study. Sci Rep 2020; 10(1): 5774.
[http://dx.doi.org/10.1038/s41598-020-62841-y] [PMID: 32238873]
[18]
Hwang D, Cho MR, Choi M, Lee SH, Park Y. Association between sarcopenia and dipstick proteinuria in the elderly population: The korea national health and nutrition examination surveys 2009–2011. Korean J Fam Med 2017; 38(6): 372-9.
[http://dx.doi.org/10.4082/kjfm.2017.38.6.372] [PMID: 29209478]
[19]
Hara A, Tsujiguchi H, Suzuki K, et al. Relationship between handgrip strength and albuminuria in community-dwelling elderly Japanese subjects: The Shika Study. Biomarkers 2020; 25(7): 587-93.
[http://dx.doi.org/10.1080/1354750X.2020.1819418] [PMID: 32893687]
[20]
Xia L, Zhao R, Wan Q, et al. Sarcopenia and adverse health‐related outcomes: An umbrella review of meta‐analyses of observational studies. Cancer Med 2020; 9(21): 7964-78.
[http://dx.doi.org/10.1002/cam4.3428] [PMID: 32924316]
[21]
Kim TN, Lee EJ, Hong JW, et al. Relationship between sarcopenia and albuminuria. Medicine 2016; 95(3): e2500.
[http://dx.doi.org/10.1097/MD.0000000000002500] [PMID: 26817888]
[22]
Bůžková P, Barzilay JI, Fink HA. et al. Higher albumin:Creatinine ratio and lower estimated glomerular filtration rate are potential risk factors for decline of physical performance in the elderly: the Cardiovascular Health Study. Clin Kidney J 2019; 12(6): 788-94.
[http://dx.doi.org/10.1093/ckj/sfz024] [PMID: 31807292]
[23]
Han E, Lee Y, Kim G, et al. Sarcopenia is associated with albuminuria independently of hypertension and diabetes: KNHANES 2008–2011. Metabolism 2016; 65(10): 1531-40.
[http://dx.doi.org/10.1016/j.metabol.2016.07.003] [PMID: 27621188]
[24]
Glassock RJ, Rule AD. The implications of anatomical and functional changes of the aging kidney: with an emphasis on the glomeruli. Kidney Int 2012; 82(3): 270-7.
[http://dx.doi.org/10.1038/ki.2012.65] [PMID: 22437416]
[25]
Lee Y, Kim JE, Roh YH, et al. The combination of vitamin D deficiency and mild to moderate chronic kidney disease is associated with low bone mineral density and deteriorated femoral microarchitecture: Results from the KNHANES 2008-2011. J Clin Endocrinol Metab 2014; 99(10): 3879-88.
[http://dx.doi.org/10.1210/jc.2013-3764] [PMID: 24878040]
[26]
Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res 2004; 12(12): 1995-2004.
[http://dx.doi.org/10.1038/oby.2004.250] [PMID: 15687401]
[27]
Schrager MA, Metter EJ, Simonsick E, et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol 2007; 102(3): 919-25.
[http://dx.doi.org/10.1152/japplphysiol.00627.2006] [PMID: 17095641]
[28]
Robinson ES, Fisher ND, Forman JP, Curhan GC. Physical activity and albuminuria. Am J Epidemiol 2010; 171(5): 515-21.
[http://dx.doi.org/10.1093/aje/kwp442] [PMID: 20133515]
[29]
Yang S, Xiao F, Pan L, et al. Association of serum irisin and body composition with chronic kidney disease in obese Chinese adults: A cross-sectional study. BMC Nephrol 2015; 16(1): 16.
[http://dx.doi.org/10.1186/s12882-015-0009-5] [PMID: 25884312]
[30]
Wang J, Wang X, Gu Y, et al. Vitamin D is related to handgrip strength in adult men aged 50 years and over: A population study from the TCLSIH cohort study. Clin Endocrinol 2019; 90(5): 753-65.
[http://dx.doi.org/10.1111/cen.13952] [PMID: 30776142]
[31]
Kim BJ, Kwak MK, Lee SH, Koh JM. Lack of association between vitamin d and hand grip strength in asians: A Nationwide population-based study. Calcif Tissue Int 2019; 104(2): 152-9.
[http://dx.doi.org/10.1007/s00223-018-0480-7] [PMID: 30283988]
[32]
Kitsu T, Kabasawa K, Ito Y, et al. Low serum 25-hydroxyvitamin D is associated with low grip strength in an older Japanese population. J Bone Miner Metab 2020; 38(2): 198-204.
[http://dx.doi.org/10.1007/s00774-019-01040-w] [PMID: 31420750]
[33]
Timmerman KL, Volpi E. Endothelial function and the regulation of muscle protein anabolism in older adults. Nutr Metab Cardiovasc Dis 2013; 23(1): S44-50.
[http://dx.doi.org/10.1016/j.numecd.2012.03.013] [PMID: 22902187]
[34]
Parvanova AI, Trevisan R, Iliev IP, et al. Insulin resistance and microalbuminuria: A cross-sectional, case-control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes 2006; 55(5): 1456-62.
[http://dx.doi.org/10.2337/db05-1484] [PMID: 16644705]
[35]
Sumukadas D, Struthers AD, McMurdo MET. Sarcopenia--a potential target for Angiotensin-converting enzyme inhibition? Gerontology 2006; 52(4): 237-42.
[http://dx.doi.org/10.1159/000093656] [PMID: 16849867]
[36]
Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative review on sarcopenia in type 2 diabetes mellitus: Prevalence and associated factors. Nutrients 2021; 13(1): 183.
[http://dx.doi.org/10.3390/nu13010183] [PMID: 33435310]
[37]
Anagnostis P, Gkekas NK, Achilla C, et al. Type 2 diabetes mellitus is associated with increased risk of sarcopenia: A systematic review and meta-analysis. Calcif Tissue Int 2020; 107(5): 453-63.
[http://dx.doi.org/10.1007/s00223-020-00742-y] [PMID: 32772138]
[38]
Veronese N, Pizzol D, Demurtas J, et al. Association between sarcopenia and diabetes: A systematic review and meta-analysis of observational studies. Eur Geriatr Med 2019; 10(5): 685-96.
[http://dx.doi.org/10.1007/s41999-019-00216-x] [PMID: 34652699]
[39]
Pechmann LM, Jonasson TH, Canossa VS, et al. Sarcopenia in type 2 diabetes mellitus: A cross-sectional observational study. Int J Endocrinol 2020; 2020: 1-9.
[http://dx.doi.org/10.1155/2020/7841390] [PMID: 33178269]
[40]
Ziaaldini MM, Marzetti E, Picca A, Murlasits Z. Biochemical pathways of sarcopenia and their modulation by physical exercise: A narrative review. Front Med 2017; 4: 167.
[http://dx.doi.org/10.3389/fmed.2017.00167]
[41]
Groop PH, Forsblom C, Thomas MC. Mechanisms of Disease: Pathway-selective insulin resistance and microvascular complications of diabetes. Nat Clin Pract Endocrinol Metab 2005; 1(2): 100-10.
[http://dx.doi.org/10.1038/ncpendmet0046] [PMID: 16929378]
[42]
Tejada T, Catanuto P, Ijaz A, et al. Failure to phosphorylate AKT in podocytes from mice with early diabetic nephropathy promotes cell death. Kidney Int 2008; 73(12): 1385-93.
[http://dx.doi.org/10.1038/ki.2008.109] [PMID: 18385666]
[43]
Ida S, Kaneko R, Imataka K, Murata K. Association between sarcopenia and renal function in patients with diabetes: A systematic review and meta-analysis. J Diabetes Res 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/1365189] [PMID: 31828155]
[44]
Chang CJ, Lin CH, Hsieh HM, et al. Risk of sarcopenia among older persons with Type 2 diabetes mellitus with different status of albuminuria: A dose-responsive association. Arch Gerontol Geriatr 2021; 95: 104338.
[http://dx.doi.org/10.1016/j.archger.2021.104338] [PMID: 33652335]
[45]
Carter CE, Gansevoort RT, Scheven L, et al. Influence of urine creatinine on the relationship between the albumin-to-creatinine ratio and cardiovascular events. Clin J Am Soc Nephrol 2012; 7(4): 595-603.
[http://dx.doi.org/10.2215/CJN.09300911] [PMID: 22383750]
[46]
Lee YL, Jin H, Lim JY, Lee SY. Relationship between low handgrip strength and chronic kidney disease: KNHANES 2014-2017. J Ren Nutr 2021; 31(1): 57-63.
[http://dx.doi.org/10.1053/j.jrn.2020.03.002] [PMID: 32381354]
[47]
Lim SY, Lee KB, Kim H, Hyun YY. Low Skeletal muscle mass predicts incident dipstick albuminuria in korean adults without chronic kidney disease: A prospective cohort study. Nephron J 2019; 141(2): 105-11.
[http://dx.doi.org/10.1159/000494392] [PMID: 30415254]
[48]
Low S, Pek S, Moh A, et al. Low muscle mass is associated with progression of chronic kidney disease and albuminuria – An 8-year longitudinal study in Asians with Type 2 Diabetes. Diabetes Res Clin Pract 2021; 174: 108777.
[http://dx.doi.org/10.1016/j.diabres.2021.108777] [PMID: 33745995]
[49]
Kim TN, Choi KM. The implications of sarcopenia and sarcopenic obesity on cardiometabolic disease. J Cell Biochem 2015; 116(7): 1171-8.
[http://dx.doi.org/10.1002/jcb.25077] [PMID: 25545054]
[50]
Ozkayar N, Altun B, Halil M, et al. Evaluation of sarcopenia in renal transplant recipients. Nephrourol Mon 2014; 6(4): e20055.
[http://dx.doi.org/10.5812/numonthly.20055] [PMID: 25695027]
[51]
Zingerman B, Erman A, Mashraki T, Chagnac A, Rozen-Zvi B, Rahamimov R. Association of obesity and muscle mass with risk of albuminuria in renal transplant recipients. J Nephrol 2021; 34(4): 1315-25.
[http://dx.doi.org/10.1007/s40620-020-00883-1] [PMID: 33098523]
[52]
Kaysen GA. Albumin metabolism in the nephrotic syndrome: The effect of dietary protein intake. Am J Kidney Dis 1988; 12(6): 461-80.
[http://dx.doi.org/10.1016/S0272-6386(88)80097-0] [PMID: 3057880]
[53]
Jiang F, Bo Y, Cui T, et al. Estimating the hydration status in nephrotic patients by leg electrical resistivity measuring method. Nephrology 2010; 15(4): 476-9.
[http://dx.doi.org/10.1111/j.1440-1797.2010.01267.x] [PMID: 20609101]
[54]
Gungor O, Demirci MS, Kircelli F, et al. Increased arterial stiffness in patients with nephrotic syndrome. Clin Nephrol 2013; 79(1): 1-6.
[http://dx.doi.org/10.5414/CN107760] [PMID: 22948122]
[55]
National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39(2): S1-S266.
[PMID: 11904577]
[56]
Lim D, Lee DY, Cho SH, et al. Diagnostic accuracy of urine dipstick for proteinuria in older outpatients. Kidney Res Clin Pract 2014; 33(4): 199-203.
[http://dx.doi.org/10.1016/j.krcp.2014.10.003] [PMID: 26885477]
[57]
Verma V, Kant R, Sunnoqrot N, Gambert SR. Proteinuria in the elderly: Evaluation and management. Int Urol Nephrol 2012; 44(6): 1745-51.
[http://dx.doi.org/10.1007/s11255-012-0252-7] [PMID: 22826147]
[58]
Wen CP, Yang YC, Tsai MK, Wen SF. Urine dipstick to detect trace proteinuria: An underused tool for an underappreciated risk marker. Am J Kidney Dis 2011; 58(1): 1-3.
[http://dx.doi.org/10.1053/j.ajkd.2011.05.007] [PMID: 21684434]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy