Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Guest-host Relationship of Cyclodextrin and its Pharmacological Benefits

Author(s): Fatmah Alshati, Teejan Ameer Abed Alahmed, Farheen Sami, Md. Sajid Ali, Shahnaz Majeed, Sheikh Murtuja, M Saquib Hasnain and Mohammed Tahir Ansari*

Volume 29, Issue 36, 2023

Published on: 08 November, 2023

Page: [2853 - 2866] Pages: 14

DOI: 10.2174/0113816128266398231027100119

Price: $65

Abstract

Many methods, including solid dispersion, micellization, and inclusion complexes, have been employed to increase the solubility of potent drugs. Beta-cyclodextrin (βCD) is a cyclic oligosaccharide consisting of seven glucopyranoside molecules, and is a widely used polymer for formulating soluble inclusion complexes of hydrophobic drugs. The enzymatic activity of Glycosyltransferase or α-amylase converts starch or its derivatives into a mixture of cyclodextrins. The βCD units are characterized by α -(1-4) glucopyranose bonds. Cyclodextrins possess certain properties that make them very distinctive because of their toroidal or truncated cage-like supramolecular configurations with multiple hydroxyl groups at each end. This allowed them to encapsulate hydrophobic compounds by forming inclusion complexes without losing their solubility in water. Chemical modifications and newer derivatives, such as methylated βCD, more soluble hydroxyl propyl methyl βCD, and sodium salts of sulfobutylether-βCD, known as dexolve® or captisol®, have envisaged the use of CDs in various pharmaceutical, medical, and cosmetic industries. The successful inclusion of drug complexes has demonstrated improved solubility, bioavailability, drug resistance reduction, targeting, and penetration across skin and brain tissues. This review encompasses the current applications of β-CDs in improving the disease outcomes of antimicrobials and antifungals as well as anticancer and anti-tubercular drugs.

[1]
Das S, Pattanayak D, Nayak AK, et al. Alginate-montmorillonite composite systems as sustained drug delivery carriers Alginates in Drug Delivery. Cambridge, Massachusetts: Academic Press 2020; pp. 187-201.
[http://dx.doi.org/10.1016/B978-0-12-817640-5.00008-X]
[2]
Nayak AK, Ansari MT, Sami F, Bera H, Hasnain MS. Cashew gum in drug delivery applications Natural Polysaccharides in Drug Delivery and Biomedical Applications. Cambridge, Massachusetts: Academic Press 2019; pp. 263-83.
[http://dx.doi.org/10.1016/B978-0-12-817055-7.00011-X]
[3]
Nayak AK, Ansari MT, Pal D, Hasnain MS. Hyaluronic Acid (Hyaluronan): Pharmaceutical ApplicationsNatural Polymers for Pharmaceutical Applications. (1st ed.). New Jersey, Canada: Apple Academic Press 2019; p. 32.
[4]
Ansari MT, Hasnain MS, Nayak AK, Kenawy E-R. Chitosan-based nanobiocomposites in drug delivery Chitosan in Drug Delivery. Cambridge, Massachusetts: Academic Press 2022; pp. 411-32.
[http://dx.doi.org/10.1016/B978-0-12-819336-5.00017-0]
[5]
Ansari MT, Murteza S, Ahsan MN, Hasnain MS, Nayak AK. Chitosan as a responsive biopolymer in drug delivery Chitosan in Drug Delivery. Cambridge, Massachusetts: Academic Press 2022; pp. 389-410.
[http://dx.doi.org/10.1016/B978-0-12-819336-5.00002-9]
[6]
Ansari MT, Risheshwar P, Ali S. Effect of hydroxy acids and organic bases on complexation efficiency of aceclofenac beta cyclodextrin inclusion complex. Eur J Biomed Pharm Sci 2017; 4(5): 586-9.
[7]
Ansari MT, Risheshwar P, Ali S. Effects of polymers on complexation efficiency of aceclofenac-beta cyclodextrin inclusion complex. Int J Pharma Bio Sci 2017; 8(4): 21-9.
[http://dx.doi.org/10.22376/ijpbs.2017.8.4.p21-29]
[8]
Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018; 23(5): 1161.
[http://dx.doi.org/10.3390/molecules23051161] [PMID: 29751694]
[9]
Crini G, Fenyvesi É, Szente L. Outstanding contribution of Professor József Szejtli to cyclodextrin applications in foods, cosmetics, drugs, chromatography and biotechnology: A review. Environ Chem Lett 2021; 19(3): 2619-41.
[http://dx.doi.org/10.1007/s10311-020-01170-y]
[10]
Haimhoffer Á, Rusznyák Á, Réti-Nagy K, et al. Cyclodextrins in drug delivery systems and their effects on biological barriers. Sci Pharm 2019; 87(4): 33.
[http://dx.doi.org/10.3390/scipharm87040033]
[11]
Jansook P, Ogawa N, Loftsson T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int J Pharm 2018; 535(1-2): 272-84.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.018] [PMID: 29138045]
[12]
Narayanan G, Shen J, Matai I, Sachdev A, Boy R, Tonelli AE. Cyclodextrin-based nanostructures. Prog Mater Sci 2022; 124: 100869.
[http://dx.doi.org/10.1016/j.pmatsci.2021.100869]
[13]
Braga SS. Cyclodextrins: Emerging medicines of the new millennium. Biomolecules 2019; 9(12): 801.
[http://dx.doi.org/10.3390/biom9120801] [PMID: 31795222]
[14]
Hong W, Guo F, Yu N, et al. A novel folic acid receptor-targeted drug delivery system based on curcumin-loaded β-cyclodextrin nanoparticles for cancer treatment. Drug Des Devel Ther 2021; 15: 2843-55.
[http://dx.doi.org/10.2147/DDDT.S320119] [PMID: 34234415]
[15]
Alsarra IA, Ahmed MO, El-Badry M, Alanazi FK, Al-Mohizea AM, Ahmed SM. Effect of β-cyclodextrin derivatives on the kinetics of degradation of cefotaxime sodium in solution state. J Drug Deliv Sci Technol 2007; 17(5): 353-7.
[http://dx.doi.org/10.1016/S1773-2247(07)50054-7]
[16]
Paczkowska M, Mizera M, Szymanowska-Powałowska D, et al. β-Cyclodextrin complexation as an effective drug delivery system for meropenem. Eur J Pharm Biopharm 2016; 99: 24-34.
[http://dx.doi.org/10.1016/j.ejpb.2015.10.013] [PMID: 26592156]
[17]
Dai X, Zhang B, Zhou W, Liu Y. High-efficiency synergistic effect of supramolecular nanoparticles based on cyclodextrin prodrug on cancer therapy. Biomacromolecules 2020; 21(12): 4998-5007.
[http://dx.doi.org/10.1021/acs.biomac.0c01181] [PMID: 32946217]
[18]
Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N. Cyclodextrins, from molecules to applications. Environ Chem Lett 2018; 16(4): 1361-75.
[http://dx.doi.org/10.1007/s10311-018-0763-2]
[19]
Sun L, Xu G, Tu Y, et al. Multifunctional porous β-cyclodextrin polymer for water purification. Water Res 2022; 222: 118917.
[http://dx.doi.org/10.1016/j.watres.2022.118917] [PMID: 35961197]
[20]
Kolarič L, Šimko P. Application of β-cyclodextrin in the production of low-cholesterol milk and dairy products. Trends Food Sci Technol 2022; 119: 13-22.
[http://dx.doi.org/10.1016/j.tifs.2021.11.023]
[21]
Řezanka M. Cyclodextrin Fundamentals, Reactivity and Analysis. Synthesis of Cyclodextrin Derivatives. Berlin, Heidelberg: Springer 2018; 16: 57-103.
[22]
Sadaquat H, Akhtar M. Comparative effects of β-cyclodextrin, HP-β-cyclodextrin and SBE7-β-cyclodextrin on the solubility and disso-lution of docetaxel via inclusion complexation. J Incl Phenom Macrocycl Chem 2020; 96(3-4): 333-51.
[http://dx.doi.org/10.1007/s10847-020-00977-0]
[23]
Gao S, Liu Y, Jiang J, et al. Thiram/hydroxy-propyl-β-cyclodextrin inclusion complex electrospun nanofibers for a fast dissolving water-based drug delivery system. Colloids Surf B Biointerfaces 2021; 201: 111625.
[24]
Stella VJ, Rajewski RA. Sulfobutylether-β-cyclodextrin. Int J Pharm 2020; 583: 119396.
[25]
Errico MJ. The Cyclodextrin-Perfluorinated Surfactant Host-Guest Complex: Fundamental Studies for Potential Environmental Remediation and Therapeutic Applications 2018.
[26]
Zafar N, Fessi H, Elaissari A. Cyclodextrin containing biodegradable particles: From preparation to drug delivery applications. Int J Pharm 2014; 461(1-2): 351-66.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.004] [PMID: 24342710]
[27]
Méndez-Ardoy A, Guilloteau N, Di Giorgio C, et al. β-cyclodextrin-based polycationic amphiphilic “click” clusters: Effect of structural modifications in their DNA complexing and delivery properties. J Org Chem 2011; 76(15): 5882-94.
[http://dx.doi.org/10.1021/jo2007785] [PMID: 21707102]
[28]
Rassu G, Fancello S, Roldo M, et al. Investigation of cytotoxicity and cell uptake of cationic beta-cyclodextrins as valid tools in nasal delivery. Pharmaceutics 2020; 12(7): 658.
[http://dx.doi.org/10.3390/pharmaceutics12070658] [PMID: 32664676]
[29]
Warriner LW, Duke JR III, Pack DW, DeRouchey JE. Succinylated polyethylenimine derivatives greatly enhance polyplex serum stability and gene delivery in vitro. Biomacromolecules 2018; 19(11): 4348-57.
[http://dx.doi.org/10.1021/acs.biomac.8b01248] [PMID: 30354068]
[30]
Alizadeh N, Malakzadeh S. Evaluation of antioxidant and anti-cancer properties of curcumin/beta- and gamma-cyclodextrin complexes modified with chitosan nanoparticles on lung cancer cell A549. Yaftah 2021; 8(2): 84-94.
[http://dx.doi.org/10.52547/nbr.8.2.84]
[31]
Rabiee N, Ahmadi S, Afshari R, et al. Polymeric nanoparticles for nasal drug delivery to the brain: Relevance to Alzheimer’s disease. Adv Ther (Weinh) 2021; 4(3): 2000076.
[http://dx.doi.org/10.1002/adtp.202000076]
[32]
Zhang Q, Lu Y, Xu X, Li S, Du Y, Yu R. MR molecular imaging of HCC employing a regulated ferritin gene carried by a modified polycation vector. Int J Nanomed 2019; 14: 3189-201.
[http://dx.doi.org/10.2147/IJN.S191270] [PMID: 31118631]
[33]
Eliseev AV, Schneider HJ. Molecular recognition of nucleotides, nucleosides, and sugars by aminocyclodextrins. J Am Chem Soc 1994; 116(14): 6081-8.
[http://dx.doi.org/10.1021/ja00093a004]
[34]
Ferguson Johns HP, Harrison EE, Stingley KJ, Waters ML. Mimicking biological recognition: Lessons in binding hydrophilic guests in water. Chemistry 2021; 27(22): 6620-44.
[http://dx.doi.org/10.1002/chem.202003759] [PMID: 33048395]
[35]
Belica-Pacha S, Małecka M, Daśko M, et al. The interaction of heptakis (2,6-di-O-Methyl)-β-cyclodextrin with mianserin hydrochloride and its influence on the drug toxicity. Int J Mol Sci 2021; 22(17): 9419.
[http://dx.doi.org/10.3390/ijms22179419] [PMID: 34502332]
[36]
Croyle MA, Cheng X, Sandhu A, Wilson JM. Development of novel formulations that enhance adenoviral-mediated gene expression in the lung in vitro and in vivo. Mol Ther 2001; 4(1): 22-8.
[http://dx.doi.org/10.1006/mthe.2001.0411] [PMID: 11472102]
[37]
Desai D, Shende P. Drug-free cyclodextrin-based nanosponges for antimicrobial activity. J Pharm Innov 2021; 16: 258-68.
[38]
Trapani A, Catalano A, Carocci A, et al. Effect of methyl-β-cyclodextrin on the antimicrobial activity of a new series of poorly water-soluble benzothiazoles. Carbohydr Polym 2019; 207: 720-8.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.016] [PMID: 30600058]
[39]
Anjum MM, Patel KK, Pandey N, Tilak R, Agrawal AK, Singh S. Development of anacardic acid/hydroxypropyl-β-cyclodextrin inclusion complex with enhanced solubility and antimicrobial activity. J Mol Liq 2019; 296: 112085.
[http://dx.doi.org/10.1016/j.molliq.2019.112085]
[40]
Velázquez-Contreras F, Zamora-Ledezma C, López-González I, Meseguer-Olmo L, Núñez-Delicado E, Gabaldón JA. Cyclodextrins in polymer-based active food packaging: A fresh look at nontoxic, biodegradable, and sustainable technology trends. Polymers (Basel) 2021; 14(1): 104.
[http://dx.doi.org/10.3390/polym14010104] [PMID: 35012127]
[41]
Marques HMC. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragrance J 2010; 25(5): 313-26.
[http://dx.doi.org/10.1002/ffj.2019]
[42]
Del Valle EMM. Cyclodextrins and their uses: A review. Process Biochem 2004; 39(9): 1033-46.
[http://dx.doi.org/10.1016/S0032-9592(03)00258-9]
[43]
Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J. A review on the use of cyclodextrins in foods. Food Hydrocoll 2009; 23(7): 1631-40.
[http://dx.doi.org/10.1016/j.foodhyd.2009.01.001]
[44]
Pan J, Ai F, Shao P, Chen H, Gao H. Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging. Food Chem 2019; 300: 125249.
[http://dx.doi.org/10.1016/j.foodchem.2019.125249] [PMID: 31352291]
[45]
Marques CS, Carvalho SG, Bertoli LD, et al. β-cyclodextrin inclusion complexes with essential oils: Obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res Int 2019; 119: 499-509.
[http://dx.doi.org/10.1016/j.foodres.2019.01.016] [PMID: 30884682]
[46]
Rakmai J, Cheirsilp B, Mejuto JC, Simal-Gándara J, Torrado-Agrasar A. Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin. Ind Crops Prod 2018; 111: 219-25.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.027]
[47]
Yue Q, Shao X, Wei Y, et al. Optimized preparation of tea tree oil complexation and their antifungal activity against Botrytis cinerea. Postharvest Biol Technol 2020; 162: 111114.
[http://dx.doi.org/10.1016/j.postharvbio.2019.111114]
[48]
Herrera A, Rodríguez FJ, Bruna JE, et al. Antifungal and physicochemical properties of inclusion complexes based on β-cyclodextrin and essential oil derivatives. Food Res Int 2019; 121: 127-35.
[http://dx.doi.org/10.1016/j.foodres.2019.03.026] [PMID: 31108733]
[49]
Arumugam SP, Balakrishnan SB, Ganesan V, et al. In-vitro dissolution and microbial inhibition studies on anticancer drug etoposide with β-cyclodextrin. Mater Sci Eng C 2019; 102: 96-105.
[http://dx.doi.org/10.1016/j.msec.2019.04.033] [PMID: 31147064]
[50]
Gao S, Jiang J, Li X, Ye F, Fu Y, Zhao L. An environmentally safe formulation with enhanced solubility and fungicidal activity: Self-assembly and characterization of Difenoconazole-β-CD inclusion complex. J Mol Liq 2021; 327: 114874.
[51]
Dou S, Ouyang Q, You K, Qian J, Tao N. An inclusion complex of thymol into β-cyclodextrin and its antifungal activity against Geotrichum citri-aurantii. Postharvest Biol Technol 2018; 138: 31-6.
[http://dx.doi.org/10.1016/j.postharvbio.2017.12.011]
[52]
Munhuweyi K, Caleb OJ, van Reenen AJ, Opara UL. Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils. Lebensm Wiss Technol 2018; 87: 413-22.
[http://dx.doi.org/10.1016/j.lwt.2017.09.012]
[53]
Wang Y, Yin C, Cheng X, Li G, Shan Y, Zhu X. β-cyclodextrin inclusion complex containing litsea cubeba essential oil: Preparation, optimization, physicochemical, and antifungal characterization. Coatings 2020; 10(9): 850.
[http://dx.doi.org/10.3390/coatings10090850]
[54]
Yang Y, Huan C, Liang X, Fang S, Wang J, Chen J. Development of starch-based antifungal coatings by incorporation of natamycin/methyl-β-cyclodextrin inclusion complex for postharvest treatments on cherry tomato against Botrytis cinerea. Molecules 2019; 24(21): 3962.
[http://dx.doi.org/10.3390/molecules24213962] [PMID: 31683794]
[55]
Clemens DL, Lee BY, Xue M, et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother 2012; 56(5): 2535-45.
[http://dx.doi.org/10.1128/AAC.06049-11] [PMID: 22354311]
[56]
Santoveña-Estévez A, Suárez-González J, Cáceres-Pérez AR, et al. Stability study of isoniazid and rifampicin oral solutions using hydroxypropyl-β-cyclodextrin to treat tuberculosis in paediatrics. Pharmaceutics 2020; 12(2): 195.
[http://dx.doi.org/10.3390/pharmaceutics12020195] [PMID: 32102447]
[57]
Tom L, Nirmal CR, Dusthackeer A, Magizhaveni B, Kurup MRP. Formulation and evaluation of β-cyclodextrin-mediated inclusion complexes of isoniazid scaffolds: molecular docking and in vitro assessment of antitubercular properties. New J Chem 2020; 44(11): 4467-77.
[http://dx.doi.org/10.1039/C9NJ06351J]
[58]
de Castro RR, Todaro V, da Silva LCRP, et al. Development of inhaled formulation of modified clofazimine as an alternative to treatment of tuberculosis. J Drug Deliv Sci Technol 2020; 58: 101805.
[http://dx.doi.org/10.1016/j.jddst.2020.101805]
[59]
Machelart A, Salzano G, Li X, et al. Intrinsic antibacterial activity of nanoparticles made of β-cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis. ACS Nano 2019; 13(4): 3992-4007.
[http://dx.doi.org/10.1021/acsnano.8b07902] [PMID: 30822386]
[60]
Basha RY, Kumar STS, Doble M. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr Polym 2019; 218: 53-62.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.056] [PMID: 31221343]
[61]
Patil K, Bagade S, Bonde S, Sharma S, Saraogi G. Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities. Biomed Pharmacother 2018; 99: 735-45.
[http://dx.doi.org/10.1016/j.biopha.2018.01.115] [PMID: 29710471]
[62]
Majeed S, Danish M, Zakariya NA, Hashim R, Ansari MT, Sisinthy SP. Tailored silver nanoparticles capped with gallic acid and its potential toxicity via ROS mediated pathway against osteosarcoma cells. Mater Today Commun 2022; 32: 103844.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103844]
[63]
Ansari MT, Ramlan TA, Jamaluddin NN, et al. Lipid based nano carriers for cancer and tumor treatment. Curr Pharm Des 2020; 26(34): 4272-6.
[http://dx.doi.org/10.2174/1381612826666200720235752] [PMID: 32693760]
[64]
Ansari MT, Sami F, Khairudiin FA, Atan MZ. Applications of zinc nanoparticles in medical and healthcare fields. Curr Nanomed 2018; 8(3): 225-33.
[65]
Majeed S, Abdullah MS, Dash GK, Ansari MT, Nanda A. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin J Nat Med 2016; 14(8): 615-20.
[http://dx.doi.org/10.1016/S1875-5364(16)30072-3] [PMID: 27608951]
[66]
Chen X, Qiu YK, Owh C, Loh XJ, Wu YL. Supramolecular cyclodextrin nanocarriers for chemo- and gene therapy towards the effective treatment of drug resistant cancers. Nanoscale 2016; 8(45): 18876-81.
[http://dx.doi.org/10.1039/C6NR08055C] [PMID: 27819368]
[67]
Mahalapbutr P, Wonganan P, Charoenwongpaiboon T, Prousoontorn M, Chavasiri W, Rungrotmongkol T. Enhanced solubility and anti-cancer potential of mansonone g by β-cyclodextrin-based host-guest complexation: A computational and experimental study. Biomolecules 2019; 9(10): 545.
[http://dx.doi.org/10.3390/biom9100545] [PMID: 31569832]
[68]
Rescifina A, Surdo E, Cardile V, et al. Gemcitabine anticancer activity enhancement by water soluble celecoxib/sulfobutyl ether-β-cyclodextrin inclusion complex. Carbohydr Polym 2019; 206: 792-800.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.060] [PMID: 30553385]
[69]
Khatun B, Baishya P, Ramteke A, Maji TK. Study of the complexation of structurally modified curcumin with hydroxypropyl beta cyclodextrin and its effect on anticancer activity. New J Chem 2020; 44(12): 4887-97.
[http://dx.doi.org/10.1039/C9NJ04408F]
[70]
Li Z, Zhang B, Jia S, Ma M, Hao J. Novel supramolecular organogel based on β-cyclodextrin as a green drug carrier for enhancing anti-cancer effects. J Mol Liq 2018; 250: 19-25.
[http://dx.doi.org/10.1016/j.molliq.2017.11.154]
[71]
Shukla SK, Chan A, Parvathaneni V, et al. Enhanced solubility, stability, permeation and anti-cancer efficacy of Celastrol-β-cyclodextrin inclusion complex. J Mol Liq 2020; 318: 113936.
[http://dx.doi.org/10.1016/j.molliq.2020.113936]
[72]
Wu W, Xue W. Evaluation of anticancer activity of honokiol by complexation with hydroxypropyl-β-cyclodextrin. Colloids Surf B Biointerfaces 2020; 196: 111298.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111298] [PMID: 32798987]
[73]
Baskar G, Supria Sree N. Synthesis, characterization and anticancer activity of β-cyclodextrin-Asparaginase nanobiocomposite on prostate and lymphoma cancer cells. J Drug Deliv Sci Technol 2020; 55: 101417.
[http://dx.doi.org/10.1016/j.jddst.2019.101417]
[74]
Liu H, Chen J, Li X, et al. Amphipathic β-cyclodextrin nanocarriers serve as intelligent delivery platform for anticancer drug. Colloids Surf B Biointerfaces 2019; 180: 429-40.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.011] [PMID: 31085461]
[75]
Mohandoss S, Palanisamy S, You S, Shim JJ, Rok Lee Y. Ultrasonication-assisted host-guest inclusion complexes of β-cyclodextrins and 5-hydroxytryptophan: Enhancement of water solubility, thermal stability, and in vitro anticancer activity. J Mol Liq 2021; 336: 116172.
[http://dx.doi.org/10.1016/j.molliq.2021.116172]
[76]
Hariharan MS, Sivaraj R, Ponsubha S, Jagadeesh R. Enoch] IVMV. 5-fluorouracil-loaded β-cyclodextrin-carrying polymeric poly(methylmethacrylate)-coated samarium ferrite nanoparticles and their anticancer activity. J Mater Sci 2019; 54(6): 4942-51.
[http://dx.doi.org/10.1007/s10853-018-3161-z]
[77]
Batool N, Sarfraz RM, Mahmood A, et al. Orally administered, biodegradable and biocompatible hydroxypropyl-β-cyclodextrin grafted poly(methacrylic acid) hydrogel for pH sensitive sustained anticancer drug delivery. Gels 2022; 8(3): 190.
[http://dx.doi.org/10.3390/gels8030190] [PMID: 35323303]
[78]
Liang J, Li F, Lin J, et al. Host-guest inclusion systems of mangiferin and polyamine-β-cyclodextrins: Preparation, characterization and anti-cancer activity. J Mol Struct 2019; 1193: 207-14.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.015]
[79]
Kost B, Brzeziński M, Cieślak M, et al. Stereocomplexed micelles based on polylactides with β-cyclodextrin core as anti-cancer drug carriers. Eur Polym J 2019; 120: 109271.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109271]
[80]
Kulkarni AD, Belgamwar VS. Inclusion complex of chrysin with sulfobutyl ether-β-cyclodextrin (Captisol®): Preparation, characterization, molecular modelling and in vitro anticancer activity. J Mol Struct 2017; 1128: 563-71.
[http://dx.doi.org/10.1016/j.molstruc.2016.09.025]
[81]
Fan W, Xu Y, Li Z, Li Q. Folic acid-modified β-cyclodextrin nanoparticles as drug delivery to load DOX for liver cancer therapeutics. Soft Mater 2019; 17(4): 437-47.
[http://dx.doi.org/10.1080/1539445X.2019.1624265]
[82]
Hyun H, Park M, Jo G, Kim S, Chun H, Yang D. Photo-cured glycol chitosan hydrogel for ovarian cancer drug delivery. Mar Drugs 2019; 17(1): 41.
[http://dx.doi.org/10.3390/md17010041] [PMID: 30634553]
[83]
Velhal K, Barage S, Roy A, et al. A Promising review on cyclodextrin conjugated paclitaxel nanoparticles for cancer treatment. Polymers (Basel) 2022; 14(15): 3162.
[http://dx.doi.org/10.3390/polym14153162] [PMID: 35956677]
[84]
Zhang Y, Ma S, Liu X, et al. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv Mater 2021; 33(7): 2007293.
[http://dx.doi.org/10.1002/adma.202007293] [PMID: 33448050]
[85]
Weiss GJ, Chao J, Neidhart JD, et al. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest New Drugs 2013; 31(4): 986-1000.
[http://dx.doi.org/10.1007/s10637-012-9921-8] [PMID: 23397498]
[86]
Robertson I, Wai Hau T, Sami F, et al. The science of resveratrol, formulation, pharmacokinetic barriers and its chemotherapeutic potential. Int J Pharm 2022; 618: 121605.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121605] [PMID: 35227804]
[87]
Khatoon S, Kalam N, Shaikh MF, Hasnain MS, Hafiz AK, Ansari MT. Nanoencapsulation of polyphenols as drugs and supplements for enhancing therapeutic profile - A review. Curr Mol Pharmacol 2022; 15(1): 77-107.
[PMID: 34551693]
[88]
Khatoon S, Kalam N, Balasubramaniam VRMT, Shaikh MF, Ansari MT. Chemotherapeutic role of polyphenols present in Ocimum sanctum. Anticancer Agents Med Chem 2022; 22(20): 3325-42.
[http://dx.doi.org/10.2174/1871520622666220516142839] [PMID: 35578854]
[89]
Chen WN, Shaikh MF, Bhuvanendran S, et al. Poloxamer 188 (P188), A potential polymeric protective agent for central nervous system disorders: A systematic review. Curr Neuropharmacol 2022; 20(4): 799-808.
[http://dx.doi.org/10.2174/1570159X19666210528155801] [PMID: 34077349]
[90]
Ali OAMA, Shaikh MF, Hasnain MS, Sami F, Khan A, Ansari MT. Nanotechnological advances in the treatment of epilepsy. CNS Neurol Disord Drug Targets 2022; 21(10): 994-1003.
[PMID: 34939554]
[91]
Coisne C, Tilloy S, Monflier E, Wils D, Fenart L, Gosselet F. Cyclodextrins as emerging therapeutic tools in the treatment of cholesterol-associated vascular and neurodegenerative diseases. Molecules 2016; 21(12): 1748.
[http://dx.doi.org/10.3390/molecules21121748] [PMID: 27999408]
[92]
Mendonça MCP, Cronin MF, Cryan JF, O’Driscoll CM. Modified cyclodextrin-based nanoparticles mediated delivery of siRNA for huntingtin gene silencing across an in vitro BBB model. Eur J Pharm Biopharm 2021; 169: 309-18.
[http://dx.doi.org/10.1016/j.ejpb.2021.11.003] [PMID: 34793942]
[93]
Singh RP, Hidalgo T, Cazade PA, et al. Self-assembled cationic β-cyclodextrin nanostructures for siRNA Delivery. Mol Pharm 2019; 16(3): 1358-66.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01307] [PMID: 30721074]
[94]
Jarazo J, Barmpa K, Modamio J, et al. Parkinson’s disease phenotypes in patient neuronal cultures and brain organoids improved by 2‐hydroxypropyl‐β‐cyclodextrin treatment. Mov Disord 2022; 37(1): 80-94.
[http://dx.doi.org/10.1002/mds.28810] [PMID: 34637165]
[95]
Berry-Kravis E, Chin J, Hoffmann A, et al. Long-term treatment of niemann-pick type C1 disease with intrathecal 2-hydroxy-propyl-β-cyclodextrin. Pediatr Neurol 2018; 80: 24-34.
[http://dx.doi.org/10.1016/j.pediatrneurol.2017.12.014] [PMID: 29429782]
[96]
Berry-Kravis EM, Lindemann L, Jønch AE, et al. Drug development for neurodevelopmental disorders: Lessons learned from fragile X syndrome. Nat Rev Drug Discov 2018; 17(4): 280-99.
[97]
Belgamwar AV, Khan SA, Yeole PG. Intranasal dolutegravir sodium loaded nanoparticles of hydroxypropyl-beta-cyclodextrin for brain delivery in Neuro-AIDS. J Drug Deliv Sci Technol 2019; 52: 1008-20.
[http://dx.doi.org/10.1016/j.jddst.2019.06.014]
[98]
Ou G, Li Q, Zhu L, et al. Intranasal hydrogel of armodafinil hydroxypropyl-β-cyclodextrin inclusion complex for the treatment of post-traumatic stress disorder. Saudi Pharm J 2022; 30(3): 265-82.
[http://dx.doi.org/10.1016/j.jsps.2022.01.009] [PMID: 35498223]
[99]
Hashemian M, Ghasemi-Kasman M, Ghasemi S, et al. Fabrication and evaluation of novel quercetin-conjugated Fe3O4-β-cyclodextrin nanoparticles for potential use in epilepsy disorder. Int J Nanomedicine 2019; 14: 6481-95.
[http://dx.doi.org/10.2147/IJN.S218317] [PMID: 31496698]
[100]
Yokoyama R, Taharabaru T, Nishida T, et al. Lactose-appended β-cyclodextrin as an effective nanocarrier for brain delivery. J Control Release 2020; 328: 722-35.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.043] [PMID: 33002523]
[101]
Zhang L, Yang S, Wong LR, Xie H, Ho PCL. In vitro and in vivo comparison of curcumin-encapsulated chitosan-coated poly (lactic-co-glycolic acid) nanoparticles and curcumin/hydroxypropyl-β-cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimer’s disease. Mol Pharm 2020; 17(11): 4256-69.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00675] [PMID: 33084343]
[102]
Manta K, Papakyriakopoulou P, Chountoulesi M, et al. Preparation and biophysical characterization of quercetin inclusion complexes with β-cyclodextrin derivatives to be formulated as possible nose-to-brain quercetin delivery systems. Mol Pharm 2020; 17(11): 4241-55.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00672] [PMID: 32986435]
[103]
Papakyriakopoulou P, Manta K, Kostantini C, et al. Nasal powders of quercetin-β-cyclodextrin derivatives complexes with mannitol/lecithin microparticles for Nose-to-Brain delivery: In vitro and ex vivo evaluation. Int J Pharm 2021; 607: 121016.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121016] [PMID: 34411652]
[104]
Song M, Wang H, Chen K, et al. Oral insulin delivery by carboxymethyl-β-cyclodextrin-grafted chitosan nanoparticles for improving diabetic treatment. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S774-82.
[105]
Yang Y, Liu Y, Chen S, Cheong KL, Teng B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr Polym 2020; 246: 116617.
[http://dx.doi.org/10.1016/j.carbpol.2020.116617] [PMID: 32747257]
[106]
Yang L, Li M, Sun Y, Zhang L. A cell-penetrating peptide conjugated carboxymethyl-β-cyclodextrin to improve intestinal absorption of insulin. Int J Biol Macromol 2018; 111: 685-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.077] [PMID: 29343452]
[107]
Wang R, Tian Y, Wang J, et al. Biomimetic glucose trigger‐insulin release system based on hydrogel loading bidentate β‐cyclodextrin. Adv Funct Mater 2021; 31(38): 2104488.
[http://dx.doi.org/10.1002/adfm.202104488]
[108]
Yao Q, Shi Y, Xia X, et al. Bioadhesive hydrogel comprising bilirubin/β-cyclodextrin inclusion complexes promote diabetic wound healing. Pharm Biol 2021; 59(1): 1137-47.
[http://dx.doi.org/10.1080/13880209.2021.1964543] [PMID: 34425063]
[109]
Peter N, Majumdar J, Biswas G, Pawar HS, Mitra A, Mitra A. Effects of mangiferin isolated from Mangifera indica leaves and evaluation of biologic activities of β-cyclodextrin-mangiferin complex particularly its anti-diabetic and hypolipidaemic propertieson Type 1 diabetes rat model. Int J Herb Med 2017; 5(4)
[110]
Kaur K, Jindal R, Jindal D. Synthesis, characterization and studies on host-guest interactions of inclusion complexes of metformin hydrochloride with β-cyclodextrin. J Mol Liq 2019; 282: 162-8.
[http://dx.doi.org/10.1016/j.molliq.2019.02.127]
[111]
Wang F, Bao X, Fang A, et al. Nanoliposome-encapsulated brinzolamide-hydropropyl-β-cyclodextrin inclusion complex: A potential therapeutic ocular drug-delivery system. Front Pharmacol 2018; 9: 91.
[http://dx.doi.org/10.3389/fphar.2018.00091]
[112]
Grassiri B, Knoll P, Fabiano A, Piras AM, Zambito Y, Bernkop-Schnürch A. Thiolated hydroxypropyl-β-cyclodextrin: A potential multi-functional excipient for ocular drug delivery. Int J Mol Sci 2022; 23(5): 2612.
[http://dx.doi.org/10.3390/ijms23052612] [PMID: 35269753]
[113]
De Gaetano F, Marino A, Marchetta A, et al. Development of chitosan/cyclodextrin nanospheres for levofloxacin ocular delivery. Pharmaceutics 2021; 13(8): 1293.
[114]
Maria DN, Mishra SR, Wang L, et al. Water-soluble complex of curcumin with cyclodextrins: Enhanced physical properties for ocular drug delivery. Curr Drug Deliv 2017; 14(6): 875-86.
[PMID: 27501714]
[115]
Liu CH, Lee GW, Wu WC, Wang CC. Encapsulating curcumin in ethylene diamine-β-cyclodextrin nanoparticle improves topical cornea delivery. Colloids Surf B Biointerfaces 2020; 186: 110726.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110726] [PMID: 31862560]
[116]
Abdelkader H, Fathalla Z, Moharram H, Ali TFS, Pierscionek B. Cyclodextrin enhances corneal tolerability and reduces ocular toxicity caused by diclofenac. Oxid Med Cell Longev 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/5260976] [PMID: 29636847]
[117]
Xu Y, Zhang C, Zhu X, et al. Chloramphenicol/sulfobutyl ether-β-cyclodextrin complexes in an ophthalmic delivery system: Prolonged residence time and enhanced bioavailability in the conjunctival sac. Expert Opin Drug Deliv 2019; 16(6): 657-66.
[http://dx.doi.org/10.1080/17425247.2019.1609447] [PMID: 31033370]
[118]
García-Otero X, Díaz-Tomé V, Varela-Fernández R, et al. Development and characterization of a tacrolimus/hydroxypropyl-β-cyclodextrin eye drop. Pharmaceutics 2021; 13(2): 149.
[http://dx.doi.org/10.3390/pharmaceutics13020149] [PMID: 33498753]
[119]
Hsiung E, Celebioglu A, Chowdhury R, et al. Antibacterial nanofibers of pullulan/tetracycline-cyclodextrin inclusion complexes for Fast-Disintegrating oral drug delivery. J Colloid Interface Sci 2022; 610: 321-33.
[http://dx.doi.org/10.1016/j.jcis.2021.12.013] [PMID: 34923270]
[120]
Ayoub AM, Gutberlet B, Preis E, et al. Parietin cyclodextrin-inclusion complex as an effective formulation for bacterial photoinactivation. Pharmaceutics 2022; 14(2): 357.
[http://dx.doi.org/10.3390/pharmaceutics14020357] [PMID: 35214089]
[121]
Li Y, Zhou J, Gu J, Shao Q, Chen Y. Enhanced antibacterial activity of levofloxacin/hydroxypropyl-β-cyclodextrin inclusion complex: In vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2022; 215: 112514.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112514] [PMID: 35490541]
[122]
Oo A, Mahalapbutr P, Krusong K, et al. Inclusion complexation of emodin with various β-cyclodextrin derivatives: Preparation, characterization, molecular docking, and anticancer activity. J Mol Liq 2022; 367: 120314.
[http://dx.doi.org/10.1016/j.molliq.2022.120314]
[123]
De Gaetano F, Cristiano MC, Paolino D, et al. Bicalutamide anticancer activity enhancement by formulation of soluble inclusion complexes with cyclodextrins. Biomolecules 2022; 12(11): 1716.
[http://dx.doi.org/10.3390/biom12111716] [PMID: 36421730]
[124]
Brodin P, Boulard A, Gref R, Machelart A. Use of materials made of cross-linked beta-cyclodextrins for the treatment of tuberculosis. US Patent 0062326 A1, 2022.
[125]
Oommen E, Shenoy BD, Udupa N, Kamath R, Devi PU. Antitumour efficacy of cyclodextrin-complexed and niosome- encapsulated plumbagin in mice bearing melanoma B16F1. Pharm Pharmacol Commun 1999; 5(4): 281-5.
[http://dx.doi.org/10.1211/146080899128734857]
[126]
Fan X, Cheng H, Wang X, et al. Thermoresponsive supramolecular chemotherapy by “V”‐shaped armed β‐cyclodextrin star polymer to overcome drug resistance. Adv Healthc Mater 2018; 7(7): 1701143.
[http://dx.doi.org/10.1002/adhm.201701143] [PMID: 29280358]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy