Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Tumor-associated Macrophages Mediate Gefitinib Resistance in Lung Cancer through HGF/c-met Signaling Pathway

Author(s): Xiali Tang, Yu Chen, Demin Jiao, Xiang Liu, Jun Chen, Yongyang Liu, Chunyan Jiang* and Qingyong Chen*

Volume 24, Issue 1, 2024

Published on: 08 November, 2023

Page: [30 - 38] Pages: 9

DOI: 10.2174/0118715206261966231103043418

Price: $65

conference banner
Abstract

Background: The biological behavior of cells changes after they develop drug resistance, and the degree of resistance will be affected by the tumor microenvironment. In this study, we aimed to study the effects of M2 macrophages on gefitinib resistance.

Methods: We polarized THP-1 cells into M0 and M2 macrophages, and conducted various experiments to investigate the effects of M2 macrophages on gefitinib resistance in lung cancer.

Results: We found that M2 macrophages promote gefitinib resistance in HCC827 and PC9 cells. In addition, we used ELISA to measure the secretion level of HGF. HGF secretion levels were significantly increased in M2 macrophages. Exogenous HGF remarkably increased the proliferation and invasion in HCC827 and PC9 cells. However, the addition of anti-HGF antibodies abolished the proliferation and invasion of both HCC827 and PC9 cells promoted by M2 macrophages. Furthermore, M2 macrophages or exogenous HGF significantly increased the expression of p-met and p-ERK in HCC827 and PC9 cells, while anti-HGF antibodies diminished the expression of p-met and p-ERK by neutralizing HGF in M2 macrophages.

Conclusion: Our results revealed that M2 macrophages promote gefitinib resistance by activating ERK and HGF/c-met signaling pathways in HCC827 and PC9 cells. Our findings provide a new therapeutic strategy for gefitinib resistance in lung cancer.

Graphical Abstract

[1]
Lee, C.; Kim, M.; Kim, D.W.; Kim, T.M.; Kim, S.; Im, S.W.; Jeon, Y.K.; Keam, B.; Ku, J.L.; Heo, D.S. Acquired resistance mechanism of EGFR kinase domain duplication to EGFR TKIs in non-small cell lung cancer. Cancer Res. Treat., 2022, 54(1), 140-149.
[http://dx.doi.org/10.4143/crt.2021.385] [PMID: 33940786]
[2]
Chen, J.; Jiao, D.; Li, Y.; Jiang, C.; Tang, X.; Song, J.; Chen, Q. Mogroside V inhibits hyperglycemia-induced lung cancer cells metastasis through reversing EMT and damaging cytoskeleton. Curr. Cancer Drug Targets, 2019, 19(11), 885-895.
[http://dx.doi.org/10.2174/1568009619666190619154240] [PMID: 31215378]
[3]
Wang, Z.; Quan, Y.; Li, S.; Wang, Y.; Liu, G.; Lv, Z. Propofol and sevoflurane alleviate malignant biological behavior and cisplatin resistance of xuanwei lung adenocarcinoma by modulating the Wnt/β-catenin pathway and PI3K/AKT pathway. Anticancer. Agents Med. Chem., 2022, 22(11), 2098-2108.
[http://dx.doi.org/10.2174/1871520621666211026092405] [PMID: 35152870]
[4]
Zhang, G.; Xia, P.; Zhao, S.; Yuan, L.; Wang, X.; Li, X.; Li, J. Gefitinib combined with cetuximab for the treatment of lung adenocarcinoma harboring the EGFR –intergenic region (SEC61G) fusion and EGFR amplification. Oncologist, 2021, 26(11), e1898-e1902.
[http://dx.doi.org/10.1002/onco.13921] [PMID: 34342091]
[5]
Unnisa, A.; Chettupalli, A.K.; Hussain, T.; Kamal, M.A. Recent advances in epidermal growth factor receptor inhibitors (EGFRIs) and their role in the treatment of cancer: A review. Anticancer. Agents Med. Chem., 2022, 22(20), 3370-3381.
[http://dx.doi.org/10.2174/1871520622666220408090541] [PMID: 35400324]
[6]
Li, G.; Ma, Y.; Yu, M.; Li, X.; Chen, X.; Gao, Y.; Cheng, P.; Zhang, G.; Wang, X. Identification of hub genes and small molecule drugs associated with acquired resistance to gefitinib in non-small cell lung cancer. J. Cancer, 2021, 12(17), 5286-5295.
[http://dx.doi.org/10.7150/jca.56506] [PMID: 34335945]
[7]
Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol., 2018, 29(S1), i10-i19.
[http://dx.doi.org/10.1093/annonc/mdx703] [PMID: 29462254]
[8]
Kang, X.H.; Xu, Z.Y.; Gong, Y.B.; Wang, L.; Wang, Z.Q.; Xu, L.; Cao, F.; Liao, M. Bufalin reverses HGF-induced resistance to EGFR-TKIs in EGFR mutant lung cancer cells via blockage of Met/PI3k/Akt pathway and induction of apoptosis. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/243859] [PMID: 23533466]
[9]
Morgillo, F.; Della Corte, C.M.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open, 2016, 1(3), e000060.
[http://dx.doi.org/10.1136/esmoopen-2016-000060] [PMID: 27843613]
[10]
Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; Palakurthi, S.; Jang, J.; Lelais, G.; DiDonato, M.; Bursulaya, B.; Michellys, P.Y.; Epple, R.; Marsilje, T.H.; McNeill, M.; Lu, W.; Harris, J.; Bender, S.; Wong, K.K.; Jänne, P.A.; Eck, M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 2016, 534(7605), 129-132.
[http://dx.doi.org/10.1038/nature17960] [PMID: 27251290]
[11]
Lin, Y.T.; Tsai, T.H.; Wu, S.G.; Liu, Y.N.; Yu, C.J.; Shih, J.Y. Complex EGFR mutations with secondary T790M mutation confer shorter osimertinib progression-free survival and overall survival in advanced non-small cell lung cancer. Lung Cancer, 2020, 145, 1-9.
[http://dx.doi.org/10.1016/j.lungcan.2020.04.022] [PMID: 32387812]
[12]
Baldacci, S.; Kherrouche, Z.; Cockenpot, V.; Stoven, L.; Copin, M.C.; Werkmeister, E.; Marchand, N.; Kyheng, M.; Tulasne, D.; Cortot, A.B. MET amplification increases the metastatic spread of EGFR-mutated NSCLC. Lung Cancer, 2018, 125, 57-67.
[http://dx.doi.org/10.1016/j.lungcan.2018.09.008] [PMID: 30429039]
[13]
Miranda, O.; Farooqui, M.; Siegfried, J. Status of agents targeting the HGF/c-met axis in lung Cancer. Cancers, 2018, 10(9), 280.
[http://dx.doi.org/10.3390/cancers10090280] [PMID: 30134579]
[14]
Morgillo, F.; Kim, W.Y.; Kim, E.S.; Ciardiello, F.; Hong, W.K.; Lee, H.Y. Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. Clin. Cancer Res., 2007, 13(9), 2795-2803.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2077] [PMID: 17473213]
[15]
Song, X.; Tang, W.; Peng, H.; Qi, X.; Li, J. FGFR leads to sustained activation of STAT3 to mediate resistance to EGFR-TKIs treatment. Invest. New Drugs, 2021, 39(5), 1201-1212.
[http://dx.doi.org/10.1007/s10637-021-01061-1] [PMID: 33829354]
[16]
Ballas, M.S.; Chachoua, A. Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC. OncoTargets Ther., 2011, 4, 43-58.
[http://dx.doi.org/10.2147/OTT.S18155] [PMID: 21691577]
[17]
Liu, X.; Jiang, T.; Li, X.; Zhao, C.; Li, J.; Zhou, F.; Zhang, L.; Zhao, S.; Jia, Y.; Shi, J.; Gao, G.; Li, W.; Zhao, J.; Chen, X.; Su, C.; Ren, S.; Zhou, C. Exosomes transmit T790M mutation-induced resistance in EGFR-mutant NSCLC by activating PI3K/AKT signalling pathway. J. Cell. Mol. Med., 2020, 24(2), 1529-1540.
[http://dx.doi.org/10.1111/jcmm.14838] [PMID: 31894895]
[18]
Liu, Z.; Ma, L.; Sun, Y.; Yu, W.; Wang, X. Targeting STAT3 signaling overcomes gefitinib resistance in non-small cell lung cancer. Cell Death Dis., 2021, 12(6), 561.
[http://dx.doi.org/10.1038/s41419-021-03844-z] [PMID: 34059647]
[19]
Weng, C.H.; Chen, L.Y.; Lin, Y.C.; Shih, J.Y.; Lin, Y.C.; Tseng, R.Y.; Chiu, A.C.; Yeh, Y.H.; Liu, C.; Lin, Y.T.; Fang, J.M.; Chen, C.C. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene, 2019, 38(4), 455-468.
[http://dx.doi.org/10.1038/s41388-018-0454-2] [PMID: 30111817]
[20]
Fiore, M.; Trecca, P.; Perrone, G.; Amato, M.; Righi, D.; Trodella, L.; D’Angelillo, R.M.; Ramella, S. Histologic transformation to small-cell lung cancer following gefitinib and radiotherapy in a patient with pulmonary adenocarcinoma. Tumori, 2019, 105(6), NP12-NP16.
[http://dx.doi.org/10.1177/0300891619832261] [PMID: 30799776]
[21]
Sun, X.; Jia, L.; Wang, T.; Zhang, Y.; Zhao, W.; Wang, X.; Chen, H. Trop2 binding IGF2R induces gefitinib resistance in NSCLC by remodeling the tumor microenvironment. J. Cancer, 2021, 12(17), 5310-5319.
[http://dx.doi.org/10.7150/jca.57711] [PMID: 34335947]
[22]
Barkley, D.; Moncada, R.; Pour, M.; Liberman, D.A.; Dryg, I.; Werba, G.; Wang, W.; Baron, M.; Rao, A.; Xia, B.; França, G.S.; Weil, A.; Delair, D.F.; Hajdu, C.; Lund, A.W.; Osman, I.; Yanai, I. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet., 2022, 54(8), 1192-1201.
[http://dx.doi.org/10.1038/s41588-022-01141-9] [PMID: 35931863]
[23]
Limagne, E.; Nuttin, L.; Thibaudin, M.; Jacquin, E.; Aucagne, R.; Bon, M.; Revy, S.; Barnestein, R.; Ballot, E.; Truntzer, C.; Derangère, V.; Fumet, J.D.; Latour, C.; Rébé, C.; Bellaye, P.S.; Kaderbhaï, C.G.; Spill, A.; Collin, B.; Callanan, M.B.; Lagrange, A.; Favier, L.; Coudert, B.; Arnould, L.; Ladoire, S.; Routy, B.; Joubert, P.; Ghiringhelli, F. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell, 2022, 40(2), 136-152.e12.
[http://dx.doi.org/10.1016/j.ccell.2021.12.009] [PMID: 35051357]
[24]
Xiao, F.; Liu, N.; Ma, X.; Qin, J.; Liu, Y.; Wang, X. M2 macrophages reduce the effect of gefitinib by activating AKT / MTOR in gefitinib-resistant cell lines HCC827 / GR. Thorac. Cancer, 2020, 11(11), 3289-3298.
[http://dx.doi.org/10.1111/1759-7714.13670] [PMID: 32956565]
[25]
Bullock, B.L.; Kimball, A.K.; Poczobutt, J.M.; Neuwelt, A.J.; Li, H.Y.; Johnson, A.M.; Kwak, J.W.; Kleczko, E.K.; Kaspar, R.E.; Wagner, E.K.; Hopp, K.; Schenk, E.L.; Weiser-Evans, M.C.M.; Clambey, E.T.; Nemenoff, R.A. Tumor-intrinsic response to IFNγ shapes the tumor microenvironment and anti–PD-1 response in NSCLC. Life Sci. Alliance, 2019, 2(3), e201900328.
[http://dx.doi.org/10.26508/lsa.201900328] [PMID: 31133614]
[26]
Wei, C.; Yang, C.; Wang, S.; Shi, D.; Zhang, C.; Lin, X.; Xiong, B. M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling. OncoTargets Ther., 2019, 12, 3051-3063.
[http://dx.doi.org/10.2147/OTT.S198126] [PMID: 31114248]
[27]
Qin, Q.; Ji, H.; Li, D.; Zhang, H.; Zhang, Z.; Zhang, Q. Tumor-associated macrophages increase COX-2 expression promoting endocrine resistance in breast cancer via the PI3K/Akt/mTOR pathway. Neoplasma, 2021, 68(5), 938-946.
[http://dx.doi.org/10.4149/neo_2021_201226N1404] [PMID: 34619972]
[28]
Kwon, Y.; Kim, M.; Kim, Y.; Jung, H.S.; Jeoung, D. Exosomal microRNAs as mediators of cellular interactions between cancer cells and macrophages. Front. Immunol., 2020, 11, 1167.
[http://dx.doi.org/10.3389/fimmu.2020.01167] [PMID: 32595638]
[29]
Ni, Y.; Zhou, X.; Yang, J.; Shi, H.; Li, H.; Zhao, X.; Ma, X. The role of tumor-stroma interactions in drug resistance within tumor microenvironment. Front. Cell Dev. Biol., 2021, 9, 637675.
[http://dx.doi.org/10.3389/fcell.2021.637675] [PMID: 34095111]
[30]
Yan, Y.; Zhang, R.; Zhang, Y.; Zhang, X.; Zhang, A.; Bu, X. Recombinant Newcastle disease virus expressing human IFN-λ1 (rL-hIFN-λ1) inhibits lung cancer migration through repolarizating macrophage from M2 to M1 phenotype. Transl. Cancer Res., 2020, 9(5), 3392-3405.
[http://dx.doi.org/10.21037/tcr-19-2320] [PMID: 35117705]
[31]
Guo, Y.; Jiang, F.; Yang, W.; Shi, W.; Wan, J.; Li, J.; Pan, J.; Wang, P.; Qiu, J.; Zhang, Z.; Li, B. Effect of 1α25(OH) 2 D 3 -treated M1 and M2 macrophages on cell proliferation and migration ability in ovarian cancer. Nutr. Cancer, 2022, 74(7), 2632-2643.
[http://dx.doi.org/10.1080/01635581.2021.2014903] [PMID: 34894920]
[32]
Yin, X.; Han, S.; Song, C.; Zou, H.; Wei, Z.; Xu, W.; Ran, J.; Tang, C.; Wang, Y.; Cai, Y.; Hu, Q.; Han, W. Metformin enhances gefitinib efficacy by interfering with interactions between tumor-associated macrophages and head and neck squamous cell carcinoma cells. Cell. Oncol., 2019, 42(4), 459-475.
[http://dx.doi.org/10.1007/s13402-019-00446-y] [PMID: 31001733]
[33]
Tang, X.; Zheng, Y.; Jiao, D.; Chen, J.; Liu, X.; Xiong, S.; Chen, Q. Anlotinib inhibits cell proliferation, migration and invasion via suppression of c-met pathway and activation of ERK1/2 pathway in H446 cells. Anticancer. Agents Med. Chem., 2021, 21(6), 747-755.
[http://dx.doi.org/10.2174/1871520620666200718235748] [PMID: 32682383]
[34]
Wang, Z.C.; Yao, Y.; Wang, N.; Liu, J.X.; Ma, J.; Chen, C.L.; Deng, Y.K.; Wang, M.C.; Liu, Y.; Zhang, X.H.; Liu, Z. Deficiency in interleukin-10 production by M2 macrophages in eosinophilic chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol., 2018, 8(11), 1323-1333.
[http://dx.doi.org/10.1002/alr.22218] [PMID: 30281939]
[35]
Liu, L.; Shi, W.; Xiao, X.; Wu, X.; Hu, H.; Yuan, S.; Liu, K.; Liu, Z. BCG immunotherapy inhibits cancer progression by promoting the M1 macrophage differentiation of THP 1 cells via the Rb/E2F1 pathway in cervical carcinoma. Oncol. Rep., 2021, 46(5), 245.
[http://dx.doi.org/10.3892/or.2021.8196]
[36]
Tsai, Y.C.; Tseng, J.T.; Wang, C.Y.; Su, M.T.; Huang, J.Y.; Kuo, P.L. Medroxyprogesterone acetate drives M2 macrophage differentiation toward a phenotype of decidual macrophage. Mol. Cell. Endocrinol., 2017, 452, 74-83.
[http://dx.doi.org/10.1016/j.mce.2017.05.015] [PMID: 28522271]
[37]
Li, N.; Liang, X.; Li, J.; Zhang, D.; Li, T.; Guo, Z. C-C motif chemokine ligand 14 inhibited colon cancer cell proliferation and invasion through suppressing M2 polarization of tumor-associated macrophages. Histol. Histopathol., 2021, 36(7), 743-752.
[PMID: 34096611]
[38]
Lv, J.; Liu, C.; Chen, F.K.; Feng, Z.P.; Jia, L.; Liu, P.J.; Yang, Z.X.; Hou, F.; Deng, Z.Y. M2 like tumour associated macrophage secreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol. Med. Rep., 2021, 24(2), 611.
[http://dx.doi.org/10.3892/mmr.2021.12249] [PMID: 34184083]
[39]
Jiao, D.; Jiang, C.; Zhu, L.; Zheng, J.; Liu, X.; Liu, X.; Chen, J.; Tang, X.; Chen, Q. miR-1/133a and miR-206/133b clusters overcome HGF induced gefitinib resistance in non-small cell lung cancers with EGFR sensitive mutations. J. Drug Target., 2021, 29(10), 1111-1117.
[http://dx.doi.org/10.1080/1061186X.2021.1927054] [PMID: 33955799]
[40]
Nishikoba, N.; Kumagai, K.; Kanmura, S.; Nakamura, Y.; Ono, M.; Eguchi, H.; Kamibayashiyama, T.; Oda, K.; Mawatari, S.; Tanoue, S.; Hashimoto, S.; Tsubouchi, H.; Ido, A. HGF-MET signaling shifts M1 macrophages toward an M2-like phenotype through PI3K-mediated induction of arginase-1 expression. Front. Immunol., 2020, 11, 2135.
[http://dx.doi.org/10.3389/fimmu.2020.02135] [PMID: 32983173]
[41]
Yi, Y.; Zeng, S.; Wang, Z.; Wu, M.; Ma, Y.; Ye, X.; Zhang, B.; Liu, H. Cancer-associated fibroblasts promote epithelial-mesenchymal transition and EGFR-TKI resistance of non-small cell lung cancers via HGF/IGF-1/ANXA2 signaling. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(3), 793-803.
[http://dx.doi.org/10.1016/j.bbadis.2017.12.021] [PMID: 29253515]
[42]
Wang, B.; Liu, W.; Liu, C.; Du, K.; Guo, Z.; Zhang, G.; Huang, Z.; Lin, S.; Cen, B.; Tian, Y.; Yuan, Y.; Bu, J. Cancer-associated fibroblasts promote radioresistance of breast cancer cells via the HGF/c-Met signaling pathway. Int. J. Radiat. Oncol. Biol. Phys., 2023, 116(3), 640-654.
[http://dx.doi.org/10.1016/j.ijrobp.2022.12.029] [PMID: 36586496]
[43]
Li, X.Y.; Hu, S.Q.; Xiao, L. The cancer-associated fibroblasts and drug resistance. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(11), 2112-2119.
[PMID: 26125276]
[44]
Dong, N.; Shi, X.; Wang, S.; Gao, Y.; Kuang, Z.; Xie, Q.; Li, Y.; Deng, H.; Wu, Y.; Li, M.; Li, J.L. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br. J. Cancer, 2019, 121(1), 22-33.
[http://dx.doi.org/10.1038/s41416-019-0482-x] [PMID: 31130723]
[45]
Wang, Q.; Yang, S.; Wang, K.; Sun, S.Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J. Hematol. Oncol., 2019, 12(1), 63.
[http://dx.doi.org/10.1186/s13045-019-0759-9] [PMID: 31227004]
[46]
Ding, X.; Ji, J.; Jiang, J.; Cai, Q.; Wang, C.; Shi, M.; Yu, Y.; Zhu, Z.; Zhang, J. HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death Dis., 2018, 9(9), 867.
[http://dx.doi.org/10.1038/s41419-018-0922-1] [PMID: 30158543]
[47]
Wu, X.; Chen, X.; Zhou, Q.; Li, P.; Yu, B.; Li, J.; Qu, Y.; Yan, J.; Yu, Y.; Yan, M.; Zhu, Z.; Liu, B.; Su, L. Hepatocyte growth factor activates tumor stromal fibroblasts to promote tumorigenesis in gastric cancer. Cancer Lett., 2013, 335(1), 128-135.
[http://dx.doi.org/10.1016/j.canlet.2013.02.002] [PMID: 23402812]
[48]
Deying, W.; Feng, G.; Shumei, L.; Hui, Z.; Ming, L.; Hongqing, W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci. Rep., 2017, 37(2), BSR20160470.
[http://dx.doi.org/10.1042/BSR20160470] [PMID: 28258248]
[49]
Lecoq, I.; Kopp, K.L.; Chapellier, M.; Mantas, P.; Martinenaite, E.; Perez-Penco, M.; Rønn Olsen, L.; Zocca, M.B.; Wakatsuki Pedersen, A.; Andersen, M.H. CCL22-based peptide vaccines induce anti-cancer immunity by modulating tumor microenvironment. OncoImmunology, 2022, 11(1), 2115655.
[http://dx.doi.org/10.1080/2162402X.2022.2115655] [PMID: 36052217]
[50]
Kimura, S.; Nanbu, U.; Noguchi, H.; Harada, Y.; Kumamoto, K.; Sasaguri, Y.; Nakayama, T. Macrophage CCL22 expression in the tumor microenvironment and implications for survival in patients with squamous cell carcinoma of the tongue. J. Oral Pathol. Med., 2019, 48(8), 677-685.
[http://dx.doi.org/10.1111/jop.12885] [PMID: 31134686]
[51]
Nishimura, Y.; Takiguchi, S.; Ito, S.; Itoh, K. Evidence that depletion of the sorting nexin 1 by siRNA promotes HGF-induced MET endocytosis and MET phosphorylation in a gefitinib-resistant human lung cancer cell line. Int. J. Oncol., 2014, 44(2), 412-426.
[http://dx.doi.org/10.3892/ijo.2013.2194] [PMID: 24297483]
[52]
Zhou, J.Y.; Chen, X.; Zhao, J.; Bao, Z.; Chen, X.; Zhang, P.; Liu, Z.F.; Zhou, J.Y. MicroRNA-34a overcomes HGF-mediated gefitinib resistance in EGFR mutant lung cancer cells partly by targeting MET. Cancer Lett., 2014, 351(2), 265-271.
[http://dx.doi.org/10.1016/j.canlet.2014.06.010] [PMID: 24983493]
[53]
Takeuchi, S.; Wang, W.; Li, Q.; Yamada, T.; Kita, K.; Donev, I.S.; Nakamura, T.; Matsumoto, K.; Shimizu, E.; Nishioka, Y.; Sone, S.; Nakagawa, T.; Uenaka, T.; Yano, S. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Am. J. Pathol., 2012, 181(3), 1034-1043.
[http://dx.doi.org/10.1016/j.ajpath.2012.05.023] [PMID: 22789825]
[54]
Savoia, P.; Fava, P.; Casoni, F.; Cremona, O. Targeting the ERK signaling pathway in melanoma. Int. J. Mol. Sci., 2019, 20(6), 1483.
[http://dx.doi.org/10.3390/ijms20061483] [PMID: 30934534]
[55]
Li, Y.; Zang, H.; Qian, G.; Owonikoko, T.K.; Ramalingam, S.R.; Sun, S.Y. ERK inhibition effectively overcomes acquired resistance of epidermal growth factor receptor-mutant non–small cell lung cancer cells to osimertinib. Cancer, 2020, 126(6), 1339-1350.
[http://dx.doi.org/10.1002/cncr.32655] [PMID: 31821539]
[56]
Wu, D-W.; Wu, T-C.; Wu, J-Y.; Cheng, Y-W.; Chen, Y-C.; Lee, M-C.; Chen, C-Y.; Lee, H. Phosphorylation of paxillin confers cisplatin resistance in non-small cell lung cancer via activating ERK-mediated Bcl-2 expression. Oncogene, 2014, 33(35), 4385-4395.
[http://dx.doi.org/10.1038/onc.2013.389] [PMID: 24096476]
[57]
Meng, J.; Chang, C.; Chen, Y.; Bi, F.; Ji, C.; Liu, W. EGCG overcomes gefitinib resistance by inhibiting autophagy and augmenting cell death through targeting ERK phosphorylation in NSCLC. OncoTargets Ther., 2019, 12, 6033-6043.
[http://dx.doi.org/10.2147/OTT.S209441] [PMID: 31440060]
[58]
Mhone, T.G.; Chen, M.C.; Kuo, C.H.; Shih, T.C.; Yeh, C.M.; Wang, T.F.; Chen, R.J.; Chang, Y.C.; Kuo, W.W.; Huang, C.Y. Daidzein synergizes with gefitinib to induce ROS/JNK/c-jun activation and inhibit EGFR-STAT/AKT/ERK pathways to enhance lung adenocarcinoma cells chemosensitivity. Int. J. Biol. Sci., 2022, 18(9), 3636-3652.
[http://dx.doi.org/10.7150/ijbs.71870] [PMID: 35813479]
[59]
Xiao, Z.; Ding, N.; Xiao, G.; Wang, S.; Wu, Y.; Tang, L. Reversal of multidrug resistance by gefitinib via RAF1/ERK pathway in pancreatic cancer cell line. Anat. Rec., 2012, 295(12), 2122-2128.
[http://dx.doi.org/10.1002/ar.22552] [PMID: 22907845]
[60]
Liu, W.W.; Hu, J.; Wang, R.; Han, Q.; Liu, Y.; Wang, S. Cytoplasmic P120ctn promotes gefitinib resistance in lung cancer cells by activating PAK1 and ERK pathway. Appl. Immunohistochem. Mol. Morphol., 2021, 29(10), 750-758.
[http://dx.doi.org/10.1097/PAI.0000000000000965] [PMID: 34412070]
[61]
Ochi, N.; Takigawa, N.; Harada, D.; Yasugi, M.; Ichihara, E.; Hotta, K.; Tabata, M.; Tanimoto, M.; Kiura, K. Src mediates ERK reactivation in gefitinib resistance in non-small cell lung cancer. Exp. Cell Res., 2014, 322(1), 168-177.
[http://dx.doi.org/10.1016/j.yexcr.2014.01.007] [PMID: 24440771]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy