Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Effects of the Impacting Velocity and Angle on the Grinding Force, Force Ratio and Deformation Behavior During High-shear and Low-pressure Grinding

Author(s): Guoyu Zhang, Yebing Tian*, Sohini Chowdhury, Jinling Wang, Bing Liu, Jinguo Han and Zenghua Fan

Volume 15, Issue 4, 2023

Published on: 09 November, 2023

Page: [287 - 299] Pages: 13

DOI: 10.2174/0118764029255495231020063843

Price: $65

Abstract

Background: The normal grinding force is generally larger than the tangential one during conventional grinding processes. Consequently, several machining issues arise, such as a low material removal rate, a high grinding temperature, and poor surface integrity. To overcome the constraints associated with conventional grinding methods, a novel “high-shear and low-pressure” flexible grinding wheel is utilized. A thorough investigation of the influence of machining parameters on the highshear and low-pressure grinding performance from a microscopic perspective is focused.

Objective: The effect of the impacting angle and velocity on the grinding force, grinding force ratio, and fiber deformation displacement is explored at the microscopic level.

Methods: An impact model was established using ABAQUS software to explore and analyze the interaction results of micro-convex peaks with the abrasive layer under different processing conditions.

Results: It was found that the normal grinding force Fn increased with both impact angle and velocity. Similarly, the tangential grinding force Ft is enhanced with increasing velocity. However, its magnitude is reduced with impact angle.

Conclusion: The grinding force ratio is primarily affected by the impact angle, which displays a declining trend. The maximum fabric deformation displacement reaches 72.4 nm at an angle of 60° and at a velocity of 9 m/s.

Graphical Abstract

[1]
Hahn, R.S. On the nature of the grinding process. Proceeding of the 3rd International Machine Tool Design & Research Conference Pergamon Press Manchester, 1962.
[2]
Tian, Y.B.; Liu, F.; Wang, Y.; Wu, H. Development of portable power monitoring system and grinding analytical tool. J. Manuf. Process., 2017, 27, 188-197.
[http://dx.doi.org/10.1016/j.jmapro.2017.05.002]
[3]
Rowe, W.B. Principles of modern grinding technology; William Andrew Publishing: Boston, 2009.
[4]
Marinescu, I.D.; Rowe, W.B.; Dimitrov, B.; Ohmori, H. Tribology of abrasive machining processes; Elsevier: Netherland 2012.
[5]
Li, Z.C.; Lin, B.; Xu, Y.S.; Hu, J. Experimental studies on grinding forces and force ratio of the unsteady-state grinding technique. J. Mater. Process. Technol., 2002, 129(1-3), 76-80.
[http://dx.doi.org/10.1016/S0924-0136(02)00579-4]
[6]
Tian, Y.B.; Zhong, Z.W.; Rawat, R. Comparative study on grinding of thin-walled and honeycomb-structured components with two CBN wheels. Int. J. Adv. Manuf. Technol., 2015, 81(5-8), 1097-1108.
[http://dx.doi.org/10.1007/s00170-015-7114-2]
[7]
Zhang, X.; Wen, D.; Shi, Z.; Li, S.; Kang, Z.; Jiang, J.; Zhang, Z. Grinding performance improvement of laser micro-structured silicon nitride ceramics by laser macro-structured diamond wheels. Ceram. Int., 2020, 46(1), 795-802.
[http://dx.doi.org/10.1016/j.ceramint.2019.09.034]
[8]
Zhang, Y.; Li, C.; Jia, D.; Li, B.; Wang, Y.; Yang, M.; Hou, Y.; Zhang, X. Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J. Mater. Process. Technol., 2016, 232, 100-115.
[http://dx.doi.org/10.1016/j.jmatprotec.2016.01.031]
[9]
Chen, Y.; Su, H.; Qian, N.; He, J.; Gu, J.; Xu, J.; Ding, K. Ultrasonic vibration-assisted grinding of silicon carbide ceramics based on actual amplitude measurement: Grinding force and surface quality. Ceram. Int., 2021, 47(11), 15433-15441.
[http://dx.doi.org/10.1016/j.ceramint.2021.02.109]
[10]
Brady, J.F.; Bossis, G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech., 1985, 155, 105-129.
[http://dx.doi.org/10.1017/S0022112085001732]
[11]
Wagner, N.J.; Brady, J.F. Shear thickening in colloidal dispersions. Phys. Today, 2009, 62(10), 27-32.
[http://dx.doi.org/10.1063/1.3248476]
[12]
Kalman, D.P.; Wagner, N.J. Microstructure of shear-thickening concentrated suspensions determined by flow-USANS. Rheol. Acta, 2009, 48(8), 897-908.
[http://dx.doi.org/10.1007/s00397-009-0351-2]
[13]
Hoffman, R.L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. Trans. Soc. Rheol., 1972, 16(1), 155-173.
[http://dx.doi.org/10.1122/1.549250]
[14]
Bender, J.; Wagner, N.J. Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J. Rheol., 1996, 40(5), 899-916.
[http://dx.doi.org/10.1122/1.550767]
[15]
Olsson, P.; Teitel, S. Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett., 2007, 99(17), 178001.
[http://dx.doi.org/10.1103/PhysRevLett.99.178001] [PMID: 17995371]
[16]
Mari, R.; Seto, R.; Morris, J.F.; Denn, M.M. Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol., 2014, 58(6), 1693-1724.
[http://dx.doi.org/10.1122/1.4890747]
[17]
Kim, Y.; Park, Y.; Cha, J.; Ankem, V.A.; Kim, C.G. Behavior of Shear Thickening Fluid (STF) impregnated fabric composite rear wall under hypervelocity impact. Compos. Struct., 2018, 204, 52-62.
[http://dx.doi.org/10.1016/j.compstruct.2018.07.064]
[18]
Tian, Y.; Li, L.; Han, J.; Fan, Z.; Liu, K. Development of novel high-shear and low-pressure grinding tool with flexible composite. Mater. Manuf. Process., 2021, 36(4), 479-487.
[http://dx.doi.org/10.1080/10426914.2020.1843673]
[19]
Tian, Y.B.; Li, L.G.; Fan, S.; Guo, Q.J.; Cheng, X. A novel high-shear and low-pressure grinding method using specially developed abra-sive tools. Proc. Inst. Mech. Eng. Part B, 2021, 235(1-2), 166-172.
[20]
Tian, Y.; Li, L.; Liu, B.; Han, J.; Fan, Z. Experimental investigation on high-shear and low-pressure grinding process for Inconel718 sup-eralloy. Int. J. Adv. Manuf. Technol., 2020, 107(7-8), 3425-3435.
[http://dx.doi.org/10.1007/s00170-020-05284-z]
[21]
Liu, B.; Tian, Y.; Han, J.; Li, L.; Gu, Z.; Hu, X. Development of a new high-shear and low-pressure grinding wheel and its grinding charac-teristics for Inconel718 alloy. Chin. J. Aeronauti., 2022, 35(12), 278-286.
[http://dx.doi.org/10.1016/j.cja.2021.08.013]
[22]
Tian, Y.; Tian, C.; Han, J.; Babbar, A.; Liu, B. Characteristics of grinding force and Kevlar deformation of novel body-armor-like abrasive tool. Int. J. Adv. Manuf. Technol., 2022, 122(3-4), 2019-2030.
[http://dx.doi.org/10.1007/s00170-022-10033-5]
[23]
Wei, M.; Lin, K.; Sun, L. Shear thickening fluids and their applications. Mater. Des., 2022, 216, 110570.
[http://dx.doi.org/10.1016/j.matdes.2022.110570]
[24]
Qiu, G.; Henke, S.; Grabe, J. Application of a coupled eulerian-lagrangian approach on geomechanical problems involving large deformations. Comput. Geotech., 2011, 38(1), 30-39.
[http://dx.doi.org/10.1016/j.compgeo.2010.09.002]
[25]
Wang, P.; Lian, C.; Yue, C.; Wu, X.; Zhang, J.; Zhang, K.; Yue, Z. Experimental and numerical study of tire debris impact on fuel tank cover based on coupled Eulerian-Lagrangian method. Int. J. Impact Eng., 2021, 157, 103968.
[http://dx.doi.org/10.1016/j.ijimpeng.2021.103968]
[26]
Braeunig, J.P.; Loubère, R.; Motte, R.; Peybernes, M.; Poncet, R. A posteriori limiting for 2D lagrange plus remap schemes solving the hydrodynamics system of equations. Comput. Fluids, 2018, 169, 249-262.
[http://dx.doi.org/10.1016/j.compfluid.2017.08.020]
[27]
Karthikeyan, K.; Russell, B.P.; Fleck, N.A.; Wadley, H.N.G.; Deshpande, V.S. The effect of shear strength on the ballistic response of laminated composite plates. Eur. J. Mech. A, Solids, 2013, 42, 35-53.
[http://dx.doi.org/10.1016/j.euromechsol.2013.04.002]
[28]
Pan, Y.; Sang, M.; Zhang, J.; Sun, Y.; Liu, S.; Hu, Y.; Gong, X. Flexible and lightweight Kevlar composites towards flame retardant and impact resistance with excellent thermal stability. Chem. Eng. J., 2023, 452, 139565.
[http://dx.doi.org/10.1016/j.cej.2022.139565]
[29]
Pham, Q.H.; Ha-Minh, C.; Chu, T.L.; Kanit, T.; Imad, A. Numerical investigation of fibre failure mechanisms of one single Kevlar yarn under ballistic impact. Int. J. Solids Struct., 2022, 239-240, 111436.
[http://dx.doi.org/10.1016/j.ijsolstr.2022.111436]
[30]
Roylance, D.; Wilde, A.; Tocci, G. Ballistic impact of textile structures. Text. Res. J., 1973, 43(1), 34-41.
[http://dx.doi.org/10.1177/004051757304300105]
[31]
Ha-Minh, C.; Imad, A.; Boussu, F.; Kanit, T. Experimental and numerical investigation of a 3D woven fabric subjected to a ballistic im-pact. Int. J. Impact Eng., 2016, 88, 91-101.
[http://dx.doi.org/10.1016/j.ijimpeng.2015.08.011]
[32]
Miao, Y.; Zhou, E.; Wang, Y.; Cheeseman, B.A. Mechanics of textile composites: Micro-geometry. Compos. Sci. Technol., 2008, 68(7-8), 1671-1678.
[http://dx.doi.org/10.1016/j.compscitech.2008.02.018]
[33]
Mazumder, A.; Wang, Y.; Yen, C.F. A structured method to generate conformal FE mesh for realistic textile composite micro-geometry. Compos. Struct., 2020, 239, 112032.
[http://dx.doi.org/10.1016/j.compstruct.2020.112032]
[34]
Yang, Y.; Liu, Y.; Xue, S.; Sun, X. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles. Compos. Struct., 2021, 267, 113856.
[http://dx.doi.org/10.1016/j.compstruct.2021.113856]
[35]
Gao, Z.; Chen, L. A review of multi-scale numerical modeling of three-dimensional woven fabric. Compos. Struct., 2021, 263, 113685.
[http://dx.doi.org/10.1016/j.compstruct.2021.113685]
[36]
Sen, S.; Jamal, M.N.B.; Shaw, A.; Deb, A. Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite. Int. J. Mech. Sci., 2019, 164, 105174.
[http://dx.doi.org/10.1016/j.ijmecsci.2019.105174]
[37]
Liu, X. Research on dynamic mechanical behavior and numerical simulation method of STF-kevlar fabrics. MA Thesis, Nanjing University of Aeronautics and Astronautics: Nanjing, 2017.
[38]
Alitavoli, M.; Darvizeh, A.; Moghaddam, M.; Parghou, P.; Rajabiehfard, R. Numerical modeling based on coupled Eulerian-Lagrangian approach and experimental investigation of water jet spot welding process. Thin-walled Struct., 2018, 127, 617-628.
[http://dx.doi.org/10.1016/j.tws.2018.02.005]
[39]
Drucker, D.C.; Prager, W. Soil mechanics and plastic analysis or limit design. Q. Appl. Math., 1952, 10(2), 157-165.
[http://dx.doi.org/10.1090/qam/48291]
[40]
Ajjarapu, S.K.; Patten, J.A.; Cherukuri, H.; Brand, C. Numerical simulations of ductile regime machining of silicon nitride using the Drucker-Prager material model. Proc. Inst. Mech. Eng. Part C, 2004, 218(6), 577-582.
[41]
Zhang, Q.; Fu, Y.; Su, H.; Zhao, Q.; To, S. Surface damage mechanism of monocrystalline silicon during single point diamond grinding. Wear, 2018, 396-397, 48-55.
[http://dx.doi.org/10.1016/j.wear.2017.11.008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy