Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Optimization of Cobalt-Chromium (Co-Cr) Scaffolds for Bone Tissue Engineering in Endocrine, Metabolic and Immune Disorders

Author(s): Óscar Libardo Rodríguez-Montaño, Lorenzo Vaiani, Antonio Boccaccio*, Antonio Emmanuele Uva, Lorenzo Lo Muzio, Francesca Spirito, Mario Dioguardi, Luigi Santacroce, Michele Di Cosola, Stefania Cantore* and Andrea Ballini

Volume 24, Issue 4, 2024

Published on: 08 November, 2023

Page: [430 - 440] Pages: 11

DOI: 10.2174/0118715303258126231025115956

Price: $65

conference banner
Abstract

Approximately 50% of the adult global population is projected to suffer from some form of metabolic disease by 2050, including metabolic syndrome and diabetes mellitus. At the same time, this trend indicates a potential increase in the number of patients who will be in need of implant-supported reconstructions of specific bone regions subjected to inflammatory states. Moreover, physiological conditions associated with dysmetabolic subjects have been suggested to contribute to the severity of bone loss after bone implant insertion. However, there is a perspective evidence strengthening the hypothesis that custom-fabricated bioengineered scaffolds may produce favorable bone healing effects in case of altered endocrine or metabolic conditions. This perspective review aims to share a comprehensive knowledge of the mechanisms implicated in bone resorption and remodelling processes, which have driven researchers to develop metallic implants as the cobalt-chromium (Co-Cr) bioscaffolds, presenting optimized geometries that interact in an effective way with the osteogenetic precursor cells, especially in the cases of perturbed endocrine or metabolic conditions.

Graphical Abstract

[1]
Liu, J.; Park, Y.M.; Ma, J.; Lavie, C.J. Trends in metabolic phenotypes of obesity among us adolescents, nhanes 1999-2018. Mayo Clin. Proc., 2023, 98(4), 633-636.
[http://dx.doi.org/10.1016/j.mayocp.2023.01.025] [PMID: 37019518]
[2]
Shalitin, S.; Giannini, C. Obesity, metabolic syndrome, and nutrition. World Rev. Nutr. Diet., 2022, 125, 41-63.
[http://dx.doi.org/10.1159/000521773] [PMID: 35249017]
[3]
Ballini, A.; Scacco, S.; Boccellino, M.; Santacroce, L.; Arrigoni, R. Microbiota and obesity: Where are we now? Biology, 2020, 9(12), 415.
[http://dx.doi.org/10.3390/biology9120415] [PMID: 33255588]
[4]
Yang, J.; Xia, Y.; Sun, Y.; Guo, Y.; Shi, Z.; Cristina do Vale Moreira, N.; Zuo, H.; Hussain, A. Effect of lifestyle intervention on HbA1c levels in overweight and obese adults with type 2 diabetes across ethnicities: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract., 2023, 199, 110662.
[http://dx.doi.org/10.1016/j.diabres.2023.110662] [PMID: 37028602]
[5]
Pandey, C.; Rokaya, D.; Bhattarai, B.P. Contemporary concepts in osseointegration of dental implants: A review. BioMed Res. Int., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/6170452] [PMID: 35747499]
[6]
Cantore, S.; Crincoli, V.; Boccaccio, A.; Uva, A.E.; Fiorentino, M.; Monno, G.; Bollero, P.; Derla, C.; Fabiano, F.; Ballini, A.; Santacroce, L. Recent advances in endocrine, metabolic and immune disorders: Mesenchymal stem cells (MSCs) and engineered scaffolds. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(5), 466-469.
[http://dx.doi.org/10.2174/1871530318666180423102905] [PMID: 29692270]
[7]
Grandfield, K.; Palmquist, A.; Gonçalves, S.; Taylor, A.; Taylor, M.; Emanuelsson, L.; Thomsen, P.; Engqvist, H. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: A comparative study of bone contact and bone growth induction. J. Mater. Sci. Mater. Med., 2011, 22(4), 899-906.
[http://dx.doi.org/10.1007/s10856-011-4253-3] [PMID: 21305340]
[8]
Decco, O.; Beltrán, V.; Zuchuat, J.; Cura, A.; Lezcano, M.; Engelke, W. Bone augmentation in rabbit tibia using microfixed cobalt-chromium membranes with whole blood and platelet-rich plasma. Materials, 2015, 8(8), 4843-4856.
[http://dx.doi.org/10.3390/ma8084843] [PMID: 28793476]
[9]
Han, C.; Yao, Y.; Cheng, X.; Luo, J.; Luo, P.; Wang, Q.; Yang, F.; Wei, Q.; Zhang, Z. Electrophoretic deposition of gentamicin-loaded silk fibroin coatings on 3D-printed porous cobalt–chromium–molybdenum bone substitutes to prevent orthopedic implant infections. Biomacromolecules, 2017, 18(11), 3776-3787.
[http://dx.doi.org/10.1021/acs.biomac.7b01091] [PMID: 28974094]
[10]
Limmahakhun, S.; Oloyede, A.; Sitthiseripratip, K.; Xiao, Y.; Yan, C. Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction. Mater. Des., 2017, 114, 633-641.
[http://dx.doi.org/10.1016/j.matdes.2016.11.090]
[11]
Lo Muzio, L.; Pannone, G.; Santarelli, A.; Lo Russo, L.; De Lillo, A.; Rubini, C.; Bambini, F.; Bufo, P.; Dioguardi, M.; Procaccini, M. Expression of poly(ADP-ribose) polymerase in bone regeneration. J. Biol. Regul. Homeost. Agents, 2014, 28(4), 801-807.
[PMID: 25620190]
[12]
Nevins, M.; Capetta, E.; Horning, C.; Kerr, E.; Kim, D.; Kirshner, K.; Machell, J.; Marcus, E.; Romanos, G.; Silverstein, S.; Strauss, G.; Wang, H.L.; Winston, M. Osseointegration foundation charity overdenture program study. Int. J. Periodontics Restorative Dent., 2020, 40(2), 279-283.
[http://dx.doi.org/10.11607/prd.4531] [PMID: 32032413]
[13]
Lv, Y.; Wang, B.; Liu, G.; Tang, Y.; Lu, E.; Xie, K.; Lan, C.; Liu, J.; Qin, Z.; Wang, L. Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: A review. Front. Bioeng. Biotechnol., 2021, 9, 641130.
[http://dx.doi.org/10.3389/fbioe.2021.641130] [PMID: 33842445]
[14]
Boccaccio, A.; Fiorentino, M.; Uva, A.E.; Laghetti, L.N.; Monno, G. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology: Driven algorithm. Mater. Sci. Eng. C, 2018, 83, 51-66.
[http://dx.doi.org/10.1016/j.msec.2017.09.004] [PMID: 29208288]
[15]
Iafrate, L.; Benedetti, M.C.; Donsante, S.; Rosa, A.; Corsi, A.; Oreffo, R.O.C.; Riminucci, M.; Ruocco, G.; Scognamiglio, C.; Cidonio, G. Modelling skeletal pain harnessing tissue engineering. In Vitro Model, 2022, 1(4-5), 289-307.
[http://dx.doi.org/10.1007/s44164-022-00028-7]
[16]
Mori, G.; Brunetti, G.; Colucci, S.; Ciccolella, F.; Coricciati, M.; Pignataro, P.; Oranger, A.; Ballini, A.; Farronato, D.; Mastrangelo, F.; Tetè, S.; Grassi, F.R.; Grano, M. Alteration of activity and survival of osteoblasts obtained from human periodontitis patients: Role of TRAIL. J. Biol. Regul. Homeost. Agents, 2007, 21(3-4), 105-114.
[PMID: 18261262]
[17]
Alves, C.J.; Neto, E.; Sousa, D.M.; Leitão, L.; Vasconcelos, D.M.; Ribeiro-Silva, M.; Alencastre, I.S.; Lamghari, M. Fracture pain: Traveling unknown pathways. Bone, 2016, 85, 107-114.
[http://dx.doi.org/10.1016/j.bone.2016.01.026] [PMID: 26851411]
[18]
Mitchell, S.A.T.; Majuta, L.A.; Mantyh, P.W. New insights in understanding and treating bone fracture pain. Curr. Osteoporos. Rep., 2018, 16(4), 325-332.
[http://dx.doi.org/10.1007/s11914-018-0446-8] [PMID: 29948820]
[19]
Banimohamad-Shotorbani, B.; Karkan, S.F.; Rahbarghazi, R.; Mehdipour, A.; Jarolmasjed, S.; Saghati, S.; Shafaei, H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res. Ther., 2023, 14(1), 68.
[http://dx.doi.org/10.1186/s13287-023-03309-4] [PMID: 37024981]
[20]
Xu, S.; Ma, H.; Song, X.; Zhang, S.; Hu, X.; Meng, Z. Finite element simulation of stainless steel porous scaffolds for selective laser melting (SLM) and its experimental investigation. Coatings, 2023, 13(1), 134.
[http://dx.doi.org/10.3390/coatings13010134]
[21]
Dang, Q.T.; Huynh, T.D.; Inchingolo, F.; Dipalma, G.; Inchingolo, A.D.; Cantore, S.; Paduanelli, G.; Nguyen, K.C.D.; Ballini, A.; Isacco, C.G.; Tran, C.T. Human chondrocytes from human adipose tissue-derived mesenchymal stem cells seeded on a dermal-derived collagen matrix sheet: Our preliminary results for a ready to go biotechnological cartilage graft in clinical practice. Stem Cells Int., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/6664697] [PMID: 33679990]
[22]
Vaiani, L.; Boccaccio, A.; Uva, A.E.; Palumbo, G.; Piccininni, A.; Guglielmi, P.; Cantore, S.; Santacroce, L.; Charitos, I.A.; Ballini, A. Ceramic materials for biomedical applications: An overview on properties and fabrication processes. J. Funct. Biomater., 2023, 14(3), 146.
[http://dx.doi.org/10.3390/jfb14030146] [PMID: 36976070]
[23]
Doyle, M.E.; Dalgarno, K.; Masoero, E.; Ferreira, A.M. Advances in biomimetic collagen mineralisation and future approaches to bone tissue engineering. Biopolymers, 2023, 114(1), e23527.
[http://dx.doi.org/10.1002/bip.23527] [PMID: 36444710]
[24]
Li, J.J.; Ebied, M.; Xu, J.; Zreiqat, H. Current approaches to bone tissue engineering: The interface between biology and engineering. Adv. Healthc. Mater., 2018, 7(6), 1701061.
[http://dx.doi.org/10.1002/adhm.201701061] [PMID: 29280321]
[25]
Wubneh, A.; Tsekoura, E.K.; Ayranci, C. Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater., 2018, 80, 1-30.
[http://dx.doi.org/10.1016/j.actbio.2018.09.031] [PMID: 30248515]
[26]
Boccaccio, A.; Uva, A.E.; Fiorentino, M.; Lamberti, L.; Monno, G. A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds. Int. J. Biol. Sci., 2016, 12(1), 1-17.
[http://dx.doi.org/10.7150/ijbs.13158] [PMID: 26722213]
[27]
Kumar, A.; Kargozar, S.; Baino, F.; Han, S.S. Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: A review. Front. Mater., 2019, 6, 313.
[http://dx.doi.org/10.3389/fmats.2019.00313]
[28]
Cerda, J.R.; Arifi, T.; Ayyoubi, S.; Knief, P.; Ballesteros, M.P.; Keeble, W.; Barbu, E.; Healy, A.M.; Lalatsa, A.; Serrano, D.R. Personalised 3D printed medicines: Optimising material properties for successful passive diffusion loading of filaments for fused deposition modelling of solid dosage forms. Pharmaceutics, 2020, 12(4), 345.
[http://dx.doi.org/10.3390/pharmaceutics12040345] [PMID: 32290400]
[29]
Percoco, G.; Uva, A.E.; Fiorentino, M.; Gattullo, M.; Manghisi, V.M.; Boccaccio, A. Mechanobiological approach to design and optimize bone tissue scaffolds 3D printed with fused deposition modeling: A feasibility study. Materials, 2020, 13(3), 648.
[http://dx.doi.org/10.3390/ma13030648] [PMID: 32024158]
[30]
Boccaccio, A.; Uva, A.E.; Fiorentino, M.; Monno, G.; Ballini, A.; Desiate, A. Optimal load for bone tissue scaffolds with an assigned geometry. Int. J. Med. Sci., 2018, 15(1), 16-22.
[http://dx.doi.org/10.7150/ijms.20522] [PMID: 29333083]
[31]
Scialla, S.; Carella, F.; Dapporto, M.; Sprio, S.; Piancastelli, A.; Palazzo, B.; Adamiano, A.; Degli Esposti, L.; Iafisco, M.; Piccirillo, C. Mussel shell-derived macroporous 3D scaffold: Characterization and optimization study of a bioceramic from the circular economy. Mar. Drugs, 2020, 18(6), 309.
[http://dx.doi.org/10.3390/md18060309] [PMID: 32545532]
[32]
Chen, H.; Gonnella, G.; Huang, J.; Di-Silvio, L. Fabrication of 3D bioprinted bi-phasic scaffold for bone–cartilage interface regeneration. Biomimetics, 2023, 8(1), 87.
[http://dx.doi.org/10.3390/biomimetics8010087] [PMID: 36975317]
[33]
Rahimnejad, M.; Rezvaninejad, R.; Rezvaninejad, R.; França, R. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Biomed. Phys. Eng. Express, 2021, 7(6), 062001.
[http://dx.doi.org/10.1088/2057-1976/ac21ab] [PMID: 34438382]
[34]
DiNoro, J.N.; Paxton, N.C.; Skewes, J.; Yue, Z.; Lewis, P.M.; Thompson, R.G.; Beirne, S.; Woodruff, M.A.; Wallace, G.G. Laser sintering approaches for bone tissue engineering. Polymers, 2022, 14(12), 2336.
[http://dx.doi.org/10.3390/polym14122336] [PMID: 35745911]
[35]
Boccaccio, A.; Uva, A.E.; Fiorentino, M.; Mori, G.; Monno, G. Geometry design optimization of functionally graded scaffolds for bone tissue engineering: A mechanobiological approach. PLoS One, 2016, 11(1), e0146935.
[http://dx.doi.org/10.1371/journal.pone.0146935] [PMID: 26771746]
[36]
Distefano, F.; Pasta, S.; Epasto, G. Titanium lattice structures produced via additive manufacturing for a bone scaffold: A review. J. Funct. Biomater., 2023, 14(3), 125.
[http://dx.doi.org/10.3390/jfb14030125] [PMID: 36976049]
[37]
Han, C.; Yan, C.; Wen, S.; Xu, T.; Li, S.; Liu, J.; Wei, Q.; Shi, Y. Effects of the unit cell topology on the compression properties of porous Co-Cr scaffolds fabricated via selective laser melting. Rapid Prototyping J., 2017, 23(1), 16-27.
[http://dx.doi.org/10.1108/RPJ-08-2015-0114]
[38]
Zuchuat, J.; Berli, M.; Maldonado, Y.; Decco, O. Influence of chromium-cobalt-molybdenum alloy (ASTM F75) on bone ingrowth in an experimental animal model. J. Funct. Biomater., 2017, 9(1), 2.
[http://dx.doi.org/10.3390/jfb9010002] [PMID: 29278372]
[39]
Caravaggi, P.; Liverani, E.; Leardini, A.; Fortunato, A.; Belvedere, C.; Baruffaldi, F.; Fini, M.; Parrilli, A.; Mattioli-Belmonte, M.; Tomesani, L.; Pagani, S. CoCr porous scaffolds manufactured via selective laser melting in orthopedics: Topographical, mechanical, and biological characterization. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(7), 2343-2353.
[http://dx.doi.org/10.1002/jbm.b.34328] [PMID: 30689288]
[40]
McCarthy, S.M.; Hall, D.J.; Mathew, M.T.; Jacobs, J.J.; Lundberg, H.J.; Pourzal, R. Are damage modes related to microstructure and material loss in severely damaged CoCrMo femoral heads? Clin. Orthop. Relat. Res., 2021, 479(9), 2083-2096.
[http://dx.doi.org/10.1097/CORR.0000000000001819] [PMID: 34019490]
[41]
Pagani, S.; Liverani, E.; Giavaresi, G.; De Luca, A.; Belvedere, C.; Fortunato, A.; Leardini, A.; Fini, M.; Tomesani, L.; Caravaggi, P. Mechanical and in vitro biological properties of uniform and graded Cobalt‐chrome lattice structures in orthopedic implants. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(12), 2091-2103.
[http://dx.doi.org/10.1002/jbm.b.34857] [PMID: 33964120]
[42]
Iatecola, A.; Longhitano, G.A.; Antunes, L.H.M.; Jardini, A.L.; Miguel, E.C.; Béreš, M.; Lambert, C.S.; Andrade, T.N.; Buchaim, R.L.; Buchaim, D.V.; Pomini, K.T.; Dias, J.A.; Spressão, D.R.M.S.; Felix, M.; Cardoso, G.B.C.; da Cunha, M.R. Osseointegration improvement of Co-Cr-Mo alloy produced by additive manufacturing. Pharmaceutics, 2021, 13(5), 724.
[http://dx.doi.org/10.3390/pharmaceutics13050724] [PMID: 34069254]
[43]
Kirillova, A.; Kelly, C.; Liu, S.; Francovich, J.; Gall, K. High‐strength composites based on 3D printed porous scaffolds infused with a bioresorbable mineral–organic bone adhesive. Adv. Eng. Mater., 2022, 24(7), 2101367.
[http://dx.doi.org/10.1002/adem.202101367]
[44]
Contuzzi, N.; Casalino, G.; Boccaccio, A.; Ballini, A.; Charitos, I.A.; Bottalico, L.; Santacroce, L. Metals biotribology and oral microbiota biocorrosion mechanisms. J. Funct. Biomater., 2022, 14(1), 14.
[http://dx.doi.org/10.3390/jfb14010014] [PMID: 36662061]
[45]
Peng, W.; Liu, Y.; Jiang, X.; Dong, X.; Jun, J.; Baur, D.A.; Xu, J.; Pan, H.; Xu, X. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. J. Zhejiang Univ. Sci. B, 2019, 20(8), 647-659.
[http://dx.doi.org/10.1631/jzus.B1800622] [PMID: 31273962]
[46]
Rodríguez-Montaño, Ó.L.; Cortés-Rodríguez, C.J.; Naddeo, F.; Uva, A.E.; Fiorentino, M.; Naddeo, A.; Cappetti, N.; Gattullo, M.; Monno, G.; Boccaccio, A. Irregular load adapted scaffold optimization: A computational framework based on mechanobiological criteria. ACS Biomater. Sci. Eng., 2019, 5(10), 5392-5411.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01023] [PMID: 33464060]
[47]
Zhang, S.; Vijayavenkataraman, S.; Lu, W.F.; Fuh, J.Y.H. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(5), 1329-1351.
[http://dx.doi.org/10.1002/jbm.b.34226] [PMID: 30300964]
[48]
Souness, A.; Zamboni, F.; Walker, G.M.; Collins, M.N. Influence of scaffold design on 3D printed cell constructs. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(2), 533-545.
[http://dx.doi.org/10.1002/jbm.b.33863] [PMID: 28194931]
[49]
Prendergast, P.J.; Huiskes, R.; Søballe, K. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech., 1997, 30(6), 539-548.
[http://dx.doi.org/10.1016/S0021-9290(96)00140-6] [PMID: 9165386]
[50]
Rubert, M.; Vetsch, J.R.; Lehtoviita, I.; Sommer, M.; Zhao, F.; Studart, A.R.; Müller, R.; Hofmann, S. Scaffold pore geometry guides gene regulation and bone-like tissue formation in dynamic cultures. Tissue Eng. Part A, 2021, 27(17-18), 1192-1204.
[http://dx.doi.org/10.1089/ten.tea.2020.0121] [PMID: 33297842]
[51]
Moncayo-Donoso, M.; Rico-Llanos, G.A.; Garzón-Alvarado, D.A.; Becerra, J.; Visser, R.; Fontanilla, M.R. The effect of pore directionality of collagen scaffolds on cell differentiation and in vivo osteogenesis. Polymers, 2021, 13(18), 3187.
[http://dx.doi.org/10.3390/polym13183187] [PMID: 34578088]
[52]
Rodríguez-Montaño, Ó.L.; Cortés-Rodríguez, C.J.; Uva, A.E.; Fiorentino, M.; Gattullo, M.; Manghisi, V.M.; Boccaccio, A. An algorithm to optimize the micro-geometrical dimensions of scaffolds with spherical pores. Materials, 2020, 13(18), 4062.
[http://dx.doi.org/10.3390/ma13184062] [PMID: 32933165]
[53]
Wanniarachchi, C.T.; Arjunan, A.; Baroutaji, A.; Singh, M. Mechanical performance of additively manufactured cobalt-chromium-molybdenum auxetic meta-biomaterial bone scaffolds. J. Mech. Behav. Biomed. Mater., 2022, 134, 105409.
[http://dx.doi.org/10.1016/j.jmbbm.2022.105409] [PMID: 36037704]
[54]
Zienkiewicz, O. The finite element method, 3rd; McGraw-Hill: New York, 1979.
[55]
Huiskes, R.; Chao, E.Y.S. A survey of finite element analysis in orthopedic biomechanics: The first decade. J. Biomech., 1983, 16(6), 385-409.
[http://dx.doi.org/10.1016/0021-9290(83)90072-6] [PMID: 6352706]
[56]
Vignesh, S.; Vijayakumar, P.; Anbarasan, B. Review on finite element method in biomedical engineering. J. Adv.Res. Dynam. Cont. Sys., 2019, 11, 1028-1032.
[57]
Rodríguez-Montaño, Ó.L.; Cortés-Rodríguez, C.J.; Uva, A.E.; Fiorentino, M.; Gattullo, M.; Monno, G.; Boccaccio, A. Comparison of the mechanobiological performance of bone tissue scaffolds based on different unit cell geometries. J. Mech. Behav. Biomed. Mater., 2018, 83, 28-45.
[http://dx.doi.org/10.1016/j.jmbbm.2018.04.008] [PMID: 29665454]
[58]
Al-Saleh, S.; Vohra, F.; Albogami, S.M.; Alkhammash, N.M.; Alnashwan, M.A.; Almutairi, N.S.; Aali, K.A.; Alrabiah, M.; Abduljabbar, T. Marginal misfit of 3D-Printed (Selective Laser Sintered), CAD-CAM and lost wax technique cobalt chromium copings with shoulder and chamfer finish lines: An in vitro study. Medicina, 2022, 58(10), 1313.
[http://dx.doi.org/10.3390/medicina58101313] [PMID: 36295474]
[59]
Alqahtani, A.S.; AlFadda, A.M.; Eldesouky, M.; Alnuwaiser, M.K.; Al-Saleh, S.; Alresayes, S.; Alshahrani, A.; Vohra, F.; Abduljabbar, T. Comparison of marginal integrity and surface roughness of selective laser melting, CAD-CAM and digital light processing manufactured Co-Cr alloy copings. Appl. Sci., 2021, 11(18), 8328.
[http://dx.doi.org/10.3390/app11188328]
[60]
El-Rashidy, A.A.; El Moshy, S.; Radwan, I.A.; Rady, D.; Abbass, M.M.S.; Dörfer, C.E.; Fawzy El-Sayed, K.M. Effect of polymeric matrix stiffness on osteogenic differentiation of mesenchymal stem/progenitor cells: Concise review. Polymers, 2021, 13(17), 2950.
[http://dx.doi.org/10.3390/polym13172950] [PMID: 34502988]
[61]
Zhao, F.; Xiong, Y.; Ito, K.; van Rietbergen, B.; Hofmann, S. Porous geometry guided micro-mechanical environment within scaffolds for cell mechanobiology study in bone tissue engineering. Front. Bioeng. Biotechnol., 2021, 9, 736489.
[http://dx.doi.org/10.3389/fbioe.2021.736489] [PMID: 34595161]
[62]
Liu, B.; Xu, W.; Chen, M.; Chen, D.; Sun, G.; Zhang, C.; Pan, Y.; Lu, J.; Guo, E.; Lu, X. Structural design and finite element simulation analysis of grade 3 graded porous titanium implant. Int. J. Mol. Sci., 2022, 23(17), 10090.
[http://dx.doi.org/10.3390/ijms231710090] [PMID: 36077485]
[63]
Bachiri, A.; Djebbar, N.; Boutabout, B.; Serier, B. Effect of different impactor designs on biomechanical behavior in the interface bone-implant: A comparative biomechanics study. Comput. Methods Programs Biomed., 2020, 197, 105723.
[http://dx.doi.org/10.1016/j.cmpb.2020.105723] [PMID: 32877819]
[64]
Dioguardi, M.; Cantore, S.; Quarta, C.; Sovereto, D.; Zerman, N.; Pettini, F.; Muzio, L.L.; Cosola, M.D.; Santacroce, L.; Ballini, A. Correlation between diabetes mellitus and peri-implantitis: A systematic review. Endocr. Metab. Immune Disord. Drug Targets, 2023, 23(5), 296-608.
[http://dx.doi.org/10.2174/1871530323666221021100427] [PMID: 36281861]
[65]
Hoellwarth, J.S.; Tetsworth, K.; Kendrew, J.; Kang, N.V.; van Waes, O.J.F.; Al-Maawi, Q.; Roberts, C.; Al Muderis, M. Periprosthetic osseointegration fractures are infrequent and management is familiar. Bone Joint J., 2020, 102-B(2), 162-169.
[http://dx.doi.org/10.1302/0301-620X.102B2.BJJ-2019-0697.R2] [PMID: 32009427]
[66]
Dioguardi, M.; Cantore, S.; Scacco, S.; Quarta, C.; Sovereto, D.; Spirito, F.; Alovisi, M.; Troiano, G.; Aiuto, R.; Garcovich, D.; Crincoli, V.; Laino, L.; Covelli, M.; Malcangi, A.; Lo Muzio, L.; Ballini, A.; Di Cosola, M. From bench to bedside in precision medicine: diabetes mellitus and peri-implantitis clinical indices with a short-term follow-up: A systematic review and meta-analysis. J. Pers. Med., 2022, 12(2), 235.
[http://dx.doi.org/10.3390/jpm12020235] [PMID: 35207724]
[67]
Carneiro, S.S.; Flausino, L.C.; Franco, N.B.; Kassis, E.N. Main factors of bone loss and the processes of osseointegration for dental implant: A systematic review. MedNEXT, 2023, 4(S1) Available from: https://mednext.zotarellifilhoscientificworks.com/index.php/mednext/article/view/259 (cited 2023 Apr. 9).
[http://dx.doi.org/10.54448/mdnt23S108]
[68]
Mori, G.; Brunetti, G.; Colucci, S.; Oranger, A.; Ciccolella, E.; Sardone, F.; Pignataro, P.; Mori, C.; Karapanou, V.; Ballini, A.; Mastrangelo, F.; Tetè, S.; Grassi, F.R.; Grano, M. Osteoblast apoptosis in periodontal disease: Role of TNF-related apoptosis-inducing ligand. Int. J. Immunopathol. Pharmacol., 2009, 22(1), 95-103.
[http://dx.doi.org/10.1177/039463200902200111] [PMID: 19309556]
[69]
Tintut, Y.; Demer, L.L. Recent advances in multifactorial regulation of vascular calcification. Curr. Opin. Lipidol., 2001, 12(5), 555-560.
[http://dx.doi.org/10.1097/00041433-200110000-00012] [PMID: 11561176]
[70]
Katanec, T.; Gabrić, D. Use of statins in dental implantology and their impact on osseointegration: Animal Studies. In: Dosage Forms: Innovation and Future Perspectives; ntechOpen, 2023.
[http://dx.doi.org/10.5772/intechopen.108953]
[71]
Migliorini, E.; Cavalcanti-Adam, E.A.; Uva, A.E.; Fiorentino, M.; Gattullo, M.; Manghisi, V.M.; Vaiani, L.; Boccaccio, A. Nanoindentation of mesenchymal stem cells using atomic force microscopy: Effect of adhesive cell-substrate structures. Nanotechnology, 2021, 32(21), 215706.
[http://dx.doi.org/10.1088/1361-6528/abe748] [PMID: 33596559]
[72]
Cosola, M.D.; Cantore, S.; Balzanelli, M.G.; Isacco, C.G.; Nguyen, K.C.D.; Saini, R.; Malcangi, A.; Tumedei, M.; Ambrosino, M. Dental-derived stem cells and biowaste biomaterials: What’s next in bone regenerative medicine applications. Biocell, 2022, 46(3), 923-929.
[http://dx.doi.org/10.32604/biocell.2022.018409]
[73]
Wang, P.; Sun, Y.; Shi, X.; Shen, H.; Ning, H.; Liu, H. Bioscaffolds embedded with regulatory modules for cell growth and tissue formation: A review. Bioact. Mater., 2021, 6(5), 1283-1307.
[http://dx.doi.org/10.1016/j.bioactmat.2020.10.014] [PMID: 33251379]
[74]
Arslan, Y.E.; Sezgin Arslan, T.; Derkus, B.; Emregul, E.; Emregul, K.C. Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products. Colloids Surf. B Biointerfaces, 2017, 154, 160-170.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.034] [PMID: 28334693]
[75]
Smith, I.P.; Domingos, M.; Richardson, S.M.; Bella, J. Characterization of the biophysical properties and cell adhesion interactions of marine invertebrate collagen from Rhizostoma pulmo. Mar. Drugs, 2023, 21(2), 59.
[http://dx.doi.org/10.3390/md21020059] [PMID: 36827101]
[76]
Opris, H.; Baciut, M.; Bran, S.; Dinu, C.; Armencea, G.; Opris, D.; Mitre, I.; Manea, A.; Stoia, S.; Tamas, T.; Barbur, I.; Baciut, G. Characterization of eggshell as a bio-regeneration material. Med. Pharm. Rep., 2022, 96(1), 93-100.
[http://dx.doi.org/10.15386/mpr-2476] [PMID: 36818316]
[77]
Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol., 2012, 30(10), 546-554.
[http://dx.doi.org/10.1016/j.tibtech.2012.07.005] [PMID: 22939815]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy