Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Developing a RiskScore Model based on Angiogenesis-related lncRNAs for Colon Adenocarcinoma Prognostic Prediction

Author(s): Xianguo Li, Junping Lei, Yongping Shi, Zuojie Peng, Minmin Gong* and Xiaogang Shu*

Volume 31, Issue 17, 2024

Published on: 13 November, 2023

Page: [2449 - 2466] Pages: 18

DOI: 10.2174/0109298673277243231108071620

Price: $65

Abstract

Aim: We screened key angiogenesis-related lncRNAs based on colon adenocarcinoma (COAD) to construct a RiskScore model for predicting COAD prognosis and help reveal the pathogenesis of the COAD as well as optimize clinical treatment.

Background: Regulatory roles of lncRNAs in tumor progression and prognosis have been confirmed, but few studies have probed into the role of angiogenesis-related lncRNAs in COAD.

Objective: To identify key angiogenesis-related lncRNAs and build a RiskScore model to predict

the survival probability of COAD patients and help optimize clinical treatment.

Methods: Sample data were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The HALLMARK pathway score in the samples was calculated using the single sample gene set enrichment analysis (ssGSEA) method. LncRNAs associated with angiogenesis were filtered by an integrated pipeline algorithm. LncRNA-based subtypes were classified by ConsensusClusterPlus and then compared with other established subtypes. A RiskScore model was created based on univariate Cox, least absolute shrinkage and selection operator (LASSO) regression and stepwise regression analysis. The Kaplan-Meier curve was drawn by applying R package survival. The time-dependent ROC curves were drawn by the timeROC package. Finally, immunotherapy benefits and drug sensitivity were analyzed using tumor immune dysfunction and exclusion (TIDE) software and pRRophetic package.

Results: Pathway analysis showed that the angiogenesis pathway was a risk factor affecting the prognosis of COAD patients. A total of 66 lncRNAs associated with angiogenesis were screened, and three molecular subtypes (S1, S2, S3) were obtained. The prognosis of S1 and S2 was better than that of S3. Compared with the existing subtypes, the S3 subtype was significantly different from the other two subtypes. Immunoassay showed that immune cell scores of the S2 subtype were lower than those of the S1 and S3 subtypes, which also had the highest TIDE scores. We recruited 8 key lncRNAs to develop a RiskScore model. The high RiskScore group with inferior survival and higher TIDE scores was predicted to benefit limitedly from immunotherapy, but it may be more sensitive to chemotherapeutics. A nomogram designed by RiskScore signature and other clinicopathological characteristics shed light on rational predictive power for COAD treatment.

Conclusion: We constructed a RiskScore model based on angiogenesis-related lncRNAs, which could serve as potential prognostic predictors for COAD patients and may offer clues for the intervention of anti-angiogenic application. Our results may help evaluate the prognosis of COAD and provide better treatment strategies.

[1]
Akimoto, N.; Ugai, T.; Zhong, R.; Hamada, T.; Fujiyoshi, K.; Giannakis, M.; Wu, K.; Cao, Y.; Ng, K.; Ogino, S. Rising incidence of early-onset colorectal cancer - a call to action. Nat. Rev. Clin. Oncol., 2021, 18(4), 230-243.
[http://dx.doi.org/10.1038/s41571-020-00445-1] [PMID: 33219329]
[2]
Burnett-Hartman, A.N.; Lee, J.K.; Demb, J.; Gupta, S. An update on the epidemiology, molecular characterization, diagnosis, and screening strategies for early-onset colorectal cancer. Gastroenterology, 2021, 160(4), 1041-1049.
[http://dx.doi.org/10.1053/j.gastro.2020.12.068] [PMID: 33417940]
[3]
Jung, F.; Lee, M.; Doshi, S.; Zhao, G.; Lam Tin Cheung, K.; Chesney, T.; Guidolin, K.; Englesakis, M.; Lukovic, J.; O’Kane, G.; Quereshy, F.A.; Chadi, S.A. Neoadjuvant therapy versus direct to surgery for T4 colon cancer: Meta-analysis. Br. J. Surg., 2021, 109(1), 30-36.
[http://dx.doi.org/10.1093/bjs/znab382] [PMID: 34921604]
[4]
Xu, M.; Chang, J.; Wang, W.; Wang, X.; Wang, X.; Weng, W.; Tan, C.; Zhang, M.; Ni, S.; Wang, L.; Huang, Z.; Deng, Z.; Li, W.; Huang, D.; Sheng, W. Classification of colon adenocarcinoma based on immunological characterizations: Implications for prognosis and immunotherapy. Front. Immunol., 2022, 13, 934083.
[http://dx.doi.org/10.3389/fimmu.2022.934083] [PMID: 35967414]
[5]
Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet, 2021, 398(10304), 1002-1014.
[http://dx.doi.org/10.1016/S0140-6736(21)01206-X] [PMID: 34509219]
[6]
Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol., 2021, 18(6), 345-362.
[http://dx.doi.org/10.1038/s41571-021-00473-5] [PMID: 33580222]
[7]
Choi, S.W.; Kim, H.W.; Nam, J.W. The small peptide world in long noncoding RNAs. Brief. Bioinform., 2019, 20(5), 1853-1864.
[http://dx.doi.org/10.1093/bib/bby055] [PMID: 30010717]
[8]
Nojima, T.; Proudfoot, N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol., 2022, 23(6), 389-406.
[http://dx.doi.org/10.1038/s41580-021-00447-6] [PMID: 35079163]
[9]
Núñez-Martínez, H.N.; Recillas-Targa, F. Emerging functions of lncRNA loci beyond the transcript itself. Int. J. Mol. Sci., 2022, 23(11), 6258.
[http://dx.doi.org/10.3390/ijms23116258] [PMID: 35682937]
[10]
Park, E.G.; Pyo, S.J.; Cui, Y.; Yoon, S.H.; Nam, J.W. Tumor immune microenvironment lncRNAs. Brief. Bioinform., 2022, 23(1), bbab504.
[http://dx.doi.org/10.1093/bib/bbab504] [PMID: 34891154]
[11]
Tan, Y.T.; Lin, J.F.; Li, T.; Li, J.J.; Xu, R.H.; Ju, H.Q. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun., 2021, 41(2), 109-120.
[http://dx.doi.org/10.1002/cac2.12108] [PMID: 33119215]
[12]
Bao, G.; Xu, R.; Wang, X.; Ji, J.; Wang, L.; Li, W.; Zhang, Q.; Huang, B.; Chen, A.; Zhang, D.; Kong, B.; Yang, Q.; Yuan, C.; Wang, X.; Wang, J.; Li, X. Identification of lncRNA signature associated with pan-cancer prognosis. IEEE J. Biomed. Health Inform., 2021, 25(6), 2317-2328.
[http://dx.doi.org/10.1109/JBHI.2020.3027680] [PMID: 32991297]
[13]
Wang, L.; Cho, K.B.; Li, Y.; Tao, G.; Xie, Z.; Guo, B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int. J. Mol. Sci., 2019, 20(22), 5758.
[http://dx.doi.org/10.3390/ijms20225758] [PMID: 31744051]
[14]
Nasibova, A. Generation of nanoparticles in biological systems and their application prospects. Adv. Biol. Earth Sci, 2023, 8, 140-146.
[15]
Ahmadian, E.; Dizaj, S.M.; Sharifi, S.; Shahi, S.; Khalilov, R.; Eftekhari, A.; Hasanzadeh, M. The potential of nanomaterials in theranostics of oral squamous cell carcinoma: Recent progress. Trends Analyt. Chem., 2019, 116, 167-176.
[http://dx.doi.org/10.1016/j.trac.2019.05.009]
[16]
Eftekhari, A.; Kryschi, C.; Pamies, D.; Gulec, S.; Ahmadian, E.; Janas, D.; Davaran, S.; Khalilov, R. Natural and synthetic nanovectors for cancer therapy. Nanotheranostics, 2023, 7(3), 236-257.
[http://dx.doi.org/10.7150/ntno.77564] [PMID: 37064613]
[17]
Hu, X.; Jing, F.; Wang, Q.; Shi, L.; Cao, Y.; Zhu, Z. Alteration of ornithine metabolic pathway in colon cancer and multivariate data modelling for cancer diagnosis. Oncologie, 2021, 23(2), 203-217.
[http://dx.doi.org/10.32604/Oncologie.2021.016155]
[18]
Ramapriyan, R.; Caetano, M.S.; Barsoumian, H.B.; Mafra, A.C.P.; Zambalde, E.P.; Menon, H.; Tsouko, E.; Welsh, J.W.; Cortez, M.A. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol. Ther., 2019, 195, 162-171.
[http://dx.doi.org/10.1016/j.pharmthera.2018.11.004] [PMID: 30439456]
[19]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Experimen. Clin. Cancer Res., 2020, 39(1), 204.
[20]
Ru, B.; Wong, C.N.; Tong, Y.; Zhong, J.Y.; Zhong, S.S.W.; Wu, W.C.; Chu, K.C.; Wong, C.Y.; Lau, C.Y.; Chen, I.; Chan, N.W.; Zhang, J. TISIDB: An integrated repository portal for tumor-immune system interactions. Bioinformatics, 2019, 35(20), 4200-4202.
[http://dx.doi.org/10.1093/bioinformatics/btz210] [PMID: 30903160]
[21]
Song, X.; Guo, Y.; Song, P.; Duan, D.; Guo, W. Non-coding RNAs in regulating tumor angiogenesis. Front. Cell Dev. Biol., 2021, 9, 751578.
[http://dx.doi.org/10.3389/fcell.2021.751578] [PMID: 34616746]
[22]
He, L.; Jin, M.; Jian, D.; Yang, B.; Dai, N.; Feng, Y.; Xiao, H.; Wang, D. Identification of four immune subtypes in locally advanced rectal cancer treated with neoadjuvant chemotherapy for predicting the efficacy of subsequent immune checkpoint blockade. Front. Immunol., 2022, 13, 955187.
[http://dx.doi.org/10.3389/fimmu.2022.955187] [PMID: 36238279]
[23]
Marisa, L.; de Reyniès, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.C.; Schiappa, R.; Guenot, D.; Ayadi, M.; Kirzin, S.; Chazal, M.; Fléjou, J.F.; Benchimol, D.; Berger, A.; Lagarde, A.; Pencreach, E.; Piard, F.; Elias, D.; Parc, Y.; Olschwang, S.; Milano, G.; Laurent-Puig, P.; Boige, V. Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med., 2013, 10(5), e1001453.
[http://dx.doi.org/10.1371/journal.pmed.1001453] [PMID: 23700391]
[24]
Tripathi, M.K.; Deane, N.G.; Zhu, J.; An, H.; Mima, S.; Wang, X.; Padmanabhan, S.; Shi, Z.; Prodduturi, N.; Ciombor, K.K.; Chen, X.; Washington, M.K.; Zhang, B.; Beauchamp, R.D. Nuclear factor of activated T-cell activity is associated with metastatic capacity in colon cancer. Cancer Res., 2014, 74(23), 6947-6957.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1592] [PMID: 25320007]
[25]
Kemper, K.; Versloot, M.; Cameron, K.; Colak, S.; de Sousa e Melo, F.; de Jong, J.H.; Bleackley, J.; Vermeulen, L.; Versteeg, R.; Koster, J.; Medema, J.P. Mutations in the Ras-Raf Axis underlie the prognostic value of CD133 in colorectal cancer. Clin. Cancer Res., 2012, 18(11), 3132-3141.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3066] [PMID: 22496204]
[26]
Liu, Z.; Lu, T.; Wang, Y.; Jiao, D.; Li, Z.; Wang, L.; Liu, L.; Guo, C.; Zhao, Y.; Han, X. Establishment and experimental validation of an immune miRNA signature for assessing prognosis and immune landscape of patients with colorectal cancer. J. Cell. Mol. Med., 2021, 25(14), 6874-6886.
[http://dx.doi.org/10.1111/jcmm.16696] [PMID: 34101338]
[27]
Li, Y.; Jiang, T.; Zhou, W.; Li, J.; Li, X.; Wang, Q.; Jin, X.; Yin, J.; Chen, L.; Zhang, Y.; Xu, J.; Li, X. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat. Commun., 2020, 11(1), 1000.
[http://dx.doi.org/10.1038/s41467-020-14802-2] [PMID: 32081859]
[28]
Tian, Y.; Morris, T.J.; Webster, A.P.; Yang, Z.; Beck, S.; Feber, A.; Teschendorff, A.E. ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 2017, 33(24), 3982-3984.
[http://dx.doi.org/10.1093/bioinformatics/btx513] [PMID: 28961746]
[29]
Hu, X.; Ni, S.; Zhao, K.; Qian, J.; Duan, Y. Bioinformatics-led discovery of osteoarthritis biomarkers and inflammatory infiltrates. Front. Immunol., 2022, 13, 871008.
[http://dx.doi.org/10.3389/fimmu.2022.871008] [PMID: 35734177]
[30]
Li, Q.; Cheng, Z.; Zhou, L.; Darmanis, S.; Neff, N.F.; Okamoto, J.; Gulati, G.; Bennett, M.L.; Sun, L.O.; Clarke, L.E.; Marschallinger, J.; Yu, G.; Quake, S.R.; Wyss-Coray, T.; Barres, B.A. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron, 2019, 101(2), 207-223.e10.
[http://dx.doi.org/10.1016/j.neuron.2018.12.006] [PMID: 30606613]
[31]
Huang, T.X.; Fu, L. The immune landscape of esophageal cancer. Cancer Commun., 2019, 39(1), 79.
[http://dx.doi.org/10.1186/s40880-019-0427-z] [PMID: 31771653]
[32]
Giraud, J.; Chalopin, D.; Blanc, J.F.; Saleh, M. Hepatocellular carcinoma immune landscape and the potential of immunotherapies. Front. Immunol., 2021, 12, 655697.
[http://dx.doi.org/10.3389/fimmu.2021.655697] [PMID: 33815418]
[33]
Eide, P.W.; Bruun, J.; Lothe, R.A.; Sveen, A. CMScaller: An R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Sci. Rep., 2017, 7(1), 16618.
[http://dx.doi.org/10.1038/s41598-017-16747-x] [PMID: 29192179]
[34]
Therneau, T.M.; Lumley, T. Package ‘survival’. R Top Doc., 2015, 128(10), 28-33.
[35]
McHugh, M.L. Multiple comparison analysis testing in ANOVA. Biochem. Med., 2011, 21(3), 203-209.
[http://dx.doi.org/10.11613/BM.2011.029] [PMID: 22420233]
[36]
Pei, S.; Liu, T.; Ren, X.; Li, W.; Chen, C.; Xie, Z. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief. Bioinform., 2021, 22(3), bbaa148.
[http://dx.doi.org/10.1093/bib/bbaa148] [PMID: 32698196]
[37]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[38]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[39]
Danilova, L.; Ho, W.J.; Zhu, Q.; Vithayathil, T.; De Jesus-Acosta, A.; Azad, N.S.; Laheru, D.A.; Fertig, E.J.; Anders, R.; Jaffee, E.M.; Yarchoan, M. Programmed cell death ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival. Cancer Immunol. Res., 2019, 7(6), 886-895.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0822] [PMID: 31043417]
[40]
Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[41]
Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[42]
Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 2014, 9(9), e107468.
[http://dx.doi.org/10.1371/journal.pone.0107468] [PMID: 25229481]
[43]
Kuczynski, E.A.; Vermeulen, P.B.; Pezzella, F.; Kerbel, R.S.; Reynolds, A.R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol., 2019, 16(8), 469-493.
[http://dx.doi.org/10.1038/s41571-019-0181-9] [PMID: 30816337]
[44]
Saman, H.; Raza, S.S.; Uddin, S.; Rasul, K. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. cancers, 2020, 12(5), 1172.
[http://dx.doi.org/10.3390/cancers12051172] [PMID: 32384792]
[45]
Sun, W.; Xu, Y.; Zhao, B.; Zhao, M.; Chen, J.; Chu, Y.; Peng, H. The prognostic value and immunological role of angiogenesis-related patterns in colon adenocarcinoma. Front. Oncol., 2022, 12, 1003440.
[http://dx.doi.org/10.3389/fonc.2022.1003440] [PMID: 36439446]
[46]
Fransvea, P.; Costa, G.; Sganga, G. Colorectal cancer: Greater neo-angiogenesis, less perforation, worst oncological outcomes. Med. Hypotheses, 2021, 146, 110458.
[http://dx.doi.org/10.1016/j.mehy.2020.110458] [PMID: 33341528]
[47]
Deng, F.; Zhou, R.; Lin, C.; Yang, S.; Wang, H.; Li, W.; Zheng, K.; Lin, W.; Li, X.; Yao, X.; Pan, M.; Zhao, L. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics, 2019, 9(4), 1001-1014.
[http://dx.doi.org/10.7150/thno.30056] [PMID: 30867812]
[48]
Ng, L.; Wong, S.K.M.; Huang, Z.; Lam, C.S.C.; Chow, A.K.M.; Foo, D.C.C.; Lo, O.S.H.; Pang, R.W.C.; Law, W.L. CD26 induces colorectal cancer angiogenesis and metastasis through CAV1/MMP1 signaling. Int. J. Mol. Sci., 2022, 23(3), 1181.
[http://dx.doi.org/10.3390/ijms23031181] [PMID: 35163100]
[49]
Pashirzad, M.; Khorasanian, R.; Fard, M.M.; Arjmand, M.H.; Langari, H.; Khazaei, M.; Soleimanpour, S.; Rezayi, M.; Ferns, G.A.; Hassanian, S.M.; Avan, A. The therapeutic potential of MAPK/ERK inhibitors in the treatment of colorectal cancer. Curr. Cancer Drug Targets, 2021, 21(11), 932-943.
[http://dx.doi.org/10.2174/1568009621666211103113339] [PMID: 34732116]
[50]
Guo, Y.; Guo, Y.; Chen, C.; Fan, D.; Wu, X.; Zhao, L.; Shao, B.; Sun, Z.; Ji, Z. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: Involvement of miR-30c-5p/TCF7 axis. Mol. Cancer, 2021, 20(1), 93.
[http://dx.doi.org/10.1186/s12943-021-01372-0] [PMID: 34172072]
[51]
Hao, Z.; Liang, P.; He, C.; Sha, S.; Yang, Z.; Liu, Y.; Shi, J.; Zhu, Z.; Chang, Q. Prognostic risk assessment model and drug sensitivity analysis of colon adenocarcinoma (COAD) based on immune-related lncRNA pairs. BMC Bioinformatics, 2022, 23(1), 435.
[http://dx.doi.org/10.1186/s12859-022-04969-4] [PMID: 36258178]
[52]
Xiao, J.; Wang, X.; Liu, Y.; Liu, X.; Yi, J.; Hu, J. Lactate metabolism-associated lncRNA pairs: A prognostic signature to reveal the immunological landscape and mediate therapeutic response in patients with colon adenocarcinoma. Front. Immunol., 2022, 13, 881359.
[http://dx.doi.org/10.3389/fimmu.2022.881359] [PMID: 35911752]
[53]
Wang, H.; Lin, K.; Zhu, L.; Zhang, S.; Li, L.; Liao, Y.; Zhang, B.; Yang, M.; Liu, X.; Li, L.; Li, S.; Yang, L.; Wang, H.; Wang, Q.; Li, H.; Fu, S.; Zhang, X.; Jiang, P.; Zhang, Q.C.; Cheng, J.; Wang, D. Oncogenic lncRNA LINC00973 promotes Warburg effect by enhancing LDHA enzyme activity. Sci. Bull., 2021, 66(13), 1330-1341.
[http://dx.doi.org/10.1016/j.scib.2021.01.001] [PMID: 36654155]
[54]
Liang, W.; Wu, J.; Qiu, X. LINC01116 facilitates colorectal cancer cell proliferation and angiogenesis through targeting EZH2-regulated TPM1. J. Transl. Med., 2021, 19(1), 45.
[http://dx.doi.org/10.1186/s12967-021-02707-7] [PMID: 33499872]
[55]
Liu, X.; Chen, J.; Zhang, S.; Liu, X.; Long, X.; Lan, J.; Zhou, M.; Zheng, L.; Zhou, J. LINC00839 promotes colorectal cancer progression by recruiting RUVBL1 /Tip60 complexes to activate NRF1. EMBO Rep., 2022, 23(9), e54128.
[http://dx.doi.org/10.15252/embr.202154128] [PMID: 35876654]
[56]
Chen, J.; Song, Y.; Li, M.; Zhang, Y.; Lin, T.; Sun, J.; Wang, D.; Liu, Y.; Guo, J.; Yu, W. Comprehensive analysis of ceRNA networks reveals prognostic lncRNAs related to immune infiltration in colorectal cancer. BMC Cancer, 2021, 21(1), 255.
[http://dx.doi.org/10.1186/s12885-021-07995-2] [PMID: 33750326]
[57]
Ghafouri-Fard, S.; Khoshbakht, T.; Taheri, M.; Ebrahimzadeh, K. A review on the role of PCAT6 lncRNA in tumorigenesis. Biomed. Pharmacother., 2021, 142, 112010.
[58]
Wang, S.; Chen, Z.; Gu, J.; Chen, X.; Wang, Z. The role of lncRNA PCAT6 in cancers. Front. Oncol., 2021, 11, 701495.
[http://dx.doi.org/10.3389/fonc.2021.701495] [PMID: 34327141]
[59]
Huang, W.; Su, G.; Huang, X.; Zou, A.; Wu, J.; Yang, Y.; Zhu, Y.; Liang, S.; Li, D.; Ma, F.; Guo, L. Long noncoding RNA PCAT6 inhibits colon cancer cell apoptosis by regulating anti-apoptotic protein ARC expression via EZH2. Cell Cycle, 2019, 18(1), 69-83.
[http://dx.doi.org/10.1080/15384101.2018.1558872] [PMID: 30569799]
[60]
Dong, F.; Ruan, S.; Wang, J.; Xia, Y.; Le, K.; Xiao, X.; Hu, T.; Wang, Q. M2 macrophage-induced lncRNA PCAT6 facilitates tumorigenesis and angiogenesis of triple-negative breast cancer through modulation of VEGFR2. Cell Death Dis., 2020, 11(9), 728.
[http://dx.doi.org/10.1038/s41419-020-02926-8] [PMID: 32908134]
[61]
Batlle, E.; Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity, 2019, 50(4), 924-940.
[http://dx.doi.org/10.1016/j.immuni.2019.03.024] [PMID: 30995507]
[62]
Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767.
[http://dx.doi.org/10.3390/ijms20112767] [PMID: 31195692]
[63]
Ruan, X.J.; Ye, B.L.; Zheng, Z.H.; Li, S.T.; Zheng, X.F.; Zhang, S.Z. TGFβ1I1 suppressed cell migration and invasion in colorectal cancer by inhibiting the TGF-β pathway and EMT progress. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(13), 7294-7302.
[PMID: 32706067]
[64]
Khalilov, R. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery. Adv. Biol. Earth Sci., 2023, 8(1)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy