Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Imaging and Non-imaging Analytical Techniques Used for Drug Nanosizing and their Patents: An Overview

Author(s): Vijay Agarwal* and Meenakshi Bajpai

Volume 18, Issue 4, 2024

Published on: 10 November, 2023

Page: [494 - 518] Pages: 25

DOI: 10.2174/0118722105243388230920013508

Price: $65

Abstract

Background: Nanosizing is widely recognized as an effective technique for improving the solubility, dissolution rate, onset of action, and bioavailability of poorly water-soluble drugs. To control the execution and behavior of the output product, more advanced and valuable analytical techniques are required.

Objective: The primary intent of this review manuscript was to furnish the understanding of imaging and non-imaging techniques related to nanosizing analysis by focusing on related patents. In addition, the study also aimed to collect and illustrate the information on various classical (laser diffractometry, photon correlation spectroscopy, zeta potential, laser Doppler electrophoresis, X-ray diffractometry, differential scanning calorimeter, scanning electron microscopy, transmission electron microscopy), new, and advanced analytical techniques (improved dynamic light scattering method, Brunauer-Emmett- Teller method, ultrasonic attenuation, biosensor), as well as commercial techniques, like inductively coupled plasma mass spectroscopy, aerodynamic particle sizer, scanning mobility particle sizer, and matrix- assisted laser desorption/ionization mass spectroscopy, which all relate to nano-sized particles.

Methods: The present manuscript has taken a fresh look at the various aspects of the analytical techniques utilized in the process of nanosizing, and has achieved this through the analysis of a wide range of peer-reviewed literature. All summarized literature studies provide the information that can meet the basic needs of nanotechnology.

Results: A variety of analytical techniques related to the nanosizing process have already been established and have great potential to weed out several issues. However, the current scenarios require more relevant, accurate, and advanced analytical techniques that can minimize the time and deviations associated with different instrumental and process parameters. To meet this requirement, some new and more advanced analytical techniques have recently been discovered, like ultrasonic attenuation technique, BET technique, biosensors, etc.

Conclusion: The present overview certifies the significance of different analytical techniques utilized in the nanosizing process. The overview also provides information on various patents related to sophisticated analytical tools that can meet the needs of such an advanced field. The data show that the nanotechnology field will flourish in the coming future.

[1]
Keck C, Müller R. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006; 62(1): 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[2]
Müller RH, Gohla S, Keck CM. State of the art of nanocrystals: Special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 2011; 78(1): 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.007] [PMID: 21266197]
[3]
Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 2013; 453(1): 142-56.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.034] [PMID: 23000841]
[4]
Peltonen L, Hirvonen J. Drug nanocrystals: Versatile option for formulation of poorly soluble materials. Int J Pharm 2018; 537(1-2): 73-83.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.005] [PMID: 29262301]
[5]
Yang X, Liu Y, Zhao Y, et al. A stabilizer-free and organic solvent-free method to prepare 10-hydroxycamptothecin nanocrystals: in vitro and in vivo evaluation. Int J Nanomedicine 2016; 11: 2979-94.
[http://dx.doi.org/10.2147/IJN.S102726] [PMID: 27382284]
[6]
Cerdeira AM, Mazzotti M, Gander B. Formulation and drying of miconazole and itraconazole nanosuspensions. Int J Pharm 2013; 443(1-2): 209-20.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.044] [PMID: 23291552]
[7]
Sigfridsson K, Skantze P, Skantze U, et al. Nanocrystal formulations of a poorly soluble drug. 2. Evaluation of nanocrystal liver uptake and distribution after intravenous administration to mice. Int J Pharm 2017; 524(1-2): 248-56.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.062] [PMID: 28373104]
[8]
Peltonen L, Hirvonen J. Physiochemical characterization of nano and microparticles. Curr Nanosci 2008; 4(1): 101-7.
[http://dx.doi.org/10.2174/157341308783591780]
[9]
Peltonen L, Hirvonen J, Laaksonen JT. In: Drug nanocrystals and nanosuspension in medicine. In: Trochilin V, Ed. Handbook of nanobiomedical research, fundamentals, applications and recent developments. Singapore: World Scientific 2014; pp. 169-97.
[http://dx.doi.org/10.1142/9789814520652_0005]
[10]
Raza M, Kanwal Z, Rauf A, Sabri A, Riaz S, Naseem S. Size and shape dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 2016; 6(4): 74.
[http://dx.doi.org/10.3390/nano6040074] [PMID: 28335201]
[11]
Kreuter J. Colloidal drug delivery systems. New York: Marcel Dekker 1994; pp. 219-342.
[12]
Agarwal V, Bajpai M. Investigation of formulation and process parameters for the production of esomeprazole nanosuspension by anti solvent precipitation ultrasonication technique. Curr Nanosci 2013; 9(6): 773-9.
[http://dx.doi.org/10.2174/15734137113099990079]
[13]
Agarwal V, Bajpai M. Nanosuspension technology: A strategic approach for poorly soluble drugs. Nanosci Nanotechnol Asia 2013; 3(1): 72-85.
[http://dx.doi.org/10.2174/22106812112029990001]
[14]
Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res 2007; 24(3): 411-37.
[http://dx.doi.org/10.1007/s11095-006-9174-3] [PMID: 17245651]
[15]
Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: A promising drug delivery strategy. J Pharm Pharmacol 2010; 56(7): 827-40.
[http://dx.doi.org/10.1211/0022357023691] [PMID: 15233860]
[16]
Agarwal V, Bajpai M. Stability issues related to nanosuspension: A review. Pharm Nanotechnol 2013; 1(2): 85-92.
[http://dx.doi.org/10.2174/2211738511301020004]
[17]
Kipp J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 2004; 284(1-2): 109-22.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.019] [PMID: 15454302]
[18]
Agarwal V, Bajpai M. Preparation and optimization of esomeprazole nanosuspension using evaporative precipitation ultrasonication. Trop J Pharm Res 2014; 13(4): 497-503.
[http://dx.doi.org/10.4314/tjpr.v13i4.2]
[19]
Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: State of the art, challenges, and emerging technologies. Mol Pharm 2013; 10(6): 2093-110.
[http://dx.doi.org/10.1021/mp300697h] [PMID: 23461379]
[20]
Peltonen L, Strachan C. Understanding critical quality attributes for nanocrystals from preparation to delivery. Molecules 2015; 20(12): 22286-300.
[http://dx.doi.org/10.3390/molecules201219851] [PMID: 26703528]
[21]
Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 2015; 12(1): 129-42.
[http://dx.doi.org/10.1517/17425247.2014.950564] [PMID: 25138827]
[22]
Emerging analytical techniques used for nanocrystal and nanosuspension. 2019. Available From: http://meddocsonline.org/ebooks/ebook-nanotechnology/Emerging-analytical-techniques-used-for-nanocrystal-and-nanosuspension.pdf
[23]
Shekunov BY, Chattopadhyay P, Seitzinger J, Huff R. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm Res 2006; 23(1): 196-204.
[http://dx.doi.org/10.1007/s11095-005-8635-4] [PMID: 16307386]
[24]
Ma Z, Merkus HG, Scarlett B. Particle-size analysis by laser diffraction with a complementary metal-oxide semiconductor pixel array. Appl Opt 2000; 39(25): 4547-56.
[http://dx.doi.org/10.1364/AO.39.004547] [PMID: 18350043]
[25]
Barabanenkov YN. The Fraunhofer approximation in the theory of multiple wave scattering. Radiophys Quantum Electron 1971; 14(2): 188-94.
[http://dx.doi.org/10.1007/BF01031399]
[26]
Mie G. Contributions to the optics of turbid media, especially colloidal metalSolutions. Ann Phys 1908; 25: 377-445.
[http://dx.doi.org/10.1002/andp.19083300302]
[27]
Merkus HG. Particle Size Measurements: Fundamentals, Practice, Quality, Publ. Springer, Netherlands 2009; pp. 301-2.
[28]
Berne BJ. Chemical and biological applications of laser light scattering. Acc Chem Res 1973; 6(9): 318-22.
[http://dx.doi.org/10.1021/ar50069a006]
[29]
Bruce JB, Pecora R. Dynamic light scattering: With applications to chemistry, biology, and physics. (2nd ed.). Mineola, New York: Courier Dover Publications 2000; pp. 83-5.
[30]
Metzler R, Klafter J. Accelerating Brownian motion: A fractional dynamics approach to fast diffusion. Europhys Lett 2000; 51(5): 492-8.
[http://dx.doi.org/10.1209/epl/i2000-00364-5]
[31]
Wolfgang S. “Sample preparation” in Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Springer Berlin Heidelberg 2007; pp. 43-4.
[32]
Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res 2002; 19(2): 189-94.
[http://dx.doi.org/10.1023/A:1014276917363] [PMID: 11883646]
[33]
Müller RH, Mehnert W. Zetapotential und Partikelladung in der Laborpraxis. Freie Universitat, Berlin. Mainz: Max-Planck-Institut, Teltow-Seehof APV 1996.
[34]
Mahmood S, Mandal UK, Chatterjee B, Taher M. Advanced characterizations of nanoparticles for drug delivery: Investigating their properties through the techniques used in their evaluations. Nanotechnol Rev 2017; 6(4): 355-72.
[http://dx.doi.org/10.1515/ntrev-2016-0050]
[35]
Carneiro-da-Cunha MG, Cerqueira MA, Souza BWS, Teixeira JA, Vicente AA. Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr Polym 2011; 85(3): 522-8.
[http://dx.doi.org/10.1016/j.carbpol.2011.03.001]
[36]
Available From: https://analytik.co.uk (Accessed on 12 November 2022)
[37]
Schwarz JA, Contescu CI. Eds Surfaces of nanoparticles and porous materials. New York: Marcel Dekker 1999; Vol. 78: pp. 155-96.
[http://dx.doi.org/10.1201/9780367800567]
[38]
Goto Y, Matsuno R, Konno T, Takai M, Ishihara K. Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins. Biomacromolecules 2008; 9(3): 828-33.
[http://dx.doi.org/10.1021/bm701161d] [PMID: 18247529]
[39]
Miller JD, Yalamanchili MR, Kellar JJ. Surface charge of alkali halide particles as determined by laser-Doppler electrophoresis. Langmuir 1992; 8(5): 1464-9.
[http://dx.doi.org/10.1021/la00041a036]
[40]
Uzgiris EE. Laser Doppler methods in electrophoresis. Prog Surf Sci 1981; 10(1): 53-164.
[http://dx.doi.org/10.1016/0079-6816(81)90006-X]
[41]
Stoltz JF, Janot C, Saur F, Weber M, Malher E, Duvivier C. Use of a Laser-Doppler electrophoresis method in bacteriology (preliminary results). Biorheology 1984; 23(s1): 303-7.
[http://dx.doi.org/10.3233/BIR-1984-23S154] [PMID: 6383495]
[42]
Uzgiris EE. Electrophoresis of particles and biological cells measured by the doppler shift of scattered laser light. Opt Commun 1972; 6(1): 55-7.
[http://dx.doi.org/10.1016/0030-4018(72)90247-7]
[43]
Lyklema J. Ed Fundamentals of Interface and Colloid Science. London: Academic press 1995; Vol. 2: p. 208.
[44]
Dukhin SS, Derjaguin BV. Electrokinetic Phenomena Surface and Colloid Science. NY: John Willey & Sons 1974; p. 23.
[45]
Martin A. Physical Pharmacy. Wilkins, Philadelphia: Publ. Lippincott Williams & amp 1993; pp. 368-88.
[46]
Smoluchowski M. Contribution to the theory of electro-osmosis and related phenomena. Bull Int Acad Sci Cracovie 1903; 3: 184-99.
[47]
Nutan MTH, Reddy IK. From formulation development to manufacturing. In: Kulshreshtha AK, Singh ON, Wall GM, Eds. Pharmaceutical Suspensions. New York: Springer 2009; pp. 39-66.
[48]
Werner M, Crossley A, Johnston C. Characterization of nanostructured materials. In: Riviere JC, Myhra S, Eds. Handbook of Surface and Interface Analysis - Methods for Problem-Solving. USA: CRC Press, Taylor & Francis Group 2009; pp. 319-50.
[http://dx.doi.org/10.1201/9781420007800-c11]
[49]
MRK654-01. Zeta potential : An introduction in 30 minutes 2001; 1-6.
[50]
Zeta potential of colloids in water and waste water In: ASTM Standard D 4187-82. American Society for Testing and Materials 1985.
[51]
Yeh Y, Cummins HZ. localized fluid flow measurements with an he–ne laser spectrometer. Appl Phys Lett 1964; 4(10): 176-8.
[http://dx.doi.org/10.1063/1.1753925]
[52]
Cheung C. Imaging techniques in drug discovery. azolifesciences. Available From: https://www.azolifesciences.com/article/Imaging-Techniques-in-Drug-Discovery (Accessed March 03 2022)
[53]
Peltonen L. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv Drug Deliv Rev 2018; 131: 101-15.
[http://dx.doi.org/10.1016/j.addr.2018.06.009] [PMID: 29920294]
[54]
Heidari A, Toumaj S, Navimipour NJ, Unal M. A privacy-aware method for COVID-19 detection in chest CT images using lightweight deep conventional neural network and blockchain. Comput Biol Med 2022; 145: 105461.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105461] [PMID: 35366470]
[55]
Heidari A, Jafari NN, Unal M, Toumaj S. Machine learning applications for COVID-19 outbreak management. Neural Comput Appl 2022; 34(18): 15313-48.
[http://dx.doi.org/10.1007/s00521-022-07424-w] [PMID: 35702664]
[56]
Vahdat S. Clinical profile, outcome and management of kidney disease in COVID-19 patients: A narrative review. Eur Rev Med Pharmacol Sci 2022; 26(6): 2188-95.
[PMID: 35363369]
[57]
Vahdat S, Shahidi S, Atapour A, Reisizadeh S, Soltaninejad F, Maghami-Mehr A. The clinical course and risk factors in COVID-19 patients with acute kidney injury. J Family Med Prim Care 2022; 11(10): 6183-9.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_231_22] [PMID: 36618164]
[58]
Sander JRG. Bučar DK, Henry RF, Zhang GGZ, MacGillivray LR. Pharmaceutical nano-cocrystals: Sonochemical synthesis by solvent selection and use of a surfactant. Angew Chem Int Ed 2010; 49(40): 7284-8.
[http://dx.doi.org/10.1002/anie.201002588] [PMID: 20814994]
[59]
van Sebille M, van der Maaten LJP, Xie L, et al. Nanocrystal size distribution analysis from transmission electron microscopy images. Nanoscale 2015; 7(48): 20593-606.
[http://dx.doi.org/10.1039/C5NR06292F] [PMID: 26593390]
[60]
Zhou W, Apkarian RP, Wang ZL, Joy D. Fundamentals of Scanning Electron Microscopy (SEM). In: Zhou W, Wang ZL, Eds. Scanning Microscopy for Nanotechnology: Techniques and Applications. New York: Springer 2007; pp. 1-40.
[http://dx.doi.org/10.1007/978-0-387-39620-0]
[61]
Hayak MA. Principles and techniques of scanning electron microscopy. Van Nostrand Reinhold Co. 1978.
[62]
Bunjes H. Characterization of solid lipid nano and microparticles. In: Nastruzzi C, Ed. Lipospheres in Drug Targets and Delivery: Approaches, Methods, and Applications. Boca Raton, FL: CRC Press 2005; pp. 41-66.
[63]
Müller-Goymann CC. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur J Pharm Biopharm 2004; 58(2): 343-56.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.028] [PMID: 15296960]
[64]
Bunjes H, Siekmann B. Manufacture, Characterization and Applications of SLNs as Drug Delivery Systems Microencapsulation: Methods and Industrial Applications. Florida: CRC Press 2006; pp. 213-68.
[65]
Browning ND, Chisholm MF, Pennycook SJ. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 1993; 366(6451): 143-6.
[http://dx.doi.org/10.1038/366143a0]
[66]
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018; 10(27): 12871-934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[67]
Jayawardena HSN, Liyanage SH, Rathnayake K, Patel U, Yan M. Analytical methods for characterization of nanomaterial surfaces. Anal Chem 2021; 93(4): 1889-911.
[http://dx.doi.org/10.1021/acs.analchem.0c05208] [PMID: 33434434]
[68]
Li T, Nowell CJ, Cipolla D, Rades T, Boyd BJ. Direct comparison of standard transmission electron microscopy and cryogenic-tem in imaging nanocrystals inside liposomes. Mol Pharm 2019; 16(4): 1775-81.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01308] [PMID: 30810323]
[69]
Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332: 312-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[70]
Michler GH. Electron microscopy of polymers. Springer Berlin Heidelberg 2008.
[71]
Sawyer LC, Grubb DT, David T, Meyers GF. Polymer Microscopy, Publ. New York: Springer 2008.
[72]
Smart LE, Moore EA. Solid state chemistry: An introduction. (4th ed.), Florida: CRC Press 2012.
[73]
Faqir H, Chiba H, Kikuchi M, et al. High-Temperature XRD and DTA Studies of BiMnO3 Perovskite. J Solid State Chem 1999; 142(1): 113-9.
[http://dx.doi.org/10.1006/jssc.1998.7994]
[74]
Bisognin G, Vangelista S, Bruno E. High-resolution X-ray diffraction by end of range defects in self-amorphized Ge. Mater Sci Eng B 2008; 154-155: 64-7.
[http://dx.doi.org/10.1016/j.mseb.2008.08.002]
[75]
Alexander LE. X-ray diffraction methods in polymer science. New York: Wiley Interscience 1969.
[76]
Chu B, Hsiao BS. Small-angle X-ray scattering of polymers. Chem Rev 2001; 101(6): 1727-62.
[http://dx.doi.org/10.1021/cr9900376] [PMID: 11709997]
[77]
Jenkins R, Snyder RL. Introduction to X-Ray Powder Diffractometry. In: INC. Canada: Publ. John Wiley & Sons 1996; pp. 1-94.
[78]
Cullity BD. Elements of x-ray diffraction In: Addison-Wesley series in metallurgy and materials 2nd edition. 1978.
[79]
Klug HP, Alexander LE. X-ray diffraction procedures for polycrystalline and amorphous materials. NY: Wiley Interscience 1974.
[80]
Glatter O, Kratky O. Small-Angle X-Ray Scattering. MA: Academic Press 1982.
[81]
James RW. The Optical Principles of the Diffraction of X-Rays, Publ. London: Bardford and Dickens 1962; pp. 14-9.
[82]
Wunderlich B. Development towards a single-run DSC for heat capacity measurements. J Therm Anal 1987; 32(6): 1949-55.
[http://dx.doi.org/10.1007/BF01913987]
[83]
Watson EL, O’Neil MJ. Differential Microcalorimeter. US Patent 3263484, 1962.
[84]
Clas SD, Dalton CR, Hancock BC. Differential scanning calorimetry: Applications in drug development. Pharm Sci Technol Today 1999; 2(8): 311-20.
[http://dx.doi.org/10.1016/S1461-5347(99)00181-9] [PMID: 10441275]
[85]
Craig DQM. A review of thermal methods used for the analysis of the crystal form, solution thermodynamics and glass transition behaviour of polyethylene glycols. Thermochim Acta 1995; 248: 189-203.
[http://dx.doi.org/10.1016/0040-6031(94)01886-L]
[86]
Flynn JH. Analysis of DSC results by integration. Thermochim Acta 1993; 217: 129-49.
[http://dx.doi.org/10.1016/0040-6031(93)85104-H]
[87]
Coleman N, Craig DQM. Modulated temperature differential scanning calorimetry: A novel approach to pharmaceutical thermal analysis. Int J Pharm 1996; 135(1-2): 13-29.
[http://dx.doi.org/10.1016/0378-5173(95)04463-9]
[88]
Hemminger W. Calorimetric methods. In: Mathot VBF, Ed. Calorimetry and thermal Analysis of Polymers. Munich: Hanser Publisher 1994.
[89]
Reading M, Hourston DJ. Modulated temperature differential scanning calorimetry: Theoretical and practical applications in polymer characterization. New York: Springer 2006.
[http://dx.doi.org/10.1007/1-4020-3750-3]
[90]
Fakirov S, Banerjee S, Richard JTL. On the degree of crystallinity from dsc in the case of multiple melting of synthetic polymers. J Macromol Sci Part B 2007; 46: 317-20.
[91]
Pandini S, Pegoretti A, Riccò T. DSC analysis of post-yield deformed pbt. Effects of thermal history. J Therm Anal Calorim 2008; 94(3): 825-33.
[http://dx.doi.org/10.1007/s10973-007-8917-7]
[92]
Ruiz CSB, Machado LDB, Vanin JA, Volponi JE. Cure degree estimation of photocurable coatings by DSC and differential photocalorimetry. J Therm Anal Calorim 2002; 67(2): 335-41.
[http://dx.doi.org/10.1023/A:1013914813678]
[93]
Zhang X, Zhao X, Li H, et al. Detection methods of nanoparticles synthesized by gas-phase method: A review. Front Chem 2022; 10: 845363.
[http://dx.doi.org/10.3389/fchem.2022.845363] [PMID: 35295972]
[94]
Li J, Liao R, Tao Y, et al. Probing the cyanobacterial microcystis gas vesicles after static pressure treatment: A potential in situ rapid method. Sensors 2020; 20(15): 4170.
[http://dx.doi.org/10.3390/s20154170] [PMID: 32727053]
[95]
Li J, Wang H, Liao R, et al. Statistical Mueller matrix driven discrimination of suspended particles. Opt Lett 2021; 46(15): 3645-8.
[http://dx.doi.org/10.1364/OL.433870] [PMID: 34329245]
[96]
Liu Z, Liao R, Ma H, et al. Classification of marine microalgae using low-resolution Mueller matrix images and convolutional neural network. Appl Opt 2020; 59(31): 9698-709.
[http://dx.doi.org/10.1364/AO.405427] [PMID: 33175806]
[97]
Wang Y, Dai J, Liao R, et al. Characterization of physiological states of the suspended marine microalgae using polarized light scattering. Appl Opt 2020; 59(5): 1307-12.
[http://dx.doi.org/10.1364/AO.377332] [PMID: 32225388]
[98]
Li D, Chen F, Zeng N, et al. Study on polarization scattering applied in aerosol recognition in the air. Opt Express 2019; 27(12): A581-95.
[http://dx.doi.org/10.1364/OE.27.00A581] [PMID: 31252839]
[99]
Xu Q, Zeng N, Guo W, Guo J, He Y, Ma H. Real time and online aerosol identification based on deep learning of multi-angle synchronous polarization scattering indexes. Opt Express 2021; 29(12): 18540-64.
[http://dx.doi.org/10.1364/OE.426501] [PMID: 34154109]
[100]
Xiang-Yu S, Yong W, Ran L, Shu-Qing S, Hui M. Use polarization light scattering to detect the cancer cell. Prog Biochem Biophys 2019; 46: 1196-201.
[101]
He C, He H, Chang J, Chen B, Ma H, Booth MJ. Polarisation optics for biomedical and clinical applications: A review. Light Sci Appl 2021; 10(1): 194.
[http://dx.doi.org/10.1038/s41377-021-00639-x]
[102]
Meng R, Shao C, Li P, et al. Transmission mueller matrix imaging with spatial filtering. Opt Lett 2021; 46(16): 4009-12.
[http://dx.doi.org/10.1364/OL.435166] [PMID: 34388798]
[103]
Shen Y, Huang R, He H, et al. Comparative study of the influence of imaging resolution on linear retardance parameters derived from the Mueller matrix. Biomed Opt Express 2021; 12(1): 211-25.
[http://dx.doi.org/10.1364/BOE.410989] [PMID: 33659076]
[104]
Song J, Zeng N, Guo W, Guo J, Ma H. Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. Biomed Opt Express 2021; 12(8): 4821-36.
[http://dx.doi.org/10.1364/BOE.426653] [PMID: 34513227]
[105]
Li RZ, Ma YH, Lu C. Study on the specific surface area determination of alumina by BET method. Light Met 2020; 9: 13-6.
[106]
Su M, Xue M, Cai X, Shang Z, Xu F. Particle size characterization by ultrasonic attenuation spectra. Particuology 2008; 6(4): 276-81.
[http://dx.doi.org/10.1016/j.partic.2008.02.001]
[107]
Pradhan A, Lahare P, Sinha P, et al. Biosensors as nano-analytical tools for COVID-19 Detection. Sensors 2021; 21(23): 7823.
[http://dx.doi.org/10.3390/s21237823] [PMID: 34883826]
[108]
Bahru TB, Ajebe EG. A review on nanotechnology: Analytical techniques use and applications. Int Res J Pure Appl Chem 2019; 19: 1-10.
[http://dx.doi.org/10.9734/irjpac/2019/v19i430117]
[109]
Smith BC. Fundamentals of fourier transform infrared spectroscopy. Boca Raton: CRC Press 1996.
[110]
Bracewell RN. The Fourier Transform and Its Applications. (3rd ed.), Boston: McGraw-Hill 2000.
[111]
Kludt JR, Kwong GYW, McDonald RL. Far-infrared spectra of tertiary ammonium salts. J Phys Chem 1972; 76(3): 339-42.
[http://dx.doi.org/10.1021/j100647a011]
[112]
Yoo BH, Park CM, Oh TJ, Han SH, Kang HH, Chang IS. Investigation of jewelry powders radiating far-infrared rays and the biological effects on human skin. J Cosmet Sci 2002; 53(3): 175-84.
[PMID: 12053208]
[113]
Udagawa Y, Nagasawa H. Effects of far-infrared ray on reproduction, growth, behaviour and some physiological parameters in mice. In Vivo 2000; 14(2): 321-6.
[PMID: 10836204]
[114]
Perkampus HH, Grinter HC, Threfall TL. UV-VIS spectroscopy and its applications. Berlin, Heidelberg 1992.
[http://dx.doi.org/10.1007/978-3-642-77477-5]
[115]
Ingle JDJ, Crouch SR. Spectrochemical Analysis. New Jersey: Prentice Hall 1988.
[116]
Wilschefski S, Baxter M. Inductively coupled plasma mass spectrometery: Introduction to analytical aspects. Clin Biochem Rev 2019; 40(3): 115-33.
[http://dx.doi.org/10.33176/AACB-19-00024] [PMID: 31530963]
[117]
Available From: https://thermofisher.com (Accessed on 12 November 2022)
[118]
Bulska E, Wagner B. Quantitative aspects of inductively coupled plasma mass spectrometery. Phil Trans R Sec A 2016; 374: 1-18.
[119]
Mohamud H, Russell B, Pollard A, Schettino G, Liu R, Ge G. Inductively coupled plasma-mass spectrometery (ICP-MS) analysis of nanomaterials for use in nuclesr and material applications. Spectroscopy 2021; 36: 26-32.
[120]
Baron PA. Calibration and use of the aerodynamic particle sizer (APS3300). Aerosol Sci Technol 1986; 5(1): 55-67.
[http://dx.doi.org/10.1080/02786828608959076]
[121]
Volckens J, Peters TM. Counting and particle transmission efficiency of the aerodynamic particle sizer. J Aerosol Sci 2005; 36(12): 1400-8.
[http://dx.doi.org/10.1016/j.jaerosci.2005.03.009]
[122]
Chien CH, Theodore A, Wu CY, Hsu YM, Birky B. Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers. J Aerosol Sci 2016; 101: 77-85.
[http://dx.doi.org/10.1016/j.jaerosci.2016.05.011]
[123]
Fishler R, Sznitman J. A novel aerodynamic sizing method for pharmaceutical aerosols using image-based analysis of settling velocities. Inhalation 2017; 11(3): 21-5.
[PMID: 28690715]
[124]
Wang X, Kruis FE, McMurry PH. Aerodynamic focusing of nanoparticles: Guidelines for designing aerodynamic lenses for nanoparticles. Aerosol Sci Technol 2005; 39(7): 611-23.
[http://dx.doi.org/10.1080/02786820500181901]
[125]
Chen BT, Schwegler-Berry D, Cumpston A, et al. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray. J Occup Environ Hyg 2016; 13(7): 501-18.
[http://dx.doi.org/10.1080/15459624.2016.1148267] [PMID: 26873639]
[126]
Available From: https://bettersizeinstruments.com (Accessed on 12 November 2022)
[127]
Sioutas C, Ebt E, Wolfson JM, Koutrakis P. Evaluation of the measurement performance of the scanning mobility particle sizer and aerodynamic particle sizer. Aerosol Sci Technol 1999; 30(1): 84-92.
[http://dx.doi.org/10.1080/027868299304903]
[128]
van Dijk WD, Gopal S, Scheepers PTJ. Nanoparticles in cigarette smoke; real-time undiluted measurements by a scanning mobility particle sizer. Anal Bioanal Chem 2011; 399(10): 3573-8.
[http://dx.doi.org/10.1007/s00216-011-4701-4] [PMID: 21308367]
[129]
Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol 2019; 47(1): 524-39.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[130]
Henderson MR. Characterization of scanning mobility particle sizers for use with nanoaetosols Graduate thesis and dissertations 2018. Available From: http://scholarcommons.usf.edu./etd/7166
[131]
Raval N, Maheshwari R, Kalyan D, Youngren-ortiz SR, Chougule MB, Tekade RK. Importance of physiochemical characterization of nanoparticles in pharmaceutical product development. In: Tekade RK, Ed. Advances in pharmaceutical product development and research, basic fundamentals of drug delivery. Academic Press 2019; pp. 369-400.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00010-8]
[132]
Available From: https://nanocomposix.com (Accessed on 12 November 2022)
[133]
Chu PK, Wang H. Surface characterization of biomaterials Characterization of biomaterials In: Bandyopadhyay A, Bose S, Eds. 2013; 105-74. Available From: www.sciencedirect.com/science/article/pii/B9780124158009000048
[134]
McLean JA, Stumpo KA, Russell DH. Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J Am Chem Soc 2005; 127(15): 5304-5.
[http://dx.doi.org/10.1021/ja043907w] [PMID: 15826152]
[135]
Ramalinga U, Clogston JD, Patri AK, Simpson JT. Characterization of nanoparticles by matrix assisted laser desorption ionization time-of-flight mass spectrometry. Methods Mol Biol 2011; 697: 53-61.
[http://dx.doi.org/10.1007/978-1-60327-198-1_5] [PMID: 21116953]
[136]
Chu HW, Unnikrishnan B, Anand A, Mao JY, Huang CC. Nanoparticle-based laser desorption/ionization mass spectrometric analysis of drugs and metabolites. Yao Wu Shi Pin Fen Xi 2018; 26(4): 1215-28.
[PMID: 30249320]
[137]
Available From: WWW.legalserviceindia.com/articles/ptaav.htm (Accessed on 12 October 2018)
[138]
Bott S, Hart W. Particle size analysis utilizing polarization intensity differential scattering. Patent US4953978, 1990.
[139]
Xu R. Extracted polarization intensity differential scattering for particle characterization. Patent US6859276, 2003.
[140]
Blumberg G, Schlockermann CJ. Atomic force microscope and its operating method thereof. patent US7111504B2, 2006.
[141]
Hough PVC, Wang C. Sensing mode atomic force microscope. Patent US6818891B1, 2004.
[142]
Sivasankar S, Li H. System, apparatus, and method for simultaneous single-molecule atomic force microscopy and fluorescence measurements. Patent US8656510B1, 2014.
[143]
Hu Y, Hu S, Su C. Method and apparatus of operating a scanning probe microscope. Patent US8739309B2, 2014.
[144]
Proksch R, Callahan RC, Stetter F, et al. Automated atomic force microscope and the thereof. Patent US9383388B2, 2016.
[145]
Papaioannou D, Spino JL. A microbeam collimator for high resolution XRD investigations with conventional diffractometers. Patent EP1193492B1, 2007.
[146]
Izumi K. A method of generating an X-ray microbeam and equipment therefor. Patent NL1007118C2, 1998.
[147]
Mark MBVD, Dusschoten AHV. An optical probe system. Patent WO2014072891A1, 2014.
[148]
Bruchez MP, Daniels RH, Empedocles SA, Phillips VE, Wong EY, Zehnder DA. Method of detecting an analyte in a sample using. Patent US6630307B2, 2003.
[149]
Fan F-RF, Bard AJ, Xiao X. Method and apparatus for nanoparticle electrogenerated chemiluminescence amplification. Patent WO2009126249A1, 2009.
[150]
Bard AJ, Fan FF, Yu J, Omer K. Luminescent nanostructured materials for use in electrogenerated chemiluminescence. Patent WO2009137002A3, 2010.
[151]
Fan FR, Bard AJ, Xiao X. Method and apparatus for metal nanoparticles electrocatalytic. Patent WO2008157403A3, 2009.
[152]
Stamenkovic V, Markovic NM, Wang C, Daimon H, Sun S. Highly durable nanoscale electrocatalyst based on core shell particles. Patent US8178463B2, 2012.
[153]
Corbea JJC, Jurss JW, Hoertz P, Meyer TJ. Nanoparticles electrodes and methods of preparation. Patent US20130020113A1, 2013.
[154]
Verbeck GF IV, Davila S. Silver and silver nanoparticle MALDI matrix utilizing online soft landing ion mobility. US 8610058, 2013.
[155]
Zhou H, Allen J, Fan BFRF. Method and apparatus for electrocatalytic amplification on pre-oxidized semiconductor nanocrystals as a detectable label measuring electrode. Patent US8808530B2, 2014.
[156]
Pan J. Nanocrystals on fibers. Patent US9385337B2, 2016.
[157]
Lin CF, Su WF. Light emitting diode with nanoparticles. Patent US6838816, 2005.
[158]
Kahen KB. Light emitting nanocomposite particles. US8361823 B2 Patent US8361823, 2013.
[159]
Barron J, Sychra V, O’Keefe J. Use of nanoparticles in the preparation of calibration standards. Patent US9612202B2, 2017.
[160]
Khursheed A. Scanning electron microscope. Patent US7294834B2, 2007.
[161]
Bierhoff MP, Buijsse B, Kooijman CS, et al. Compact scanning electron microscope. Patent US20100230590, 2010.
[162]
Boughorbel F, Kooijman CS, Lich BH, Bosch EG. SEM imaging method. Patent US8232523B2, 2012.
[163]
Sohda Y, Bizen K, Abe Y, Tanimoto K. Scanning electron microscope. Patent US20210272770, 2021.
[164]
Jonge ND. Transmission electron microscopy for imaging live cells. Patent US20120120226, 2012.
[165]
Shibata N, Inami W, Sawada H. Transmission electron microscope. Patent US8431897B2, 2013.
[166]
Stanfill Bryan A, Reehl Sarah M, Johnson Margaret C, et al. Sensing analytical instrument parameters, specimen characteristics, or both from sparse datasets. Patent US10541109, 2020.
[167]
Reed KJ, Levchak MJ, Schaefer JW. Thermogravimetric apparatus and its method thereof. Patent US5321719, 1994.
[168]
Williams J, Owens M. Micro-electromechanical system based thermo-gravimetric analysis instrument and its method thereof. Patent US20040141541, 2004.
[169]
Huetter T, Joerimann U, Wiedemann HG. Differential analysis system including dynamic mechanic analysis and its method thereof. Patent US6146013, 2000.
[170]
Liu G, Gong J, Kong L, et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc Natl Acad Sci USA 2018; 115(32): 8076-81.
[http://dx.doi.org/10.1073/pnas.1809167115] [PMID: 30038004]
[171]
Kong L, Liu G, Gong J, et al. Highly tunable properties in pressure-treated two-dimensional Dion–Jacobson perovskites. Proc Natl Acad Sci USA 2020; 117(28): 16121-6.
[http://dx.doi.org/10.1073/pnas.2003561117] [PMID: 32601216]
[172]
Kong L, Liu G, Gong J, et al. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites. Proc Natl Acad Sci USA 2016; 113(32): 8910-5.
[http://dx.doi.org/10.1073/pnas.1609030113] [PMID: 27444014]
[173]
Liu G, Kong L, Gong J, et al. Pressure‐induced bandgap optimization in lead‐based perovskites with prolonged carrier lifetime and ambient retainability. Adv Funct Mater 2017; 27(3): 1604208.
[http://dx.doi.org/10.1002/adfm.201604208]
[174]
Fu Y, Li J, Li J. Metal/semiconductor nanocomposites for photocatalysis: Fundamentals, structures, applications and properties. Nanomaterials 2019; 9(3): 359.
[http://dx.doi.org/10.3390/nano9030359] [PMID: 30836647]
[175]
Tahir MB, Sohib M, Sagir M, Rafique M. Role of nanotechnology in photocatalysis. Encyclopedia of Smart Materials. 2022; pp. 578-89.
[http://dx.doi.org/10.1016/B978-0-12-815732-9.00006-1]
[176]
Feliczak-Guzik A. Nanomaterials as photocatalysis-synthesis and their potential applications. Materials 2022; 16(1): 193.
[http://dx.doi.org/10.3390/ma16010193]
[177]
Zhang F, Wang X, Liu H, et al. Recent advances and applications of semiconductor photocatalytic technology. Appl Sci 2019; 9(12): 2489.
[http://dx.doi.org/10.3390/app9122489]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy