Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Combining Network Pharmacology, Molecular Docking and Preliminary Experiments to Explore the Mechanism of Action of FZKA Formula on Non-small Cell Lung Cancer

Author(s): Zhuixing Liu, Jie Zhang, Jinpeng Liu*, Lihong Guo, Guangwei Chen, Yu Fang and Yang Yang*

Volume 30, Issue 12, 2023

Published on: 13 November, 2023

Page: [1038 - 1047] Pages: 10

DOI: 10.2174/0109298665268153231024111622

Price: $65

Abstract

Background: Clinically, Fuzhengkangai formulation (FZKA) has been proven to have significant therapeutic effects on non-small lung cancer (NSCLC), although the mechanism is unknown. We aimed to explore the potential mechanism of FZKA in the treatment of NSCLC in this study.

Methods: We obtained the active components and targets of FZKA by TCMSP. The target genes of NSCLC were searched from OMIM, GEO (GSE18842), and GeneCards database. Cytoscape (3.7.2) software was used to construct a “drug-compound-cross-target interaction” interaction network, and the STING database was used to analyze previous cross-target interactions. Meanwhile, the results were visualized and processed by performing GO enrichment analysis and KEGG signaling pathway enrichment analysis at the target site. The core targets were docked with active components through AutoDockTools-1.5.6 software. Finally, we used cellular experiments to validate the bioinformatics predictions.

Results: There were 40 active and 465 potential genes from the TCMSP database. Key active chemicals, namely Quercetin, Kaempferol, Luteolin, and Tanshinone IIA, and 176 targets were deemed as targets of FZKA against NSCLC by PPI network analysis. GO and KEGG enrichment analyses suggest that FZKA acts primarily through the PI3K-AKT and MAPK signaling pathways in the treatment of NSCLC. Moreover, cellular assays showed that Quercetin, Kaempferol, Luteolin, and Tanshinone IIA not only reduced the viability of A549 cells and promoted apoptosis but also significantly decreased the p-AKT/AKT and p-ERK1/2/ERK1/2 ratios.

Conclusion: Our data suggested that FZKA can be involved in the treatment of NSCLC through multiple components, targets and pathways.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Wu, F.; Wang, L.; Zhou, C. Lung cancer in China: Current and prospect. Curr. Opin. Oncol., 2021, 33(1), 40-46.
[http://dx.doi.org/10.1097/CCO.0000000000000703] [PMID: 33165004]
[4]
Wang, C.; Wang, P.; Chen, W.; Bai, Y. Mechanisms of Gynostemma pentaphyllum against non‐alcoholic fibre liver disease based on network pharmacology and molecular docking. J. Cell. Mol. Med., 2022, 26(13), 3760-3771.
[http://dx.doi.org/10.1111/jcmm.17410] [PMID: 35665440]
[5]
Zhao, M.; Chen, Y.; Wang, C.; Xiao, W.; Chen, S.; Zhang, S. Huo-xiang-zheng-qisystems pharmacology dissection of multi-scale mechanisms of action of formula for the treatment of gastrointestinal diseases. Front. Pharmacol., 2018, 9, 1448.
[http://dx.doi.org/10.3389/fphar.2018.01448] [PMID: 30687082]
[6]
Huang, J.; Chen, F.; Zhong, Z.; Tan, H.Y.; Wang, N.; Liu, Y.; Fang, X.; Yang, T.; Feng, Y. Interpreting the pharmacological mechanisms of huachansu capsules on hepatocellular carcinoma through combining network pharmacology and experimental evaluation. Front. Pharmacol., 2020, 11, 414.
[http://dx.doi.org/10.3389/fphar.2020.00414] [PMID: 32308626]
[7]
Efferth, T.; Li, P.C.H.; Konkimalla, V.S.B.; Kaina, B. From traditional Chinese medicine to rational cancer therapy. Trends Mol. Med., 2007, 13(8), 353-361.
[http://dx.doi.org/10.1016/j.molmed.2007.07.001] [PMID: 17644431]
[8]
Duflos, A.; Kruczynski, A.; Barret, J.M. Novel aspects of natural and modified vinca alkaloids. Curr. Med. Chem. Anticancer Agents, 2012, 2(1), 55-70.
[http://dx.doi.org/10.2174/1568011023354452] [PMID: 12678751]
[9]
Wang, M.; Wang, S.; Su, Q.; Ma, T. Effect of combining early chemotherapy with zhipu liujunzi decoction under the concept of strengthening and consolidating body resistance for gastric cancer patients and nursing strategy. Contrast Media Mol. Imaging, 2021, 2021, 1-7.
[http://dx.doi.org/10.1155/2021/2135924] [PMID: 34934408]
[10]
Kim, S.; Shoemaker, B.A.; Bolton, E.E.; Bryant, S.H. Finding potential multitarget ligands using pubChem. Methods Mol. Biol., 2018, 1825, 63-91.
[http://dx.doi.org/10.1007/978-1-4939-8639-2_2] [PMID: 30334203]
[11]
Luo, Q; Shi, X; Ding, J; Ma, Z; Chen, X; Leng, Y Network pharmacology integrated molecular docking reveals the antiosteosarcoma mechanism of biochanin A. Evid. Based Complement. Alternat. Med., 2019, 2019, 1410495.
[12]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[13]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[14]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[15]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 2009, 37(1), 1-13.
[http://dx.doi.org/10.1093/nar/gkn923] [PMID: 19033363]
[16]
Zhang, J.; Liu, X.; Zhou, W.; Cheng, G.; Wu, J.; Guo, S.; Jia, S.; Liu, Y.; Li, B.; Zhang, X.; Wang, M. A bioinformatics investigation into molecular mechanism of Yinzhihuang granules for treating hepatitis B by network pharmacology and molecular docking verification. Sci. Rep., 2020, 10(1), 11448.
[http://dx.doi.org/10.1038/s41598-020-68224-7] [PMID: 32651427]
[17]
Song, X.; Zhang, Y.; Dai, E.; Wang, L.; Du, H. Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking. Int. Immunopharmacol., 2020, 80, 106179.
[http://dx.doi.org/10.1016/j.intimp.2019.106179] [PMID: 31972422]
[18]
Zhang, X.; Shen, T.; Zhou, X.; Tang, X.; Gao, R.; Xu, L.; Wang, L.; Zhou, Z.; Lin, J.; Hu, Y. Network pharmacology based virtual screening of active constituents of Prunella vulgaris L. and the molecular mechanism against breast cancer. Sci. Rep., 2020, 10(1), 15730.
[http://dx.doi.org/10.1038/s41598-020-72797-8] [PMID: 32978480]
[19]
Fan, J.; Zhou, J.; Qu, Z.; Peng, H.; Meng, S.; Peng, Y.; Liu, T.; Luo, Q.; Dai, L. Network pharmacology and molecular docking elucidate the pharmacological mechanism of the OSTEOWONDER capsule for treating osteoporosis. Front. Genet., 2022, 13, 833027.
[http://dx.doi.org/10.3389/fgene.2022.833027] [PMID: 35295951]
[20]
Wang, J.; Wong, Y.K.; Liao, F. What has traditional Chinese medicine delivered for modern medicine? Expert Rev. Mol. Med., 2018, 20, e4.
[http://dx.doi.org/10.1017/erm.2018.3] [PMID: 29747718]
[21]
Chen, W.J.; Livneh, H.; Chen, C.H.; Huang, H.J.; Liu, W.J.; Lu, M.C.; Tsai, T.Y. Does Use of Acupuncture Reduce the Risk of Type 2 Diabetes Mellitus in Patients With Rheumatoid Arthritis? Evidence From a Universal Coverage Health Care System. Front. Med., 2021, 8, 752556.
[http://dx.doi.org/10.3389/fmed.2021.752556] [PMID: 34746187]
[22]
Dong, Y.; Yang, J.; Yang, L.; Li, P. Quercetin inhibits the proliferation and metastasis of human non-small cell lung cancer cell line: The key role of src-mediated fibroblast growth factor-inducible 14 (Fn14)/ nuclear factor kappa B (NF-κB) pathway. Med. Sci. Monit., 2020, 26, e920537.
[http://dx.doi.org/10.12659/MSM.920537] [PMID: 32225128]
[23]
Klimaszewska-Wiśniewska, A.; Hałas-Wiśniewska, M.; Izdebska, M.; Gagat, M.; Grzanka, A.; Grzanka, D. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochem., 2017, 119(2), 99-112.
[http://dx.doi.org/10.1016/j.acthis.2016.11.003] [PMID: 27887793]
[24]
Chai, R.; Xu, C.; Lu, L.; Liu, X.; Ma, Z. Quercetin inhibits proliferation of and induces apoptosis in non-small-cell lung carcinoma via the lncRNA SNHG7/miR-34a-5p pathway. Immunopharmacol. Immunotoxicol., 2021, 43(6), 693-703.
[http://dx.doi.org/10.1080/08923973.2021.1966032] [PMID: 34448661]
[25]
Fouzder, C.; Mukhuty, A.; Kundu, R. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Arch. Biochem. Biophys., 2021, 697, 108700.
[http://dx.doi.org/10.1016/j.abb.2020.108700] [PMID: 33271149]
[26]
Han, X; Liu, C; Jing, N; Xu, Z. Retraction notice to "Kaempferol suppresses proliferation but increases apoptosis and autophagy by up-regulating microRNA-340 in human lung cancer cells" [Biomed. Pharmacother. 108 (2018) 809-816]. Biomed. Pharmacother., 2022, 150, 112853.
[27]
Pan, J.; Cai, X.; Zheng, X.; Zhu, X.; Feng, J.; Wang, X. Luteolin inhibits viability, migration, angiogenesis and invasion of non-small cell lung cancer vascular endothelial cells via miR-133a-3p/purine rich element binding protein B-mediated MAPK and PI3K/Akt signaling pathways. Tissue Cell, 2022, 75, 101740.
[http://dx.doi.org/10.1016/j.tice.2022.101740] [PMID: 35101688]
[28]
Yen, J.H.; Huang, S.T.; Huang, H.S.; Fong, Y.C.; Wu, Y.Y.; Chiang, J.H.; Su, Y.C. HGK-sestrin 2 signaling-mediated autophagy contributes to antitumor efficacy of Tanshinone IIA in human osteosarcoma cells. Cell Death Dis., 2018, 9(10), 1003.
[http://dx.doi.org/10.1038/s41419-018-1016-9] [PMID: 30258193]
[29]
Sun, Y.; Gong, C.; Ni, Z.; Hu, D.; Ng, W.; Zhu, X.; Wang, L.; Si, G.; Yan, X.; Zhao, C.; Yao, C.; Zhu, S. Tanshinone IIA enhances susceptibility of non-small cell lung cancer cells to NK cell-mediated lysis by up-regulating ULBP1 and DR5. J. Leukoc. Biol., 2021, 110(2), 315-325.
[http://dx.doi.org/10.1002/JLB.5MA1120-776RR] [PMID: 33909909]
[30]
Quintanal-Villalonga, Á.; Mediano, M.; Ferrer, I.; Meléndez, R.; Carranza-Carranza, A.; Suárez, R.; Carnero, A.; Molina-Pinelo, S.; Paz-Ares, L. Histology-dependent prognostic role of pERK and p53 protein levels in early-stage non-small cell lung cancer. Oncotarget, 2018, 9(28), 19945-19960.
[http://dx.doi.org/10.18632/oncotarget.24977] [PMID: 29731995]
[31]
Xu, F.; Lin, H.; He, P.; He, L.; Chen, J.; Lin, L.; Chen, Y. A TP53 -associated gene signature for prediction of prognosis and therapeutic responses in lung squamous cell carcinoma. OncoImmunology, 2020, 9(1), 1731943.
[http://dx.doi.org/10.1080/2162402X.2020.1731943] [PMID: 32158625]
[32]
Yao, W.; Yang, Y.; Chen, X.; Cui, X.; Zhou, B.; Zhao, B.; Lin, Z.; Miao, J. Activation of esterase D by FPD5 inhibits growth of A549 lung cancer Cells via JAB1/p53 pathway. Genes, 2022, 13(5), 786.
[http://dx.doi.org/10.3390/genes13050786] [PMID: 35627173]
[33]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[34]
Zhuang, Z; Chen, Q; Huang, C; Wen, J; Huang, H; Liu, Z. A comprehensive network pharmacology-based strategy to investigate multiple mechanisms of hechan tablet on lung cancer. Evid. -Based Complement. Alternat. Med., 2020, 2020, 7658342.
[http://dx.doi.org/10.1155/2020/7658342]
[35]
Li, K.; Yang, M.; Liang, N.; Li, S. Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution. Oncol. Rep., 2017, 37(3), 1347-1358.
[http://dx.doi.org/10.3892/or.2017.5409] [PMID: 28184913]
[36]
Zhang, X.; Wang, S.; Wang, H.; Cao, J.; Huang, X.; Chen, Z.; Xu, P.; Sun, G.; Xu, J.; Lv, J.; Xu, Z. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer, 2019, 18(1), 20.
[http://dx.doi.org/10.1186/s12943-018-0935-5] [PMID: 30717751]
[37]
Xu, G; Wang, H; Yuan, D; Yao, J; Meng, L; Li, K RUNX1-activated upregulation of lncRNA RNCR3 promotes cell proliferation, invasion, and suppresses apoptosis in colorectal cancer via miR-1301-3p/AKT1 axis in vitro and in vivo. Clin. Transl. Oncol., 2020, 22(10), 1762-1777.
[38]
Tan, A.C. Targeting the PI3K/Akt/mTOR pathway in non‐small cell lung cancer (NSCLC). Thorac. Cancer, 2020, 11(3), 511-518.
[http://dx.doi.org/10.1111/1759-7714.13328] [PMID: 31989769]
[39]
Ebrahimi, S.; Hosseini, M.; Shahidsales, S.; Maftouh, M.; Ferns, G.A.; Ghayour-Mobarhan, M.; Hassanian, S.M.; Avan, A. Targeting the Akt/PI3K signaling pathway as a potential therapeutic strategy for the treatment of pancreatic cancer. Curr. Med. Chem., 2017, 24(13), 1321-1331.
[PMID: 28176634]
[40]
Wan, Y.; Yao, Z.; Chen, W.; Li, D. The lncRNA NORAD/miR-520a-3p facilitates malignancy in non-small cell lung cancer via PI3k/Akt/mTOR Signaling pathway. OncoTargets Ther., 2020, 13, 1533-1544.
[http://dx.doi.org/10.2147/OTT.S230954] [PMID: 32110050]
[41]
Liu, F.; Liu, T.; Li, H. Aloperine inhibits the progression of non-small-cell lung cancer through the PI3K/Akt signaling pathway. Cancer Cell Int., 2021, 21(1), 662.
[http://dx.doi.org/10.1186/s12935-021-02361-5] [PMID: 34895234]
[42]
Pollard, S.M.; Wallbank, R.; Tomlinson, S.; Grotewold, L.; Smith, A. Fibroblast growth factor induces a neural stem cell phenotype in foetal forebrain progenitors and during embryonic stem cell differentiation. Mol. Cell. Neurosci., 2008, 38(3), 393-403.
[http://dx.doi.org/10.1016/j.mcn.2008.03.012] [PMID: 18504136]
[43]
Tajan, M.; Paccoud, R.; Branka, S.; Edouard, T.; Yart, A. The RASopathy family: Consequences of germline activation of the RAS/MAPK pathway. Endocr. Rev., 2018, 39(5), 676-700.
[http://dx.doi.org/10.1210/er.2017-00232] [PMID: 29924299]
[44]
Sato, H.; Schoenfeld, A.J.; Siau, E.; Lu, Y.C.; Tai, H.; Suzawa, K.; Kubota, D.; Lui, A.J.W.; Qeriqi, B.; Mattar, M.; Offin, M.; Sakaguchi, M.; Toyooka, S.; Drilon, A.; Rosen, N.X.; Kris, M.G.; Solit, D.; De Stanchina, E.; Davare, M.A.; Riely, G.J.; Ladanyi, M.; Somwar, R. MAPK pathway alterations correlate with poor survival and drive resistance to therapy in patients with lung cancers driven by ROS1 fusions. Clin. Cancer Res., 2020, 26(12), 2932-2945.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3321] [PMID: 32122926]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy