Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Comprehensive Review on Analytical and Bioanalytical Methods for Quantification of Anti-angiogenic Agents used in Treatment of Cervical Cancer

Author(s): Parikh Nisha*, Parmar Srushti, Dave Bhavarth, Mohammad Kaif and Parikh Palak

Volume 19, Issue 10, 2023

Published on: 08 November, 2023

Page: [735 - 744] Pages: 10

DOI: 10.2174/0115734129270020231102081109

Price: $65

Abstract

Cervical cancer is one of the most prevalent forms of cancer occurring across the world and it has been observed that about 99.7% of cervical cancer cases occur due to infections with the Human papillomavirus (HPV). Over prolonged durations, cervical cancer can lead to complications such as vaginal bleeding, itching, and in more severe instances, even the fatality of the individual. Cervical cancer is an essential cause of death at an early age as it affects young women higher than other populations. The most frequent drugs used in its treatment include antiangiogenic drugs. This review summarizes analytical techniques used for the quantification of anti-angiogenic agents- Bevacizumab, Sunitinib, Pazopanib, Brivanib, and Imatinib. Furthermore, an in-depth description of numerous techniques including NIR (1), HPLC (10), LC-MS (28), and HPTLC (1) approaches used to determine and quantify these agents have been provided in this review. Based on the matrix utilized, the following details were discussed: analytical conditions, detection limits, and solvent used in sample preparation. Our review holds significant importance within the scientific community, offering valuable insights into commonly employed measurement techniques and the latest advancements in these approaches.

Next »
Graphical Abstract

[1]
Okunade, K.S. Human papillomavirus and cervical cancer. J. Obstet. Gynaecol., 2020, 40(5), 602-608.
[http://dx.doi.org/10.1080/01443615.2019.1634030] [PMID: 31500479]
[2]
Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob. Health, 2020, 8(2), e191-e203.
[http://dx.doi.org/10.1016/S2214-109X(19)30482-6] [PMID: 31812369]
[3]
Sanjosé, S.; Díaz, M.; Castellsagué, X.; Clifford, G.; Bruni, L. Worldwide prevalence and genotype distribution of cervical HPV in women with normal cytology. Lancet Infect, 2007, 7(7), 453-459.
[http://dx.doi.org/10.1016/S1473-3099(07)70158-5] [PMID: 17597569]
[4]
Bao, Y.P.; Li, N.; Smith, J.S.; Qiao, Y.L.; Tan, J.; Liu, J. Human papillomavirus type distribution in women from Asia: a meta-analysis. Int. J. Gynecol. Cancer, 2008, 18(1), 71-79.
[http://dx.doi.org/10.1111/j.1525-1438.2007.00959.x] [PMID: 17466054]
[5]
Committee on Adolescent Health Care Immunization Expert Work. Committee opinion: number 704. Am Coll Obstet Gynecol, 2017, 129(6), e173-e178.
[6]
Barnes, S.E.; Thurston, T.; Coleman, J.A.; Diederich, A.; Ertl, D.; Rydzak, J.; Ng, P.; Bakeev, K.; Bhanushali, D. NIR diffuse reflectance for on-scale monitoring of the polymorphic form transformation of pazopanib hydrochloride (GW786034); model development and method transfer. Anal. Methods, 2010, 2(12), 1890-1899.
[http://dx.doi.org/10.1039/c0ay00376j]
[7]
Ternant, D.; Cézé, N.; Lecomte, T.; Degenne, D.; Duveau, A.C.; Watier, H.; Dorval, E.; Paintaud, G. An enzyme-linked immunosorbent assay to study bevacizumab pharmacokinetics. Ther. Drug Monit., 2010, 32(5), 647-652.
[http://dx.doi.org/10.1097/FTD.0b013e3181ef582a] [PMID: 20720519]
[8]
Suárez, I.; Salmerón-García, A.; Cabeza, J.; Capitán-Vallvey, L.F.; Navas, N. Development and use of specific ELISA methods for quantifying the biological activity of bevacizumab, cetuximab and trastuzumab in stability studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1032, 155-164.
[http://dx.doi.org/10.1016/j.jchromb.2016.05.045] [PMID: 27296731]
[9]
Sousa, F.; Gonçalves, V.M.F.; Sarmento, B. Development and validation of a rapid reversed-phase HPLC method for the quantification of monoclonal antibody bevacizumab from polyester-based nanoparticles. J. Pharm. Biomed. Anal., 2017, 142, 171-177.
[http://dx.doi.org/10.1016/j.jpba.2017.05.015] [PMID: 28511059]
[10]
Martínez-Ortega, A.; Herrera, A.; Salmerón-García, A.; Cabeza, J.; Cuadros-Rodríguez, L.; Navas, N. Validated reverse phase HPLC diode array method for the quantification of intact bevacizumab, infliximab and trastuzumab for long-term stability study. Int. J. Biol. Macromol., 2018, 116, 993-1003.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.142] [PMID: 29792967]
[11]
Liu, L.; Ammar, D.A.; Ross, L.A.; Mandava, N.; Kahook, M.Y.; Carpenter, J.F. Silicone oil microdroplets and protein aggregates in repackaged bevacizumab and ranibizumab: effects of long-term storage and product mishandling. Invest. Ophthalmol. Vis. Sci., 2011, 52(2), 1023-1034.
[http://dx.doi.org/10.1167/iovs.10-6431] [PMID: 21051703]
[12]
Giannos, S.A.; Kraft, E.R.; Zhao, Z.Y.; Merkley, K.H.; Cai, J. Formulation stabilization and disaggregation of bevacizumab, ranibizumab and aflibercept in dilute solutions. Pharm. Res., 2018, 35(4), 78.
[http://dx.doi.org/10.1007/s11095-018-2368-7] [PMID: 29492680]
[13]
Sankar, P.R.; Latha, K.S.; Sailu, A.B.; Taheera, S.; Madhuri, B. Development and validation of RP-HPLC method for the determination of Pazopanib Hydrochloride (A tyrosine kinase inhibitor) in pharmaceutical dosage form. Res J Pharm Technol, 2021, 14(3), 1549-54.
[http://dx.doi.org/10.5958/0974-360X.2021.00273.0]
[14]
Khalil, N.Y.; Darwish, I.A.; Alshammari, M.F.; Wani, T.A. ICH guidelines-compliant HPLC-UV method for pharmaceutical quality control and therapeutic drug monitoring of the multi-targeted tyrosine kinase inhibitor pazopanib. S. Afr. J. Chem., 2017, 70(70), 60-66.
[http://dx.doi.org/10.17159/0379-4350/2017/v70a9]
[15]
Ravi, P.S.; Saisneha, K.L.; Bhavani, A.S.; Taheera, S.K.; Madhuri, B. Development and validation of RP-HPLC method for the determination of pazopanib hydrochloride (A tyrosine kinase inhibitor) in pharmaceutical dosage form. Res J Pharm Technol., 2021, 14(3), 1549-1554.
[16]
Buralla, K.K.; Parthasarathy, V. Quality by design based developed and validation of RP-HPLC method for simultaneous estimation of pazopanib in bulk and pharmaceutical dosage forms. Int. J. Pharm. Investig., 2019, 9(3), 135-140.
[http://dx.doi.org/10.5530/ijpi.2019.3.25]
[17]
Bende, G.; Kollipara, S.; Movva, S.; Moorthy, G.; Saha, R. Validation of an HPLC method for determination of imatinib mesylate in rat serum and its application in a pharmacokinetic study. J. Chromatogr. Sci., 2010, 48(5), 334-341.
[http://dx.doi.org/10.1093/chromsci/48.5.334] [PMID: 20515524]
[18]
Kuna, A.K.; Kumar, K.J. RP-HPLC method development and validation of Imatinib mesylate in tablet dosage form. Int. J. Pharm. Pharm. Sci., 2011, 3(Suppl. 5), 162-165.
[19]
Marathe, P.H.; Kamath, A.V.; Zhang, Y.; D’Arienzo, C.; Bhide, R.; Fargnoli, J. Preclinical pharmacokinetics and in vitro metabolism of brivanib (BMS-540215), a potent VEGFR2 inhibitor and its alanine ester prodrug brivanib alaninate. Cancer Chemother. Pharmacol., 2009, 65(1), 55-66.
[http://dx.doi.org/10.1007/s00280-009-1002-0] [PMID: 19396600]
[20]
Hajmalek, M.; Goudarzi, M.; Ghaffari, S.; Attar, H.; Mazlaghan, M.G. Development and validation of a HPTLC method for analysis of Sunitinib malate. Braz. J. Pharm. Sci., 2016, 52(4), 595-601.
[http://dx.doi.org/10.1590/s1984-82502016000400003]
[21]
Chiu, H.H.; Tsai, I.L.; Lu, Y.S.; Lin, C.H.; Kuo, C.H. Development of an LC-MS/MS method with protein G purification strategy for quantifying bevacizumab in human plasma. Anal. Bioanal. Chem., 2017, 409(28), 6583-6593.
[http://dx.doi.org/10.1007/s00216-017-0607-0] [PMID: 28963670]
[22]
Legeron, R.; Xuereb, F.; Chaignepain, S.; Gadeau, A.P.; Claverol, S.; Dupuy, J.W.; Djabarouti, S.; Couffinhal, T.; Schmitter, J.M.; Breilh, D. A new reliable, transposable and cost-effective assay for absolute quantification of total plasmatic bevacizumab by LC–MS/MS in human plasma comparing two internal standard calibration approaches. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1070(September), 43-53.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.042] [PMID: 29111437]
[23]
Iwamoto, N.; Umino, Y.; Aoki, C.; Yamane, N.; Hamada, A.; Shimada, T. Fully validated LCMS bioanalysis of Bevacizumab in human plasma using nano-surface and molecular-orientation limited (nSMOL) proteolysis. Drug Metab. Pharmacokinet., 2016, 31(1), 46-50.
[http://dx.doi.org/10.1016/j.dmpk.2015.11.004] [PMID: 26830079]
[24]
Marin, C.; Khoudour, N.; Millet, A.; Lebert, D.; Bros, P.; Thomas, F.; Ternant, D.; Lacarelle, B.; Guitton, J.; Ciccolini, J.; Blanchet, B. Cross-validation of a multiplex lc-ms/ms method for assaying mabs plasma levels in patients with cancer: A gpco-unicancer study. Pharmaceuticals (Basel), 2021, 14(8), 796.
[http://dx.doi.org/10.3390/ph14080796] [PMID: 34451893]
[25]
Ewles, M.; Mannu, R.; Fox, C.; Stanta, J.; Evans, G.; Goodwin, L.; Duffy, J.; Bell, L.; Estdale, S.; Firth, D. LC–MS/MS strategies for therapeutic antibodies and investigation into the quantitative impact of antidrug-antibodies. Bioanalysis, 2016, 8(24), 2565-2579.
[http://dx.doi.org/10.4155/bio-2016-0197] [PMID: 27884074]
[26]
DelGuidice, C.E.; Ismaiel, O.A.; Mylott, W.R.; Halquist, M.S. Optimization and method validation for the quantitative analysis of a monoclonal antibody and its related fab fragment in human plasma after intravitreal administration, using LC–MS/MS; J Chromatogr B Anal Technol Biomed Life Sci, 2021, p. 1164.
[27]
Bhatt, M.; Alok, A.; Kulkarni, BB. Method development and qualification of pH‐Based CEX UPLC method for monoclonal antibodies. BioTech (Basel), 2022, 11(2), 19.
[http://dx.doi.org/10.3390/biotech11020019]
[28]
Oberoi, R.K.; Mittapalli, R.K.; Fisher, J.; Elmquist, W.F. Sunitinib LC-MS/MS assay in mouse plasma and brain tissue: Application in cns distribution studies. Chromatographia, 2013, 76(23-24), 1657-1665.
[http://dx.doi.org/10.1007/s10337-013-2528-1] [PMID: 24409000]
[29]
Jolibois, J.; Schmitt, A.; Royer, B. A simple and fast LC-MS/MS method for the routine measurement of cabozantinib, olaparib, palbociclib, pazopanib, sorafenib, sunitinib and its main active metabolite in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1132, 121844.
[http://dx.doi.org/10.1016/j.jchromb.2019.121844] [PMID: 31678788]
[30]
Andriamanana, I.; Gana, I.; Duretz, B.; Hulin, A. Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 926, 83-91.
[http://dx.doi.org/10.1016/j.jchromb.2013.01.037] [PMID: 23562906]
[31]
Chatziathanasiadou, M.V.; Stylos, E.K.; Giannopoulou, E.; Spyridaki, M.H.; Briasoulis, E.; Kalofonos, H.P.; Crook, T.; Syed, N.; Sivolapenko, G.B.; Tzakos, A.G. Development of a validated LC-MS/MS method for the in vitro and in vivo quantitation of sunitinib in glioblastoma cells and cancer patients. J. Pharm. Biomed. Anal., 2019, 164, 690-697.
[http://dx.doi.org/10.1016/j.jpba.2018.11.030] [PMID: 30472587]
[32]
Rodamer, M.; Elsinghorst, P.W.; Kinzig, M.; Gütschow, M.; Sörgel, F. Development and validation of a liquid chromatography/tandem mass spectrometry procedure for the quantification of sunitinib (SU11248) and its active metabolite, N-desethyl sunitinib (SU12662), in human plasma: Application to an explorative study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(11-12), 695-706.
[http://dx.doi.org/10.1016/j.jchromb.2011.02.006] [PMID: 21367676]
[33]
Posocco, B.; Buzzo, M.; Giodini, L.; Crotti, S.; D’Aronco, S.; Traldi, P.; Agostini, M.; Marangon, E.; Toffoli, G. Analytical aspects of sunitinib and its geometric isomerism towards therapeutic drug monitoring in clinical routine. J. Pharm. Biomed. Anal., 2018, 160, 360-367.
[http://dx.doi.org/10.1016/j.jpba.2018.08.013] [PMID: 30119000]
[34]
Lankheet, N.A.G.; Blank, C.U.; Mallo, H.; Adriaansz, S.; Rosing, H.; Schellens, J.H.M.; Huitema, A.D.R.; Beijnen, J.H. Determination of sunitinib and its active metabolite Ndesethylsunitinib in sweat of a patient. J. Anal. Toxicol., 2011, 35(8), 558-565.
[http://dx.doi.org/10.1093/anatox/35.8.558] [PMID: 22004675]
[35]
Gurjar, M.; Mehta, P.; Sharma, J.; Patil, S.; Kulkarni, P.; Patil, A.; Nookala, M.; Joshi, A.; Gota, V. An HPLC method for simultaneous quantification of sunitinib and its active metabolite, SU12662, using hydrophilic interaction chromatography principle. Bioanalysis, 2020, 12(2), 75-85.
[http://dx.doi.org/10.4155/bio-2019-0188] [PMID: 31928228]
[36]
Lankheet, N.A.G.; Steeghs, N.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H.; Huitema, A.D.R. Quantification of sunitinib and N-desethyl sunitinib in human EDTA plasma by liquid chromatography coupled with electrospray ionization tandem mass spectrometry: validation and application in routine therapeutic drug monitoring. Ther. Drug Monit., 2013, 35(2), 168-176.
[http://dx.doi.org/10.1097/FTD.0b013e31827efd9e] [PMID: 23503442]
[37]
Szałek, E.; Karbownik, A.; Sobańska, K.; Grabowski, T.; Połom, W.; Lewandowska, M.; Wolc, A.; Matuszewski, M.; Grześkowiak, E. The pharmacokinetics and hypoglycaemic effect of sunitinib in the diabetic rabbits. Pharmacol. Rep., 2014, 66(5), 892-896.
[http://dx.doi.org/10.1016/j.pharep.2014.05.011] [PMID: 25149997]
[38]
Minkin, P.; Zhao, M.; Chen, Z.; Ouwerkerk, J.; Gelderblom, H.; Baker, S. Quantification of sunitinib in human plasma by high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 874(1-2), 84-88.
[http://dx.doi.org/10.1016/j.jchromb.2008.09.007] [PMID: 18823825]
[39]
Padervand, M.; Ghaffari, S.; Attar, H.; Nejad, M.M. Reverse phase HPLC determination of sunitinib malate using UV detector, its isomerisation study, method development and validation. J. Anal. Chem., 2017, 72(5), 567-574.
[http://dx.doi.org/10.1134/S1061934817050082]
[40]
Blanchet, B.; Saboureau, C.; Benichou, A.S.; Billemont, B.; Taieb, F.; Ropert, S.; Dauphin, A.; Goldwasser, F.; Tod, M. Development and validation of an HPLC-UV-visible method for sunitinib quantification in human plasma. Clin. Chim. Acta, 2009, 404(2), 134-139.
[http://dx.doi.org/10.1016/j.cca.2009.03.042] [PMID: 19341717]
[41]
de Bruijn, P.; Sleijfer, S.; Lam, M.H.; Mathijssen, R.H.J.; Wiemer, E.A.C.; Loos, W.J. Bioanalytical method for the quantification of sunitinib and its n-desethyl metabolite SU12662 in human plasma by ultra performance liquid chromatography/tandem triplequadrupole mass spectrometry. J. Pharm. Biomed. Anal., 2010, 51(4), 934-941.
[http://dx.doi.org/10.1016/j.jpba.2009.10.020] [PMID: 19931354]
[42]
Verheijen, R.B.; Bins, S.; Thijssen, B.; Rosing, H.; Nan, L.; Schellens, J.H.M.; Mathijssen, R.H.J.; Lolkema, M.P.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. Development and clinical validation of an LC–MS/MS method for the quantification of pazopanib in DBS. Bioanalysis, 2016, 8(2), 123-134.
[http://dx.doi.org/10.4155/bio.15.235] [PMID: 26652864]
[43]
Verheijen, R.B.; Thijssen, B.; Rosing, H.; Schellens, J.H.M.; Nan, L.; Venekamp, N.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. Fast and straightforward method for the quantification of pazopanib in human plasma using LCMS/MS. Ther. Drug Monit., 2018, 40(2), 230-236.
[http://dx.doi.org/10.1097/FTD.0000000000000479] [PMID: 29256969]
[44]
Verheijen, R.B.; Bins, S.; Mathijssen, R.H.J.; Lolkema, M.P.; van Doorn, L.; Schellens, J.H.M.; Beijnen, J.H.; Langenberg, M.H.G.; Huitema, A.D.R.; Steeghs, N. Individualized pazopanib dosing: A prospective feasibility study in cancer patients. Clin. Cancer Res., 2016, 22(23), 5738-5746.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1255] [PMID: 27470967]
[45]
Sparidans, R.W.; Ahmed, T.T.A.; Muilwijk, E.W.; Welzen, M.E.B.; Schellens, J.H.M.; Beijnen, J.H. Liquid chromatography–tandem mass spectrometric assay for therapeutic drug monitoring of the tyrosine kinase inhibitor pazopanib in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 905, 137-140.
[http://dx.doi.org/10.1016/j.jchromb.2012.08.004] [PMID: 22917595]
[46]
Escudero-Ortiz, V.; Pérez-Ruixo, J.J.; Valenzuela, B. Development and validation of an HPLC-UV method for pazopanib quantification in human plasma and application to patients with cancer in routine clinical practice. Ther. Drug Monit., 2015, 37(2), 172-179.
[http://dx.doi.org/10.1097/FTD.0000000000000121] [PMID: 25072946]
[47]
Paludetto, M.N.; Puisset, F.; Le Louedec, F.; Allal, B.; Lafont, T.; Chatelut, E.; Arellano, C. Simultaneous monitoring of pazopanib and its metabolites by UPLC–MS/MS. J. Pharm. Biomed. Anal., 2018, 154, 373-383.
[http://dx.doi.org/10.1016/j.jpba.2018.03.013] [PMID: 29571135]
[48]
Patel, P.N.; Kalariya, P.D.; Sharma, M.; Garg, P.; Talluri, M.V.N.K.; Gananadhamu, S.; Srinivas, R. Characterization of forced degradation products of pazopanib hydrochloride by UHPLCQ-TOF/MS and in silico toxicity prediction. J. Mass Spectrom., 2015, 50(7), 918-928.
[http://dx.doi.org/10.1002/jms.3602] [PMID: 26349647]
[49]
Toh, Y.L.; Pang, Y.Y.; Shwe, M.; Kanesvaran, R.; Toh, C.K.; Chan, A.; Ho, H.K. HPLC-MS/MS coupled with equilibrium dialysis method for quantification of free drug concentration of pazopanib in plasma. Heliyon, 2020, 6(4), e03813.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03813] [PMID: 32373731]
[50]
Gong, J.; Gan, J.; Caceres-Cortes, J.; Christopher, L.J.; Arora, V.; Masson, E.; Williams, D.; Pursley, J.; Allentoff, A.; Lago, M.; Tran, S.B.; Iyer, R.A. Metabolism and disposition of [14C]brivanib alaninate after oral administration to rats, monkeys, and humans. Drug Metab. Dispos., 2011, 39(5), 891-903.
[http://dx.doi.org/10.1124/dmd.110.037341] [PMID: 21289073]
[51]
Narang, A.S.; Badawy, S.; Ye, Q.; Patel, D.; Vincent, M.; Raghavan, K.; Huang, Y.; Yamniuk, A.; Vig, B.; Crison, J.; Derbin, G.; Xu, Y.; Ramirez, A.; Galella, M.; Rinaldi, F.A. Role of self association and supersaturation in oral absorption of a poorly soluble weakly basic drug. Pharm. Res., 2015, 32(8), 2579-2594.
[http://dx.doi.org/10.1007/s11095-015-1645-y] [PMID: 25724158]
[52]
He, B.; Shi, Y.; Kleintop, B.; Raglione, T. Direct and indirect separations of five isomers of Brivanib Alaninate using chiral high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 875(1), 122-135.
[http://dx.doi.org/10.1016/j.jchromb.2008.08.022] [PMID: 18815076]
[53]
Roth, O.; Spreux-Varoquaux, O.; Bouchet, S.; Rousselot, P.; Castaigne, S.; Rigaudeau, S.; Raggueneau, V.; Therond, P.; Devillier, P.; Molimard, M.; Maneglier, B. Imatinib assay by HPLC with photodiode-array UV detection in plasma from patients with chronic myeloid leukemia: Comparison with LC-MS/MS. Clin. Chim. Acta, 2010, 411(3-4), 140-146.
[http://dx.doi.org/10.1016/j.cca.2009.10.007] [PMID: 19853594]
[54]
De Francia, S.; D’Avolio, A.; De Martino, F.; Pirro, E.; Baietto, L.; Siccardi, M.; Simiele, M.; Racca, S.; Saglio, G.; Di Carlo, F.; Di Perri, G. New HPLC–MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib, and nilotinib in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(18-19), 1721-1726.
[http://dx.doi.org/10.1016/j.jchromb.2009.04.028] [PMID: 19428316]
[55]
Velpandian, T.; Mathur, R.; Agarwal, N.K.; Arora, B.; Kumar, L.; Gupta, S.K. Development and validation of a simple liquid chromatographic method with ultraviolet detection for the determination of imatinib in biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 804(2), 431-434.
[http://dx.doi.org/10.1016/j.jchromb.2004.01.032] [PMID: 15081939]

© 2024 Bentham Science Publishers | Privacy Policy