Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

4D-QSAR and MIA-QSAR Studies of Aminobenzimidazole Derivatives as Fourth-generation EGFR Inhibitors

Author(s): Xuegong Jia, Chaochun Wei, Nana Tian, Hong Yan* and Hongjun Wang*

Volume 20, Issue 2, 2024

Published on: 08 November, 2023

Page: [140 - 152] Pages: 13

DOI: 10.2174/0115734064258994231106052633

Price: $65

Abstract

Background: The epidermal growth factor receptor (EGFR) protein has been intensively studied as a therapeutic target for non-small cell lung cancer (NSCLC). The aminobenzimidazole derivatives as the fourth-generation EGFR inhibitors have achieved promising results and overcame EGFR mutations at C797S, del19 and T790M in NSCLC.

Objective: In order to understand the quantitative structure-activity relationship (QSAR) of aminobenzimidazole derivatives as EGFRdel19 T790M C797S inhibitors, the four-dimensional QSAR (4D-QSAR) and multivariate image analysis (MIA-QSAR) have been performed on the data of 45 known aminobenzimidazole derivatives.

Methods: The 4D-QSAR descriptors were acquired by calculating the association energies between probes and aligned conformational ensemble profiles (CEP), and the regression models were established by partial least squares (PLS). In order to further understand and verify the 4D-QSAR model, MIA-QSAR was constructed by using chemical structure pictures to generate descriptors and PLS regression. Furthermore, the molecular docking and averaged noncovalent interactions (aNCI) analysis were also performed to further understand the interactions between ligands and the EGFR targets, which was in good agreement with the 4D-QSAR model.

Results: The established 4D-QSAR and MIA-QSAR models have strong stability and good external prediction ability.

Conclusion: These results will provide theoretical guidance for the research and development of aminobenzimidazole derivatives as new EGFRdel19 T790M C797S inhibitors.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Pirlog, R.; Cismaru, A.; Nutu, A.; Berindan-Neagoe, I. Field cancerization in NSCLC: A new perspective on MicroRNAs in macrophage polarization. Int. J. Mol. Sci., 2021, 22(2), 746.
[http://dx.doi.org/10.3390/ijms22020746] [PMID: 33451052]
[3]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[4]
Harrison, P.T.; Vyse, S.; Huang, P.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin. Cancer Biol., 2020, 61, 167-179.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.015] [PMID: 31562956]
[5]
Jonna, S.; Subramaniam, D.S. Molecular diagnostics and targeted therapies in non-small cell lung cancer (NSCLC): An update. Discov. Med., 2019, 27(148), 167-170.
[PMID: 31095926]
[6]
Tan, C.S.; Kumarakulasinghe, N.B.; Huang, Y.Q.; Ang, Y.L.E.; Choo, J.R.E.; Goh, B.C.; Soo, R.A. Third generation EGFR TKIs: current data and future directions. Mol. Cancer, 2018, 17(1), 29.
[http://dx.doi.org/10.1186/s12943-018-0778-0] [PMID: 29455654]
[7]
Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol., 2018, 29(Suppl. 1), i10-i19.
[http://dx.doi.org/10.1093/annonc/mdx703] [PMID: 29462254]
[8]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[9]
Oxnard, G.R.; Hu, Y.; Mileham, K.F.; Husain, H.; Costa, D.B.; Tracy, P.; Feeney, N.; Sholl, L.M.; Dahlberg, S.E.; Redig, A.J.; Kwiatkowski, D.J.; Rabin, M.S.; Paweletz, C.P.; Thress, K.S.; Jänne, P.A. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol., 2018, 4(11), 1527-1534.
[http://dx.doi.org/10.1001/jamaoncol.2018.2969] [PMID: 30073261]
[10]
Wang, S.; Tsui, S.T.; Liu, C.; Song, Y.; Liu, D. EGFR C797S mutation mediates resistance to third-generation inhibitors in T790M-positive non-small cell lung cancer. J. Hematol. Oncol., 2016, 9(1), 55-59.
[http://dx.doi.org/10.1186/s13045-016-0284-z] [PMID: 27417553]
[11]
Piotrowska, Z.; Isozaki, H.; Lennerz, J.K.; Gainor, J.F.; Lennes, I.T.; Zhu, V.W.; Marcoux, N.; Banwait, M.K.; Digumarthy, S.R.; Su, W.; Yoda, S.; Riley, A.K.; Nangia, V.; Lin, J.J.; Nagy, R.J.; Lanman, R.B.; Dias-Santagata, D.; Mino-Kenudson, M.; Iafrate, A.J.; Heist, R.S.; Shaw, A.T.; Evans, E.K.; Clifford, C.; Ou, S.H.I.; Wolf, B.; Hata, A.N.; Sequist, L.V. Landscape of acquired resistance to osimertinib in EGFR -mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov., 2018, 8(12), 1529-1539.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1022] [PMID: 30257958]
[12]
Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; Lee, C.K.; Sebastian, M.; Templeton, A.; Mann, H.; Marotti, M.; Ghiorghiu, S.; Papadimitrakopoulou, V.A.; Aura, I. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med., 2017, 376(7), 629-640.
[http://dx.doi.org/10.1056/NEJMoa1612674] [PMID: 27959700]
[13]
Wang, S.; Song, Y.; Liu, D. EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett., 2017, 385, 51-54.
[http://dx.doi.org/10.1016/j.canlet.2016.11.008] [PMID: 27840244]
[14]
To, C.; Jang, J.; Chen, T.; Park, E.; Mushajiang, M.; De Clercq, D.J.H.; Xu, M.; Wang, S.; Cameron, M.D.; Heppner, D.E.; Shin, B.H.; Gero, T.W.; Yang, A.; Dahlberg, S.E.; Wong, K.K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discov., 2019, 9(7), 926-943.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0903] [PMID: 31092401]
[15]
Lee, S.; Kim, J.; Duggirala, K.B.; Go, A.; Shin, I.; Cho, B.C.; Choi, G.; Chae, C.H.; Lee, K. Allosteric inhibitor TREA-0236 containing non-hydrolysable quinazoline 4 one for EGFR T790M/C797S mutants inhibition. Bull. Korean Chem. Soc., 2018, 39(7), 895-898.
[http://dx.doi.org/10.1002/bkcs.11491]
[16]
Lu, X.; Zhang, T.; Zhu, S.J.; Xun, Q.; Tong, L.; Hu, X.; Li, Y.; Chan, S.; Su, Y.; Sun, Y.; Chen, Y.; Ding, J.; Yun, C.H.; Xie, H.; Ding, K. Discovery of JND3229 as a new EGFR C797S mutant inhibitor with In vivo Monodrug Efficacy. ACS Med. Chem. Lett., 2018, 9(11), 1123-1127.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00373] [PMID: 30429956]
[17]
De Clercq, D.J.H.; Heppner, D.E.; To, C.; Jang, J.; Park, E.; Yun, C.H.; Mushajiang, M.; Shin, B.H.; Gero, T.W.; Scott, D.A.; Jänne, P.A.; Eck, M.J.; Gray, N.S. Discovery and optimization of dibenzodiazepinones as allosteric mutant-selective EGFR inhibitors. ACS Med. Chem. Lett., 2019, 10(11), 1549-1553.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00381] [PMID: 31749909]
[18]
Engelhardt, H.; Böse, D.; Petronczki, M.; Scharn, D.; Bader, G.; Baum, A.; Bergner, A.; Chong, E.; Döbel, S.; Egger, G.; Engelhardt, C.; Ettmayer, P.; Fuchs, J.E.; Gerstberger, T.; Gonnella, N.; Grimm, A.; Grondal, E.; Haddad, N.; Hopfgartner, B.; Kousek, R.; Krawiec, M.; Kriz, M.; Lamarre, L.; Leung, J.; Mayer, M.; Patel, N.D.; Simov, B.P.; Reeves, J.T.; Schnitzer, R.; Schrenk, A.; Sharps, B.; Solca, F.; Stadtmüller, H.; Tan, Z.; Wunberg, T.; Zoephel, A.; McConnell, D.B. Start selective and rigidify: The discovery path toward a next generation of EGFR tyrosine kinase inhibitors. J. Med. Chem., 2019, 62(22), 10272-10293.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01169] [PMID: 31689114]
[19]
Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature, 1962, 194(4824), 178-180.
[http://dx.doi.org/10.1038/194178b0]
[20]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
[21]
Hopfinger, A.J.; Wang, S.; Tokarski, J.S.; Jin, B.; Albuquerque, M.; Madhav, P.J.; Duraiswami, C. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc., 1997, 119(43), 10509-10524.
[http://dx.doi.org/10.1021/ja9718937]
[22]
Martins, J.P.A.; Barbosa, E.G.; Pasqualoto, K.F.M.; Ferreira, M.M.C. LQTA-QSAR: A new 4D-QSAR methodology. J. Chem. Inf. Model., 2009, 49(6), 1428-1436.
[http://dx.doi.org/10.1021/ci900014f] [PMID: 19422246]
[23]
Bitencourt, M.; Freitas, M.P. MIA QSAR evaluation of a series of sulfonylurea herbicides. Pest Manag. Sci., 2008, 64(8), 800-807.
[http://dx.doi.org/10.1002/ps.1565] [PMID: 18338340]
[24]
Wang, Y.; Zhao, Y.; Wei, C.; Tian, N.; Yan, H.; Beijing, U.; Bbeijing, T.P.C.; Abeijing, K.L.O.E.; Faculty, O.E.A.L. 4D-QSAR molecular modeling and analysis of flavonoid derivatives as acetylcholinesterase inhibitors. Biol. Pharm. Bull., 2021, 44(7), 999-1006.
[http://dx.doi.org/10.1248/bpb.b21-00265] [PMID: 34193695]
[25]
Ma, W.; Wang, Y.; Chu, D.; Yan, H. 4D-QSAR and MIA-QSAR study on the Bruton’s tyrosine kinase (Btk) inhibitors. J. Mol. Graph. Model., 2019, 92, 357-362.
[http://dx.doi.org/10.1016/j.jmgm.2019.08.009] [PMID: 31450065]
[26]
Engelhardt, H.; Boese, D. New macrocyclic compounds and derivatives as egfr inhibitors. W.O. Patent 2020260252, 2020.
[27]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams, D.F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.R.N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K. Gaussian 09 Rev. D.01, 2010.
[28]
Lu, T.; Chen, F. Multiwfn: A multifunctional wave function analyzer. J. Comput. Chem., 2012, 33(5), 580-592.
[http://dx.doi.org/10.1002/jcc.22885] [PMID: 22162017]
[29]
Lu, T. Sobtop: A tool of generating forcefield parameters and GROMACS topology file. 2022. Available from: http://sobereva.com/softlist.html
[30]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[31]
Sousa da Silva, A.W.; Vranken, W.F. ACPYPE - Antechamber python parser interface. BMC Res. Notes, 2012, 5(1), 367.
[http://dx.doi.org/10.1186/1756-0500-5-367] [PMID: 22824207]
[32]
Svishchev, I.M.; Kusalik, P.G. Structure in liquid water: A study of spatial distribution functions. J. Chem. Phys., 1993, 99(4), 3049-3058.
[http://dx.doi.org/10.1063/1.465158]
[33]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[34]
Parrinello, M.; Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett., 1980, 45(14), 1196-1199.
[http://dx.doi.org/10.1103/PhysRevLett.45.1196]
[35]
Ravindra, G.K.; Achaiah, G.; Sastry, G.N. Molecular modeling studies of phenoxypyrimidinyl imidazoles as p38 kinase inhibitors using QSAR and docking. Eur. J. Med. Chem., 2008, 43(4), 830-838.
[http://dx.doi.org/10.1016/j.ejmech.2007.06.009] [PMID: 17706839]
[36]
Wu, P.; Chaudret, R.; Hu, X.; Yang, W. Noncovalent interaction analysis in fluctuating environments. J. Chem. Theory Comput., 2013, 9(5), 2226-2234.
[http://dx.doi.org/10.1021/ct4001087] [PMID: 23894230]
[37]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy